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1. Introduction  
 
Over the last six or seven years one of the major trends in microcontroller design is the adoption of the ARM7 and 
ARM9 as the CPU for general purpose microcontrollers. Today there are some 240 ARM-based microcontrollers 
available from a wide range of manufacturers. Now ST Microelectronics have launched the STM32, their first 
microcontroller based on the new ARM Cortex-M3 microcontroller core.  This device sets new standards of 
performance and cost, as well as being capable of low power operation and hard real-time control. 
 

1.1 So What Is Cortex? 
The ARM Cortex family is a new generation of processor that provides a standard architecture for a wide range of 
technological demands. Unlike the other ARM CPUs, the Cortex family is a complete processor core that provides 
a standard CPU and system architecture.  The Cortex family comes in three main profiles: the A profile for high 
end applications, R for real time and M for cost-sensitive and microcontroller applications. The STM32 is based 
on the Cortex-M3 profile, which is specifically designed for high system performance combined with low power 
consumption. It has a low enough cost to challenge traditional 8 and 16-bit microcontrollers. 
 
While the ARM7 and ARM9 CPUs have been successfully integrated into standard microcontrollers, they do show 
their SoC heritage. This is particularly noticeable in the area of exception and interrupt handling, because each 
specific manufacturer has designed their own solution. The Cortex-M3 provides a standardised microcontroller 
core which goes beyond the CPU to provide the entire heart of a microcontroller (including the interrupt system, 
SysTick timer, debug system and memory map). The 4Gbyte address space of the Cortex-M3 is split into well- 
defined regions for code, SRAM, peripherals and system peripherals. Unlike the ARM7, the Cortex-M3 is a 
Harvard architecture and so has multiple busses that allow it to perform operations in parallel, boosting its overall 
performance. Unlike earlier ARM architectures, the Cortex family allows unaligned data accesses. This ensures 
the most efficient use of the internal SRAM. The Cortex family also supports setting and clearing of bits within two 
1Mbyte regions of memory by a method called bit banding. This allows efficient access to peripheral registers and 
flags located in SRAM memory without the need for a full Boolean processor. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

The heart of the STM32 is the Cortex-M3 processor. 
The Cortex M3 processor is a standardised 
microcontroller  including 32 bit CPU, bus structure, 
nested interrupt unit, debug system and standard 
memory layout. 
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One of the key components of the Cortex-M3 core is the Nested Vector Interrupt Controller (NVIC). The NVIC 
provides a standard interrupt structure for all Cortex based microcontrollers and exceptional interrupt handling. 
The NVIC provides dedicated interrupt vectors for up to 240 peripheral sources where each interrupt source can 
be individually prioritised. The NVIC has been designed for extremely fast interrupt handling. The time taken from 
receiving an interrupt to reaching the first line of code in your service routine is just twelve cycles. This is achieved 
in part by automatic stack handling which is done by microcode within the CPU. In the case of back to back 
interrupts, the NVIC uses a “tail chaining” method that allows successive interrupts to be served with only a six 
cycle latency. During the interrupt stacking phase, a high priority interrupt can pre-empt a low priority interrupt 
without incurring any additional CPU cycles.  The interrupt structure is also tightly coupled to the low power 
modes within the Cortex-M3 core. It is possible to configure the CPU to automatically enter a low power on exit 
from an interrupt. The core then stays asleep until another exception is raised. 
 
Although the Cortex-M3 is designed as a low cost core, it is still a 32-bit CPU and as such has support for two 
operating modes: Thread mode and Handler mode, which can be configured with their own stacks. This allows 
more sophisticated software design and support for real-time operating systems. The Cortex core also includes a 
24-bit auto reload timer that is intended to provide a periodic interrupt for an RTOS kernel. While the ARM7 and 
ARM9 CPUs have two instruction sets (the ARM 32-bit and Thumb 16-bit instruction sets) the Cortex family is 
designed to support the ARM Thumb-2 instruction set. This blends both 16 and 32-bit instructions, to deliver the 
performance of the ARM 32-bit instruction set with the code density of the Thumb 16-bit instruction set. The 
Thumb-2 instruction set is a rich instruction set that is designed as a target for C/C++ compilers. This means that 
a Cortex application can be entirely coded in C. 
 

1.2 A Look At The STM32 
ST already have four ARM7 and ARM9 based microcontroller families, but the STM32 is a significant step up the 
price/performance curve. With volume pricing at just over one Euro, the STM32 is a serious challenge to existing 
8-bit microcontrollers.. . The STM32 was initially released with fourteen different variants.These are split into two 
groups: the Performance line which operates up to CPU clock speeds of 72MHz and the Access line which runs 
up to 36MHz. Both sets of variants are pin and software compatible and offer FLASH ROM sizes up to 128K and 
20K SRAM.   Since the initial release the STM32 road map has been extended to include devices with larger 
RAM and FLASH memories and more complex peripherals.  
 

 
 
 
 
 
 

1.2.1 Sophistication 
At first glance the peripheral set looks like a typical small microcontroller, featuring peripherals such as Dual ADC, 
general purpose timers, I2C,SPI,CAN,USB and a real-time clock. However, each of these peripherals is very 

The STM32 family has two distinct branches. The Performance line which runs to 72MHz and has 
the full set of peripherals and the Access line which runs to 36MHz and has a reduced set of 
peripherals. 
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feature-rich. For example the 12-bit ADC has an integral temperature sensor and multiple conversion modes and 
devices with dual ADC can slave both ADCs together in a further nine conversion modes. Similarly, each of the 
four timers has four capture compare units and each timer block may be combined with the others to build 
sophisticated timer arrays. An advanced timer has additional support for motor control, with 6 complimentary 
PWM outputs with programmable dead time and a break input line that will force the PWM signal to a pre 
programmed safe state. The SPI peripheral has a hardware CRC generator for 8 and 16 words to support 
interfacing to SD and MMC cards.  
 
Surprisingly for a small microcontroller, the STM32 also includes a seven channel DMA unit.  Each channel can 
be used to transfer data to and from any peripheral register on memory location as 8/16 or 32-bit words.  Each of 
the peripherals can be a DMA flow controller sending or demanding data as required. An internal bus arbiter and 
bus matrix minimise the arbitration between the CPU data accesses and the DMA channels. This means that the 
DMA unit is flexible, easy to use and really automates data flow within the microcontroller. 
 
In an effort to square the circle the STM32 is a low power as well as high performance microcontroller. It can run 
from a 2V supply and at 72MHz with everything switched on it consumes just 36mA. In combination with the 
Cortex low power modes the STM32 has a standby power consumption of just 2µA. An internal 8MHz RC 
oscillator allows the chip to quickly come out of low power modes while the external oscillator is still starting up. 
This fast entry and exiting from low power modes further reduces overall power consumption. 
 

1.2.2 Safety 
As well as demanding more processing power and more sophisticated peripherals, many modern applications 
have to operate in safety-critical environments. With this in mind, the STM32 has a number of hardware features 
that help support high integrity applications. These include a low power voltage detector, a clock security system 
and two separate watchdogs. The first watchdog is a windowed watchdog. This watchdog must be refreshed in a 
defined time frame. If you hit it too soon, or too late, the watchdog will trigger. The second watchdog is an 
independent watchdog which has its own external oscillator separate from the main system clock. A further clock 
security system can detect failure of the main external oscillator and fail safely back onto an internal 8MHz RC 
oscillator.  
 

1.2.3 Security 
One of the other unfortunate requirements of modern design is the need for code security to prevent software 
piracy. Here the STM32 FLASH can be locked for FLASH READ accesses via the debug port. When READ 
protection is enabled, the  FLASH  memory is also WRITE protected to prevent untrusted code from being 
inserted on the interrupt vector table. Further WRITE protection can be enabled over the remainder of the FLASH 
memory. The STM32 also has a real-time clock and a small area of battery backed SRAM. This region has an 
anti-tamper input that can trigger an interrupt on a state change. In addition an anti-tamper event will 
automatically clear the contents of the battery backed SRAM. 
 

1.2.4 Software Development 
If you are already using an ARM-based microcontroller, the good news is that the chances are that your 
development tools already support the Thumb-2 instruction set and the Cortex family. The worst case is a 
software upgrade to get the necessary support. ST also provide a peripheral driver library, a USB developer 
library as an ANSI C library and source code that is compatible with earlier libraries published for their STR7 and 
STR9 microcontrollers. Ports of these libraries are already available for popular compiler tools. Similarly, many 
open source and commercial RTOS and middleware (TCP/IP, file system etc) are available for the Cortex family.  
The Cortex-M3 also comes with a whole new debug system called CoreSight. Access to the CoreSight system is 
through the Debug Access Port which supports either a standard JTAG connection or a serial wire (2 Pin) 
interface. As well as providing debug run control, the CoreSight system on the STM32 provides a data watchpoint 
and an instrumentation trace. The instrumentation trace can send selected application information up to the 
debug tool. This can provide extended debug information and can also be used during software testing. 
 
  



Chapter 1: Introduction  

 

© Hitex (UK) Ltd.                                                                                     Page 7 

1.2.5 STM32 Performance Line And Access Line 
The STM32 family has two distinct branches:  the Performance line and Access line. The Performance line has 
the full set of peripherals and runs to the maximum 72MHz. The Access line has a reduced set of peripherals and 
runs to a maximum 32MHz. Importantly the package types and pins layouts are the same between both the 
Access and Performance line variants. This allows different versions of the STM32 to be interchanged without 
having to re-spin the PCB. 
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2. Cortex Overview 
As we saw in the introduction, the Cortex processor is the next generation embedded core from ARM. It is 
something of a departure from the earlier ARM CPUs in that it is a complete processor core, consisting of the 
Cortex CPU and a surrounding set of system peripherals, providing the heart of an embedded system.  As a 
result of the wide variety of embedded systems, the Cortex processor is available in a number of application 
profiles. These are denoted by the letter following the Cortex name. The three profiles are as follows: 
 
Cortex-A Series, applications processors for complex OS and user applications. 
Supports the ARM, Thumb and Thumb-2 instruction sets. 
 
 Cortex-R Series, real-time systems profile. 
Supports the ARM, Thumb, and Thumb-2 instruction sets. 
 
Cortex-M Series, microcontroller profile optimized for cost-sensitive applications.  
Supports Thumb-2 instruction set only. 
 
The number at the end of the Cortex name refers to the relative performance level, with 1 the lowest and 8 the 
highest. Currently performance level 3 is the highest performance level available in the microcontroller profile. The 
STM32 is based on the Cortex-M3 processor.  
 

2.1 ARM Architectural Revision  
ARM also somewhat confusingly denote each of their processors with an architectural revision. (This is written 
ARMV6, ARMV7 etc.) The Cortex M3 has the architectural revision ARMV7 M.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Thus the documentation for the Cortex-M3 consists of the Cortex-M3 Technical Reference Manual and the 
ARMV7 M Architectural Reference Manual.  Both of these documents can be downloaded from the ARM website 
at www.arm.com 
 

  

The Cortex-M3 processor is based on the ARMV7 
architecture and is capable of executing the 
Thumb-2 instruction set. 

http://www.arm.com/
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2.2 Cortex Processor And Cortex CPU 
Throughout the remainder of this book, the terms Cortex processor and Cortex CPU will be used to distinguish 
between the complete Cortex embedded core and the internal RISC CPU. In the next section we will look at the 
key features of the Cortex CPU followed by the system peripherals in the Cortex processor. 
 

2.3 Cortex CPU  
At the heart of the Cortex processor is a 32-bit RISC CPU. This CPU has a simplified version of the ARM7/9 
programmer’s model, but a richer instruction set with good integer maths support, better bit manipulation and 
‘harder’ real-time performance.  
 

2.3.1 Pipeline 
The Cortex CPU can execute most instructions in a single cycle. Like the ARM7 and ARM9 CPUs this is achieved 
with a three stage pipeline.  
 

 
 
 
 
 
 
 
 
 
 

 
Whilst one instruction is being executed, the next is being decoded and a third is being fetched from memory. 
This works very well for linear code, but when a branch is encountered the pipeline must be flushed and refilled 
before code can continue to execute. In the ARM7 and ARM9 CPUs branches are very expensive in terms of 
code performance. In the Cortex CPU the three stage pipeline is enhanced with branch prediction.  This means 
that when a conditional branch instruction is reached, a speculative fetch is performed, so that both destinations 
of the conditional instruction are available for execution without incurring a performance hit. The worst case is an 
indirect branch where a speculative fetch cannot be made and the only course of action is to flush the pipeline. 
While the pipeline is key to the overall performance of the Cortex CPU, no special considerations need to be 
made in the application code.  
 

2.3.2 Programmer’s Model 
The Cortex CPU is a RISC processor which has a load and store architecture. In order to perform data processing 
instructions, the operands must be loaded into a central register file, the data operation must be performed on 
these registers and the results then saved back to the memory store. 
 

 
 
 

Like the ARM7 and ARM9 CPUs 
the Cortex-M3 has a three stage 
pipeline. However, the Cortex-M3 
also has branch prediction to 
minimise the number of pipeline 
flushes. 

The Cortex-M3 is a load and store architecture. All data has to be moved into a central register file before a 
data processing instruction can act on it. 
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Consequently all the program activity focuses around the CPU register file. This register file consists of sixteen 
32-bit wide registers. Registers R0-R12 are simple registers that can be used to hold program variables. The 
Registers R13-R15 have special functions within the Cortex CPU. Register R13 is used as the stack pointer. This 
register is banked, which allows the Cortex CPU to have two operating modes each with their own separate stack 
space. This is typically used by an RTOS which can run its ‘system’ code in a protected mode. In the Cortex CPU 
the two stacks are called the main stack and the process stack. The next register R14 is called the link register. 
This register is used to store the return address when a call is made to a procedure. This allows the Cortex CPU 
to make a fast entry and exit to a procedure. If your code calls several levels of subroutines, the compiler will 
automatically store R14 on the stack. The final register R15 is the program counter; since this is part of the central 
register file it can be read and manipulated like any other register.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.3.2.1 XPSR 
In addition to the register file there is a separate register called the Program Status Register. This is not part of 
the main register file and is only accessible through two dedicated instructions. The xPSR contains a number of 
fields that influence the execution of the Cortex CPU.  
 
 
 
 
 
 
 
 
 
 
The xPSR register can also be accessed through three special alias names that allow access to sub-ranges of 
bits within the xPSR. The top five bits are the condition code flags and are aliased as the Application Program 
Status Register. The first four condition code flags N,Z,C,V ( Negative, Zero, Carry and Overflow) will be set and 
cleared depending on the result of a data processing instruction. The Q bit is used by the DPS saturated maths 
instructions to indicate that a variable has reached its maximum or minimum value. Like the ARM 32-bit 
instruction set, certain Thumb-2 instructions are only executed if the instruction condition code matches the state 
of the Application Program Status Register flags. If the instruction condition codes do not match, the instruction 
passes through the pipeline as a NOP. This ensures that instructions flow smoothly through the pipeline and 
minimises pipeline flushes. In the Cortex CPU, this technique is extended with the Execution Program Status 

The Cortex-M3 has a CPU register file of 16 32-bit wide registers. Like the 
earlier ARM7/9 CPUs R13 is the stack pointer. R14 is the link register and 
R15 is the PC. R13 is a banked register to allow the Cortex-M3 to operate 
with two stacks: a process stack and a main stack.  

The Program Status Register contains status fields for instruction execution. This register is 
aliased into the Application, Execution and Interrupt Status Registers 
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Register. This is an alias of bits 26 – 8 of the xPSR. This contains three fields: the “If then” field the “interrupt 
continuable instruction” and the Thumb instruction field. The Thumb-2 instruction set has an efficient method of 
executing small ‘if then’ blocks of instructions. When a conditional test is true, it can set a value in the IT field that 
tells the CPU to execute up to four following instructions. If the conditional test fails, these instructions will pass 
through the pipeline as a NOP. Thus a typical line of C would be coded as follows: 
 
  If (r0 ==0) 
     CMP r0,#0 compare r0 to 0 
     ITTEE EQ if true execute the next two instructions 
  Then r0 = *r1 +2; 
     LDR r0,[r1] load contents of memory location into r0 
     ADDr0,#2 add 2   
 
While most Thumb-2 instructions execute in a single cycle, some (such as load and store instructions) take 
multiple cycles. So that the Cortex CPU can have a deterministic interrupt response time, these instructions must 
be interruptible. When an instruction is terminated early, the interrupt continuable instruction field stores the 
number of the next register to be operated on in the load or store multiple instruction. Thus once the interrupt has 
been serviced, the load/store multiple instruction can resume execution. The final Thumb field is inherited from 
the earlier ARM CPUs. This field indicates if the ARM or Thumb instruction set is currently being executed by the 
CPU. In the Cortex-M3 this bit is always set to one.  Finally, the interrupt status field contains information on any 
interrupt request that was pre-empted.  
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2.3.3 CPU Operating Modes 
While the Cortex processor is designed to be a low gate count, fast and easy to use microcontroller core, it has 
been designed to support the use of a real-time operating system.  The Cortex processor has two operating 
modes: Thread mode and Handler mode. The CPU will run in Thread mode while it is executing in non-interrupt 
background mode and will switch to the Handler mode when it is executing exceptions.  In addition, the Cortex 
CPU can execute code in a privileged or non-privileged mode.  In privileged mode, the CPU has access to the full 
instruction set. In unprivileged mode certain instructions are disabled (such as the MRS and MSR instructions 
which allow access to the xPSR and its aliases). Additionally, access to most registers in the Cortex processor 
system control space is also disabled. Stack usage can also be configured. The main stack (R13) can be used by 
both Thread and Handler mode. Alternatively, Handler mode can be configured to use the process stack (R13 
banked register). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Out of reset the Cortex processor will run in a ‘flat’ configuration. Both Thread and Handler modes execute in 
privileged mode, so there are no restrictions on access to any processor resources. Both the Thread and Handler 
modes use the main stack. In order to start execution, the Cortex processor simply needs the reset vector and the 
start address of the stack to be configured before you can start to execute your application C code. However, if 
you are using an RTOS or are developing a safety-critical application, the chip can be used in a mode advanced 
configuration where Handler mode (exceptions and the RTOS) runs in privileged mode and uses the main stack 
while application code runs in Thread mode with unprivileged access and uses the process stack. This way the 
system code and the application code are partitioned and errors in the application code will not cause the RTOS 
to crash.   
 

2.3.4 Thumb-2 Instruction Set 
The ARM7 and ARM9 CPUs can execute two instruction sets:  the ARM 32-bit instruction set and the Thumb 16-
bit instruction set. This allows a developer to optimise his program by selecting the instruction set used for 

The Cortex-M3 can be used in a ‘flat’ simple mode. It 
is also designed to support real-time operating 
systems. It has Handler and Thread modes that can 
be configured to use the main and process stacks 
and have privileged access to the Cortex system 
control registers. 
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different procedures: 32-bit instructions for speed and 16-bit instructions for code compression. The Cortex CPU 
is designed to execute the Thumb-2 instruction set which is a blend of 16 and 32 bit instructions. The thumb-2 
instruction set gives a 26% code density improvement over the ARM 32-bit instruction set and a 25% 
improvement in performance over the Thumb 16-bit instruction set.  The Thumb2 instruction set has some 
improved multiply instructions which can execute in a single cycle and a hardware divide that takes between 2 – 7 
cycles. 

 

 

 

 

 

 

 

 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
The Thumb-2 instruction set also has: improved branching instructions including test and compare, if/then 
conditional execution blocks and for data manipulation byte ordering and byte and half word extraction 
instructions. While still a RISC processor, the Cortex CPU also has a rich instruction set that is specifically 
designed as a good target for a C compiler. A typical Cortex-M3 program will be written entirely in ANSI C, with 
minimal non-ANSI keywords and only the exception vector table written in Assembler.  
 
  

The Cortex processor benchmarks give 
a performance level of 1.2 DMIPS/MHz, 
which is 1.2 Clock cycles per instruction. 

The Thumb-2 instruction set 
includes single cycle integer 
multiplication and also a 
hardware divide instruction. 
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2.3.5 Memory Map 
The Cortex-M3 processor is a standardised microcontroller core and as such has a well-defined memory map. 
Despite the multiple internal busses this memory map is a linear 4 Gbyte address space. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The first 1Gbyte of memory is split evenly between a code region and a SRAM region.  The code space is 
optimised to be executed from the I-Code bus. Similarly, the SRAM is reached with the D-code bus. Although 
code can be loaded and executed from the SRAM, the instructions would be fetched using the system bus, which 
incurs an extra wait state. It is likely that code would run slower from SRAM than from on-chip FLASH memory 
located in the code region. The next 0.5 Gbyte of memory is the on-chip peripheral region. All user peripherals 
provided by the microcontroller vendor will be located in this region.  The first 1 Mbyte of both the SRAM and 
Peripheral regions is bit-addressable using a technique called bit banding. Since all the SRAM and all the user 
peripherals on the STM32 are located in these regions all the memory locations of the STM32 can be 
manipulated in a word-wide or bitwise fashion. The next 2 Gbyte address space is allocated to external memory-
mapped SRAM and peripherals. The final 0.5 Gbyte is allocated to the internal Cortex processor peripherals and 
a region for future vendor specific enhancements to the Cortex processor. All of the Cortex processor registers 
are at fixed locations for all Cortex-based microcontrollers. This allows code to be more easily ported between 
different STM32 variants and indeed other vendors’ Cortex-based microcontrollers. One processor to learn, one 
set of tools to invest in and large amounts of reusable code across a wide range of microcontrollers. 
 
  

The Cortex-M3 defines a fixed 4 
Gb memory map that specifies 
regions for code SRAM 
peripherals, external memory 
and devices and the Cortex 
system registers. This memory 
map is common to all Cortex-
based devices. 
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2.3.6 Unaligned Memory Accesses 
The ARM7 and ARM9 instruction sets are capable of accessing byte, half word and word signed and unsigned 
variables. This allows the CPU to naturally support integer variables without the need for the sort of software 
library support typically required in 8 and 16-bit microcontrollers. However, the earlier ARM CPUs do suffer from a 
disadvantage in that they can only do word or half-word aligned accesses. This restricts the compiler linker in its 
ability to pack data into the SRAM and some valuable SRAM will be wasted. (This can be as much as 25% 
depending on the mix of variables used.) 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The Cortex CPU has addressing modes for word, half-word and byte, but is able to make unaligned memory 
accesses. This gives the compiler linker complete freedom to order the program data in memory. The additional 
bit banding support on the Cortex CPU allows program flags to be packed into a word or half-word variable rather 
than using a byte for each flag. 
 

2.3.7 Bit Banding 
The earlier ARM7 and ARM9 CPUs were only able to perform bit manipulations on SRAM and peripheral memory 
locations by using AND and OR operations. This requires a READ MODIFY WRITE operation which is expensive 
in terms of the number of cycles taken to set and clear individual bits and the overall code space required for each 
bit manipulation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The Cortex-M3 can make unaligned memory accesses,  which ensures that the SRAM is efficiently 
used.  

The bit banding technique allows atomic bit manipulation while keeping the Cortex-M3 CPU to a 
minimal gate count. 
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To overcome this limitation it would be possible to introduce a dedicated bit set and clear instructions, or a full 
Boolean processor, but this would increase the size and complexity of the Cortex CPU. Instead, a technique 
called bit banding allows direct bit manipulation on sections of the peripheral and SRAM memory spaces, without 
the need for any special instructions. The bit addressable regions of the Cortex memory map are composed of the 
bit band region (which is up to 1Mbyte of real memory or peripheral registers) and the bit band Alias region which 
takes up to 32Mbyte of the memory map. Bit banding works by mapping each bit in the bit band region to a word 
address in the Alias region. So by setting and clearing the aliased word address we can set and clear bits in the 
real memory. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This allows us to perform individual bit manipulation without the need for special instructions and keeps the 
overall size of the Cortex core as small as possible. In practice, we need to calculate the address of the bit band 
alias word for a given memory location in the peripheral or SRAM space. The formula to calculate the alias 
address is as follows: 
 
Address in the bit band alias region  = Bit band alias base address + bit word offset 
Where bit word offset    = Byte offset from bit band base X 0x20 + bit number x 4 
 
This is much easier than it may look at first glance. For a practical example, the GPIO output data register is 
written to in order to set and clear individual IO lines. The physical address of the Port B output register is 
0x40010C0C. In this example we want to be able to set and clear bit eight of this word using the above formula. 
 
Word address     = 0x40010C0C 
Peripheral bit band base    = 0x40000000 
Peripheral bit band Alias base   = 0x42000000  
Byte offset from bit band base   = 0x40010c0c – 0x40000000 = 10c0c 
Bit word offset     = (0x10c0c x 0x20) +(8x4) = 0x2181A0 
Bit Alias address                  = 0x42000000 + 0x2181A0 = 0x422181A0 
 
 We can now create a pointer to this address using the following line of C: 
 
#define PortBbit8   (*((volatile unsigned long *) 0x422181A0 )) 
 
This pointer can then be used to set and clear the IO port bit: 
 
PB8 = 1;        //led on  
 
Which generates the following assembly instructions: 
 
MOVS     r0,#0x01 
LDR      r1,[pc,#104]  
STR      r0,[r1,#0x00] 
 
  

Bit Banding is supported over the first 1Mb of the SRAM and Peripheral 
regions. This covers all the resources of the STM32. 
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Switching the LED off: 
 
 PB8 = 0;  //led off  
 
Generates the following assembly instructions: 
 
 MOVS     r0,#0x00 
 LDR      r1,[pc,#88]   
 STR      r0,[r1,#0x00] 
 
Both the set and clear operations take three 16-bit instructions and on the STM32 running at 72 MHz these 
instructions are executed in 80nsec. Any word in the peripheral and SRAM bit band regions can also be directly 
addressed word-wide so we could perform the same set and clear using the more traditional AND and OR 
approach: 
 
GPIOB->ODR |= 0x00000100;         //LED on  
 LDR      r0,[pc,#68]     
 ADDS     r0,r0,#0x08 
 LDR      r0,[r0,#0x00] 
 ORR      r0,r0,#0x100 
 LDR      r1,[pc,#64]   
 STR      r0,[r1,#0xC0C]   
 
GPIOB->ODR &=!0x00000100;         //LED off  
 LDR      r0,[pc,#40]  
 ADDS     r0,r0,#0x08 
 LDR      r0,[r0,#0x00] 
 MOVS     r0,#0x00 
 LDR      r1,[pc,#40]   
 STR      r0,[r1,#0xC0C] 
 
Now each set and clear operation takes a mixture of 16 and 32-bit operations, which take a minimum of 14 bytes 
for each operation and at the same clock frequency take a minimum of 180 nSec. If you consider the impact of bit 
banding on a typical embedded application that sets and clears lots of bits in the peripheral registers and uses 
semaphores and flags in the SRAM, you are very clearly going to make significant savings in both code size and 
execution time and it is all handled in the STM32 header file for you.  
 

2.4 Cortex Processor 
2.4.1 Busses 
The Cortex-M3 processor has a Harvard architecture with separate code and data busses. These are called the 
Icode bus and the Dcode bus. Both of these busses can access code and data in the range 0x00000000 – 
0x1FFFFFFF. An additional system bus is used to access the Cortex system control space in the range 
0x20000000-0xDFFFFFFF and 0xE0100000-0xFFFFFFFF. The Cortex on-chip debug system has an additional 
bus structure called the Private Peripheral Bus. 
  

2.4.2 Bus Matrix 
The system and data busses are connected to the external microcontroller via a set of high speed busses 
arranged as a bus matrix. This allows a number of parallel paths between the Cortex busses and other external 
bus masters such as DMA to the on-chip resources such as SRAM and peripherals.  If two bus masters (i.e. the 
Cortex CPU and a DMA channel) try to access the same peripheral, an internal arbiter will resolve the conflict and 
grant bus access to the highest priority peripheral. However, in the STM32 the DMA units are designed to work in 
concert with the Cortex CPU, as we will see when we examine the operation of the DMA unit. 
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2.4.3 System Timer 
The Cortex core also includes a 24-bit down counter, with auto reload and end of count interrupt. This is intended 
to provide a standard timer for all Cortex-based microcontrollers. The SysTick timer is intended to be used to 
provide a system tick for an RTOS, or to generate a periodic interrupt for scheduled tasks.  The SysTick Control 
and status register in the Cortex-M3 System control space unit allows you to select the SysTick clock source. By 
setting the CLKSOURCE bit the SysTick timer will run at the CPU frequency. When cleared the timer will run at 
1/8 CPU frequency.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The SysTick timer has three registers. The current value and reload value should be initialised with the count 
period. The control and status register contains an ENABLE bit to start the timer running and a TICKINT bit to 
enable its interrupt line. In the next section we will look at the Cortex interrupt structure and use the SysTick timer 
to generate a first exception on the STM32. 
 
 

2.4.4 Interrupt Handling 
One of the key improvements of the Cortex core over the earlier ARM CPUs is its interrupt structure and 
exception handling. The ARM7 and ARM9 CPUs had two interrupt lines: the fast interrupt and the general 
purpose interrupt line. These two interrupt lines had to support all of the interrupt sources within a given 
manufacturer’s microcontroller. How this was done varied according to the implementation, so while the 
techniques used were broadly the same, the implementation differed between manufacturers.  The ARM7 and 
ARM9 interrupt structure suffers from two further problems. Firstly it is not deterministic; the time taken to 
terminate or abort an instruction under execution when the interrupt occurs is variable. This may not be a problem 
for many applications, but it is a big issue in real-time control. Secondly, the ARM7 and ARM9 interrupt structure 
does not naturally support nested interrupts; further software is required: either Assembler macros or an RTOS. 
One of the key criteria of the Cortex core is to overcome these limitations and provide a standard interrupt 
structure which is both extremely fast and deterministic. 
 
  

The SysTick Timer is a 24-bit auto-reload timer located within 
the Cortex-M3 processor. It is intended to provide a timer tick 
for a Real Time Operating System. 
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2.4.5 Nested Vector Interrupt Controller 
The Nested Vector Interrupt Controller is a standard unit within the Cortex core. This means that all Cortex-based 
microcontrollers will have the same interrupt structure, regardless of manufacturer.  Thus application code and 
operating systems can be easily ported from one microcontroller to another and the programmer does not need to 
learn a whole new set of registers. The NVIC is also designed to have a very low interrupt latency. This is both a 
feature of the NVIC itself and of the Thumb-2 instruction set which allows multi-cycle instructions such as load 
and store multiple to be interruptible. This interrupt latency is also deterministic, with several advanced interrupt 
handling features that support real-time applications. As its name implies, the NVIC is designed to support nested 
interrupts and on the STM32 there are 16 levels of priority. The NVIC interrupt structure is designed to be 
programmed entirely in ‘C’ and does not need any Assembler macros or special non-ANSI directives.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Although the NVIC is a standard unit within the Cortex core, in order to keep the gate count to a minimum the 
number of interrupt lines going into the NVIC is configurable when the microcontroller is designed. The NVIC has 
one non-maskable interrupt and up to a further 240 external interrupt lines which can be connected to the user 
peripherals. There are an additional 15 interrupt sources within the Cortex core, which are used to handle internal 
exceptions within the Cortex core itself.  The STM32 NVIC has been synthesised with a maximum of 43 maskable 
interrupt lines.  
 

2.4.5.1 NVIC Operation Exception Entry And Exit 
When an interrupt is raised by a peripheral, the NVIC will start the Cortex CPU serving the interrupt. As the Cortex 
CPU enters its interrupt mode, it will push a set of registers onto the stack. Importantly this is done in microcode, 
so there is no instruction overhead in the application code. While the stack frame is being saved, the starting 
address of the interrupt service routine is fetched on the instruction bus.  Thus the time taken from the interrupt 
being raised to reaching the first instruction in the interrupt routine is just 12 cycles. 

 
 
 
 
 
 
 
 
 
 
 
 
  
 
 

The STM32 processor includes a Nested 
Vector Interrupt Controller which can 
support a maximum of 240 external 
peripherals.  

The NVIC will respond to an interrupt with a latency of 
just six cycles. This includes a microcoded routine to 
automatically push a set of registers onto the stack.  
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The stack frame consists of the Program Status Register, the program counter and the link register. This saves 
the context that the Cortex CPU was running in. In addition registers R0 – R3 are also saved. In the ARM binary 
interface standard these registers are used for parameter passing, so saving these gives us a set of CPU 
registers that can be used by the ISR. Finally R12 is also saved; this register is the intracall scratch register. This 
register is used by any code that runs when function calls are made. For example, if you have enabled stack 
checking in the compiler, the additional code generated will use R12 if it need a CPU register. When the interrupt 
ends the process is reversed, the stack frame is restored automatically by microcode and in parallel the return 
address is fetched, so that the background code can resume execution in 12 cycles. 
 

2.4.5.2 Advanced Interrupt Handling Modes 
As well as being able to handle a single interrupt very quickly, the NVIC is designed to efficiently handle multiple 
interrupts in a very real time application. The NVIC has several clever methods of handling multiple interrupt 
sources the minimum delay between interrupts and to ensure that the highest priority interrupt is served first. 
 

2.4.5.2.1 Interrupt Pre-emption 
The NVIC is also designed to allow high priority interrupts to pre-empt a currently running low priority interrupt. In 
this case the running interrupt is halted and a new stack frame is saved in the standard 12 cycles after which the 
high priority interrupt runs. When the high priority interrupt is finished, the stack is automatically POPed and the 
low priority interrupt can resume execution.  
 

2.4.5.2.2 Tail Chaining 
If a high priority interrupt is running and a low priority interrupt is raised, the Cortex NVIC uses a method called tail 
chaining to ensure that there is a minimum delay between servicing interrupts. 
 
  
 
 
 
 
 
 
 
 
 
 
 
If two interrupts are raised, the highest priority interrupt will be served first and will begin execution in the standard 
12 cycles. However, at the end of the interrupt routine the Cortex CPU does not return to the background code. 
The stack frame is not restored, only the entry address of the next highest priority ISR is fetched. This takes just 
six cycles and then the next interrupt service routine can begin execution. At the end of the pending interrupts the 
stack is restored and the return address is fetched, so the background code can begin execution in the standard 
12 cycles. If the low priority interrupt arrives while the running interrupt is exiting, the POP will be abandoned and 
the stack pointer will be wound back to its original value. There is an additional 6 cycle delay while the new ISR 
address is fetched. This gives a latency of between 7 – 18 cycles before the new interrupt service routine can 
begin execution. 
 
 
 
 
 
 
 

Multiple interrupts will be ‘tail chained’ so 
there is a minimum delay from the end of 
one interrupt to the start of the next.  

A low priority interrupt which occurs as 
the stack is being unwound from a 
currently executed interrupt will 
automatically be tail chained with a 
delay of 7 – 18 cycles 
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2.4.5.2.3 Late Arrival 
In a real-time system there may often be a condition where we have started to serve a low priority interrupt, 
 only for a high priority interrupt to be raised. If this condition occurs during the initial PUSH the NVIC will switch to 
serve the higher priority interrupt. The stacking continues and there will be a minimum of 6 cycles from the point 
at which the high priority interrupt is raised, while the new ISR address is fetched. 
 
 
 
 
 
 
 
 
 
 
 
 
Once the high priority interrupt has finished execution, the original low priority interrupt will be tail chained and 
begin execution six cycles later. 
 

2.4.5.3 NVIC Configuration And Use 
To use the NVIC we need to do three things. First configure the vector table for the interrupt sources we want to 
use. Next configure the NVIC registers to enable and set the priorities of the NVIC interrupts and lastly we must 
configure the peripheral and enable its interrupt support. 
 

2.4.5.3.1 Exception Vector Table 
The Cortex vector table starts at the bottom of the address range. However rather than start at zero the vector 
table starts at address 0x00000004 the first four bytes are used to store the starting address of the stack pointer. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Each of the interrupt vector entries is four bytes wide and holds the start address of each service routine 
associated with the interrupt. The first 15 entries are for exceptions that occur within the Cortex core. These 
include the reset vector, non-maskable interrupt, fault and error management, debug exceptions and also the 
SysTick timer interrupt. The Thumb-2 instruction set also includes system service call instruction which when 
executed will generate an exception. The user peripheral interrupts start from entry 16 and will be linked to 
peripherals as defined by the manufacturer. In software, the vector table is usually maintained in the startup by 
locating the service routine addresses at the base of memory. 
 
 

A late arriving high priority interrupt will 
pre-empt a low priority interrupt without 
incurring an additional stacking overhead. 

The Cortex exception 
table contains the start 
address or an ISR which 
is loaded into the 
Program counter as the 
CPU enters the 
exception. 
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                AREA    RESET, DATA, READONLY 
                EXPORT  __Vectors 
 
__Vectors       DCD     __initial_sp               ; Top of Stack 
                DCD     Reset_Handler              ; Reset Handler 
                DCD     NMI_Handler                ; NMI Handler 
                DCD     HardFault_Handler          ; Hard Fault Handler 
                DCD     MemManage_Handler          ; MPU Fault Handler 
                DCD     BusFault_Handler           ; Bus Fault Handler 
                DCD     UsageFault_Handler         ; Usage Fault Handler 
                DCD     0                          ; Reserved 
                DCD     0                          ; Reserved 
                DCD     0                          ; Reserved 
                DCD     0                          ; Reserved 
                DCD     SVC_Handler                ; SVCall Handler 
                DCD     DebugMon_Handler           ; Debug Monitor Handler 
                DCD     0                          ; Reserved 
                DCD     PendSV_Handler             ; PendSV Handler 
                DCD     SysTick_Handler            ; SysTick Handler 
 
 
In the case of the SysTick timer we can create a service routine by declaring a ‘C’ routine with the matching 
symbolic name: 
 
void SysTick_Handler (void) 
{ 
 
 …. 
 
} 
 
Now with the vector table configured and the ISR prototype defined, we can configure the NVIC to handle the 
SysTick timer interrupt.  Generally we need to do two things: set the priority of the interrupt and then enable the 
interrupt source.  The NVIC registers are located in the system control space.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The Cortex internal exceptions are configured using the system control and system priority registers, while the 
user peripherals are configured using the IRQ registers. The SysTick interrupt is an internal Cortex exception and 
is handled in the system registers. Some of the internal exceptions are permanently enabled; these include the 
reset and NMI interrupts, but also the SysTick timer, so there is no explicit action required to enable the SysTick 
interrupt within the NVIC. To configure the SysTick interrupt we need to set the timer going and enable the 
interrupt within the peripheral itself: 
 
SysTickCurrent = 0x9000;    //Start value for the sys Tick counter 
SysTickReload  = 0x9000;    //Reload value  
SysTickControl = 0x07;    //Start and enable interrupt 
 
The priority of each of the internal Cortex exceptions can be set in the system priority registers. The Reset, NMI 
and hard fault exceptions are fixed to ensure that the core will always fallback to a known exception. Each of the 

The NVIC registers are located in the Cortex-M3 System 
control space and may only be accessed when the CPU is 
running in privileged mode. 
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other exceptions has an eight bit field located in the three system priority registers. The STM32 only implements 
16 levels of priority so only four bits of this field are active. However it is important to note that the priority is set by 
the four most significant bits. 
 
Each of the USER peripherals is controlled by the IRQ register blocks. Each user peripheral has an Interrupt 
Enable bit. These bits are located across two 32-bit IRQ Set Enable registers. There are matching IRQ Clear 
Enable registers that are used to disable an interrupt source. The NVIC also includes pending and active registers 
that allow you to determine the current condition of an interrupt source. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
There are sixteen priority registers. Each priority register is divided into four eight bit priority fields, each field 
being assigned to an individual interrupt vector. The STM32 only uses half of this field to implement 16 levels of 
priority. However, you should note that the active priority bits are in the upper nibble of each priority field. By 
default the priority field defines 16 levels of priority with level zero the highest and 15 the lowest. It is also possible 
to format the priority field into priority groups and subgroups. This does not provide extra levels of priority, but 
helps management of priority levels when you have a large number of interrupts by programming the PRIGROUP 
field in the Application Interrupt and Reset Control Register.  
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Each interrupt source has an enable bit in the NVIC 
and in the peripheral. In the STM32 there are 
sixteen levels of priority. 

The PRIGROUP field 
splits the priority 
levels into groups and 
subgroups. This is 
useful for software 
abstraction when 
dealing with a large 
number of interrupts. 
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The three bit PRIGROUP field allows you to split the 4-bit priority fields into groups and subgroups. For example, 
PRIGROUP value 3 creates two groups, each with four levels of priority. In your application code you can now 
define a high priority group of interrupts and a low priority group. Within each group you can specify subgroup 
levels of low, medium, high and very high.  As mentioned above this does not provide you anything “extra” but 
provides a more abstracted view of the interrupt structure which is useful to the programmer when managing a 
large number of interrupts. Configuring a peripheral interrupt is very similar to configuring an internal Cortex 
exception. In the case of the ADC interrupt we must first set the interrupt vector and provide the ISR routine: 
 
DCD     ADC_IRQHandler  ;  
 
void ADC_Handler void 
{ 
 
} 
 
Then the ADC must be initialised and the interrupt must be enabled within the peripheral and the NVIC: 
 
ADC1->CR2     = ADC_CR2;    //Switch on the ADC and continuous conversion 
ADC1->SQR1     = sequence1; //Select number of channels in sequence conversion 
ADC1->SQR2    = sequence2; //and select channels to convert 
ADC1->SQR3     = sequence3;   
ADC1->CR2     |= ADC_CR2;  //Rewrite on bit 
 
ADC1->CR1     = ADC_CR1; //Start regular channel group, enable ADC interrupt 
 
GPIOB->CRH     = 0x33333333; //Set LED pins to output 
 
NVIC->Enable[0] = 0x00040000; //Enable ADC interrupt 
NVIC->Enable[1] = 0x00000000; 
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2.5 Power Modes 
We will have a look at the full power management options within the STM32 later. In this section we will look at 
the power management modes within the Cortex core. The Cortex CPU has a sleep mode that places the Core 
into its low power mode and halts execution of instructions within the Cortex CPU. A small part of the NVIC is kept 
awake, so that interrupts generated from the STM32 peripherals can wake the Cortex core up.  
 

2.5.1 Entering Low Power Mode 
The Cortex core can be placed into its sleep mode by execution of either a Wait For Interrupt (WFI) or Wait For 
Event (WFE) instruction. In the case of the WFI instruction, the Cortex core will resume execution and serve the 
pending interrupt. Once the ISR routine has completed, there are two possibilities. Firstly, the Cortex CPU can 
return from the ISR and continue execution of the background code as normal. By setting the SLEEPON EXIT bit 
in the System Control Register, the Cortex core will automatically enter the sleep mode once the ISR has 
completed. This allows a low power application to be entirely interrupt-driven, so that the Cortex core will wake 
up, run the appropriate code and then re-enter the sleep mode with minimal code being used for power 
management. 
 
The WFE interrupt allows the Cortex core to resume execution from the point it was placed into the sleep mode. It 
does not jump to a service routine. A wake-up event is simply a peripheral interrupt line that is not enabled as an 
interrupt within the NVIC. This allows a peripheral to signal the Cortex core to wake up and continue processing 
without the need for an interrupt service routine.  The WFI and WFE instructions are not reachable from the C 
language, but compilers for the Thumb-2 instruction set provide intrinsic macros that can be used inline with 
standard C commands: 
 
__WFI 
 
__WFE 
 
In addition to the SLEEPNOW and SLEEPONEXIT low power modes the Cortex core can issue a SLEEPDEEP 
signal to the rest of the microcontroller system.  
 

 
 
 
 
 
This allows additional functions such as the PLL and user peripherals to be halted, so that the STM32 can enter 
its lowest power modes. 
 

2.5.2 CoreSight Debug Support 
All of the ARM CPUs have their own on-chip debug system. The ARM7 and ARM9 CPUs have as a minimum a 
JTAG port which allows a standard debug tool to connect to the CPU and download code into the internal RAM or 
FLASH memory. The JTAG port also supports basic run control (single step and setting breakpoints etc) as well 
as being able to view the contents of memory locations. The ARM7 and ARM9 CPUs can also provide a real-time 
trace through an additional debug peripheral called the embedded trace macro cell (ETM). While this system 
works fine, it does have some limitations. The JTAG debug peripheral can only provide debug information to the 
development tools when the ARM CPU is halted, so there is no possibility of real-time updates. Also, the number 
of hardware breakpoints is limited to two, though the ARM7 and ARM9 instructions sets include a breakpoint 

The System control register configures the Cortex processor sleep modes. The STM32 has 
additional low power modes that use the DeepSleep signal which is exported from the 
Cortex processor. 
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instruction which can be patched into the code by the development tool (typically called soft breakpoints.) 
Similarly for the real-time trace to work, the ETM must be fitted by the manufacturer at additional cost. 
Consequently this is not always supported. With the new Cortex core a whole new debug system called 
CoreSight has been introduced.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The full core sight debug system has a debug access port which allows connection to the microcontroller by a 
JTAG tool. The debug tool can connect using the standard 5 pin JTAG interface or a serial 2 wire interface.  
 In addition to the JTAG debug features, the full CoreSight debug system contains a Data Watch trace and an 
embedded trace macro cell. For software testing there is instrumentation trace and FLASH patch block. The 
STM32 implements the CoreSight debug system with the omission of the embedded trace macro cell. 
 
 In practice, the CoreSight debug structure on the STM32 provides an enhanced real-time version of the standard 
JTAG debug features. The STM32 CoreSight debug system provides 8 hardware breakpoints which can be non-
intrusively set and cleared while the Cortex CPU is running. In addition the Data Watch trace allows you to view 
the contents of memory locations non intrusively while the Cortex CPU is running. The CoreSight debug system 
can stay active when the Cortex core enters a low power or sleep mode. This makes a world of difference when 
debugging a low power application. Additionally the STM32 timers can be halted when the CPU is halted by the 
CoreSight system. This allows you to single-step your code and keep the timers in sync. with the instructions 
executing on the Cortex CPU. The CoreSight debug infrastructure significantly improves the real-time debug 
capabilities of the STM32 over earlier ARM7 and ARM9 CPUs whilst still using the same low cost hardware. 
 
 

The Cortex CoreSight debug system uses a JTAG or serial wire 
interface. CoreSight provides run control and trace functions. It 
has the additional advantage that it can be kept running while 
the STM32 is in a low power mode. This is a big step on from 
standard JTAG debugging. 
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3. Getting It Working  
A minimal STM32 design really can be very minimal. To make the STM32 work you really just need to add a 
power supply. The microcontroller contains its own internal RC oscillators and an internal reset circuit. This 
section will look at the main hardware considerations you will need to address to build a practical design. 
  

3.1 Package Types and Footprints 
The STM32 Access line and Performance line variants are designed with matching package types, to allow an 
easy hardware upgrade without any need to redesign the PCB. All the STM32 microcontrollers are available in 
LQFP packages ranging from 48 pins up to 144 pins. 
 

3.2 Power Supply 
The STM32 requires a single power supply which must be in the range 2.0V to 3.6V. An internal regulator is used 
to generate a 1.8V supply for the Cortex core. The STM32 has two other optional power supplies. The real time 
clock and a small number of registers are located on a separate power domain, which can be battery-backed to 
preserve data when the rest of the STM32 is placed in a deep power down state. If the design is not using battery 
back up, then VBAT must be connected to VDD. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 The second optional power supply is used to power the ADC. If the ADC is used, the main VDD power supply 
range is limited to 2.4V to 3.6V. On the 100 pin package, the ADC has additional voltage reference pins VREF+ and 
VREF-. The VREF- pin must be connected to VDDA and VREF+ can vary from 2.4 to VDDA. On all other packages the 
voltage reference is internally connected to the ADC voltage supply pins. Each of the power supplies requires 
stabilisation capacitors as shown below. 
 
  

The STM32 runs from a single 2.0V-3.6V supply. 
There is an additional backup power domain and a 
separate supply for the ADC converter (144 pin 
package only). 

With an internal reset and an internal voltage regulator, the STM32 only needs seven external capacitors. 
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3.3 Reset Circuit 
The STM32 contains an internal reset circuit that holds the device in reset as long as VDD is below 2.0V with a 
hysteresis of 40mV.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.3.1.1.1 Basic Hardware Schematic 
 

 
 
 
 
Strictly speaking, an external reset circuit is not a necessary part of an STM32 design. However, during 
development the nRST pin can be connected to a simple reset switch. nRST is also routed to the JTAG debug 
port, so that a development tool can force a reset on the microcontroller.  The STM32 has a number of internal 
reset sources that can detect faulty operating conditions and we will have a look at these in the safety section 
later on.  

The internal power on reset and power down reset 
ensure the processor only runs with a stable 
power supply. No external reset circuit is required. 
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3.4 Oscillators 
The STM32 has internal RC oscillators which are capable of supplying a clock to the internal PLL. This will allow 
the microcontroller to run at its maximum 72 MHz clock frequency. The internal oscillators are not as accurate or 
stable as an external crystal; consequently for most designs you will need at least one clock source.  
 

3.4.1 High Speed External Oscillator 
The main external clock source is used to derive the Cortex processor and the STM32 peripheral clocks. This 
clock source is called the High Speed External (HSE Osc) Oscillator and can be a crystal/ceramic resonator or a 
user provided clock source.  If a user clock is selected, it can be a square, sine or triangular waveform, but it must 
have a duty cycle of 50% and a maximum frequency of 25 MHz.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
If an external crystal/ceramic resonator is used, it must be in the range 4 MHz – 16 MHz.  Since the internal PLL 
multiplies the HSE Osc frequency up by integer values, the external clock should be a factor of 72 MHz so that 
you can easily derive the full operating frequency. 
 

3.4.2 Low Speed External Oscillator 
The STM32 can have a second external oscillator called the Low Speed External (LSE Osc) Oscillator. This is 
used to clock source to the real-time clock and the windowed watchdog.  
Like the HSE Osc, the LSE Osc can be an external crystal or a user-provided clock which can again have a 
square, sine or triangular waveform, as long as the duty cycle is 50%. In both cases the LSE Osc should have a 
frequency of 32.768 KHz, as this will provide an accurate working frequency for the real-time clock. The internal 
low speed oscillator can be used to supply the real-time clock, but it is not highly accurate so if you plan to use the 
RTC to any extent in your design you should fit the LSE oscillator.  
 

3.4.3 Clock Output 
One of the GPIO pins can be configured to be a Microcontroller Clock out pin. In this mode the MCO pin can 
output one of four internal clock sources. We will look at this in more detail when we examine the internal clock 
tree configuration. 
 

3.4.4 Boot Pins And Field Programming 
The can be started in one of three different boot modes. These modes are selected by two external boot pins 
BOOT0 and BOOT1. By changing the boot mode the microcontroller will alias different areas of the memory map 
to the bottom of memory. This allows us to execute code from user FLASH, internal SRAM or system memory. If 
system memory is selected, the STM32 will start to execute a factory- programmed bootloader which allows the 
user flash to be reprogrammed.  
 

The External Oscillator can be run from a crystal or external clock source. 
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3.4.5 Boot Modes 
For normal operation BOOT0 must be tied to ground. If you wish to use the other modes you must provide 
jumpers to allow different settings on the two boot pins.  
 

 
 
 
 
 
 
 
 
 
 
 

 
This is typically necessary if you want to do a field upgrade using the internal bootloader. If you do plan to use the 
bootloader, USART1 is the default serial interface used to download code from a PC, so you will need to add an 
RS232 driver chip. 
 

3.4.6 Debug Port 
Finally, we need to add the hardware debug port to allow a debugger to connect to the STM32. The Cortex 
CoreSight debug system supports two connection standards: the five pin JTAG port and the 2 pin Cortex serial 
wire port. Both of these configurations sacrifice GPIO pins for use by the debugger.  After reset, the Cortex CPU 
places these pins in their alternate function setting so that the debug port is available. If you wish to use them you 
must program the alternate function registers to convert them back to GPIO pins. The five pin JTAG interface is 
brought out to a 20 pin IDC type connector which has a standard pinning for all JTAG tools. The serial wire 
interface uses Port A 13 for the serial data and Port A 14 for the serial clock. 
 

The external boot pins are used to select 
which region of memory aliased to the 
first 2k of memory. This can be user 
Flash, the internal bootloader or the first 
2k of SRAM  
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4. STM32 System Architecture 
 
The STM32 is composed of the Cortex core which is connected to the FLASH memory by the dedicated 
Instruction bus. The Cortex Data and System busses are connected to a matrix of ARM Advanced High Speed 
Busses (AHB). The internal SRAM is connected directly to the AHB bus matrix as is the DMA unit. The 
peripherals are located on two ARM Advanced Peripheral Busses (APB). Each of the APB busses is bridged onto 
the AHB bus matrix. The AHB bus matrix is clocked at the same speed as the Cortex core. However, the AHB 
busses have separate prescalers and may be clocked at slower speeds to conserve power. It is important to note 
that APB2 can run at the full 72MHz while APB1 is limited to 36MHz. Both the Cortex and the DMA unit can be 
bus masters. Because of the inherent parallelism of the bus matrix, they will only arbitrate if they are both 
attempting to access the SRAM, APB1 or APB2 at the same time. However, as we will see in the DMA section, 
the bus arbiter will guarantee 2/3 access time for the DMA and 1/3 for the Cortex CPU.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

The internal bus structure provides a dedicated bus for  program instructions and a bus matrix 
which provides several data paths for the Cortex and DMA units to access the on-chip 
resources. 
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4.1 Memory Layout 
Although the STM32 has numerous internal busses, to the programmer it offers a linear 4Gbyte address space. 
As the STM32 is a Cortex-based microcontroller, the memory map must conform to the standard Cortex layout. 
Therefore the program memory starts from 0x00000000. The on-chip SRAM starts from 0x20000000 and all the 
internal SRAM is located in the initial bit band region. The user peripherals are memory mapped starting from 
0x40000000 and are also located in the peripheral bit band region. Finally all the Cortex registers are at their 
standard locations starting from 0xE0000000. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The FLASH memory region is composed of three sections. First is the User FLASH memory starting at 
0x0000000. Next is the System Memory also called the big information block. This is 4K of FLASH memory that is 
factory programmed with a bootloader. The final section from 0x1FFFF800 is called the little information block and 
contains a group of option bytes that allow you to configure some system settings for the STM32. The bootloader 
is designed to download code over USART1 and program it into the User FLASH memory.  To place the STM32 
in bootloader mode the external BOOT0 and BOOT1 pins must be held low and high respectively. With the boot 
pins held in this pattern, the system memory block will appear at 0x00000000. After a reset the STM32 will begin 
to execute the bootloader rather than the application code held in the User FLASH. A bootloader application for 
the PC is available for download from the ST website. This program will communicate with the bootloader code 
and can be used to erase and reprogram the User FLASH memory. The PC download software is also delivered 
as a DLL which allows you to write custom bootloader software for field upgrading or production programming.  
The bootpins also allow the internal SRAM to be mirrored at 0x00000000 in place of the User FLASH. This allows 
programs under development to be downloaded and executed from the internal SRAM. This speeds the download 
process and saves continual burning of the FLASH memory. 
 
 

  

The STM32 memory map follows the Cortex 
standard. The first 2K of memory is mapped from 
FLASH, System Memory or SRAM depending on 
the condition of the boot pins. 
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4.2 Maximising Performance 
In addition to the two external oscillators the STM32 has two internal RC oscillators. After reset the initial clock 
source for the Cortex core is the High Speed Internal Oscillator which runs at a nominal 8 MHz. The second 
internal oscillator is a Low Speed Oscillator running at a nominal 32.768 KHz. This oscillator is intended for the 
real time clock and watchdogs.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The Cortex processor can be clocked by either the Internal or External High Speed Oscillators or from an internal 
Phase Locked Loop. The Phase Locked Loop can be driven from either the Internal or External High Speed 
Oscillator. So it is possible to run the STM32 at 72 MHz without an external oscillator. The downside is that the 
internal oscillator is not an accurate and stable 8 MHz clock source. In order to use the serial communications 
peripherals or do any accurate timing functions the external oscillator should be used.  Regardless of whichever 
oscillator is selected, the Phase Locked Loop must be used to derive the full72MHz clock frequency for the Cortex 
core.  All of the oscillator PLL and bus configuration registers are located in the Reset and Clock Control (RCC) 
group. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

The STM32 has a sophisticated clock tree with two external and two internal oscillators, plus a 
Phase Locked Loop. The High Speed External Oscillator may also be monitored by a clock 
security system.  

The Reset And Clock Control unit controls the 
clock tree bus bridges and backup domain.  
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4.2.1 Phase Locked Loop 
 
After reset the STM32 will derive its CPU clock from the HSI oscillator. At this point the external oscillator is 
switched off. The first step in running the STM32 up to full speed is to switch on the HSE oscillator and wait for it 
to stabilise 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The external oscillator can be switched on in the RCC_Control register. A ready bit indicates when the external 
oscillator is stable. Once the external oscillator is stable, it can be selected as the input of the PLL. The output 
frequency of the PLL is defined by selecting an integer multiply value which is stored in the 
RCC_PLL_configuration register. In the case of an 8 MHz oscillator, the PLL must multiply the input frequency by 
9 to generate the maximum 72 MHz clock frequency. Once the PLL multiplier has been selected, the PLL can be 
enabled in the control register. Once it is stable, the PLL ready bit will be set and the PLL output can be selected 
as the Cortex CPU clock source. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

After reset the STM32 runs from the Internal High 
Speed Oscillator. The External Oscillator must be 
switched on.  

Once the HSE oscillator is on it can be used to 
supply the PLL. Once the PLL is stable it can 
become the system clock 

RCC->CR |= 0x10000; //HSE on 
 
// Wait until HSE stable 
while(!(RCC->CR &0x00020000)) 
{ 
 ; 
} 
 

//HSE clock,PLLx9 
RCC->CFGR = 0x001D0000; //Enable PLL 
RCC->CR |= 0x01000000; 
 
while(!(RCC->CR & 0x02000000)) 
{ 
 ; 
} 
 
//Set the remaining control fields 
RCC->CR |= 0x00000001;   
 
//Set the remaining configuration  
//fields 
RCC->CFGR |= 0x005D0402;  
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4.2.1.1.1 Bus Configuration 
Once the PLL has been selected as the system clock source the Cortex CPU will be running at 72 MHz. To get 
the remainder of the chip running at its optimum speed you will need to configure the AHB and APB busses 
through their bridge registers  
 
      //Enable clocks to the AHB,APB1 and APB2 busses 
  RCC-   AHBENR    = 0x00000014; 
      RCC->APB2ENR = 0x00005E7D;   
      RCC->APB1ENR  = 0x1AE64807;  
   
      //Release peripheral reset line on APB1 and APB2 buses 
      RCC->APB2RSTR = 0x00000000  
      RCC->APB1RSTR = 0x00000000;     
   
 
 
 
 
 
 
 

4.2.2 FLASH Buffer 
When we looked at the system architecture of the STM32 we saw that the Cortex-M3 core is connected to the 
internal FLASH by a dedicated I-Bus. This bus is running at the same frequency as the CPU, so with the PLL 
enabled the core will be trying to run at the full 72 MHz. Since the Cortex CPU is essentially a single cycle 
machine, it will be trying to access the FLASH every 1.3ns. When the STM32 starts up it is running from the 
internal oscillator at 8 MHz, so the access time of the internal FLASH is not an issue. However, once the PLL is 
enabled and becomes the clock source, the FLASH access time is simply too long (35 ns.) to allow the Cortex 
CPU to run at maximum performance. In order to allow the Cortex CPU to run at 72 MHz with zero waitstates, the 
FLASH memory has a prefetch buffer which is made up of two 64-bit buffers. Both of these buffers can do a 64-
bit-wide read of the FLASH memory and then pass the individual 16 or 32-bit instructions to the Cortex CPU for 
execution. This technique works well with the conditional execution features of the Thumb-2 instruction set and 
the branch prediction of the Cortex pipeline.  During normal operation the programmer does not need to take any 
special precautions because of the FLASH buffer. However you must make sure that it is enabled before 
switching to the PLL as the main clock source.  The FLASH buffer is controlled by the FLASH access control 
register. As well as enabling the prefetch buffer, you must tune the number of waitstates required for the FLASH 
prefetch buffer to read the 8 bytes of instructions from the FLASH memory. The latency settings are as follows: 
 
0<  SYSCLK <24MHz 0 waitstate 
24< SYSCLK <48MHz 1 waitstate 
48<SYSCLK <72MHz 2 waitstate 
 
These waitstates are between the prefetch buffer and the FLASH memory and do not impact on the Cortex CPU. 
As the CPU is executing instructions held in the first half of the buffer, the second half is loading so that the CPU 
can seamlessly continue execution at its optimum rate. 
 
 

4.2.3 Direct Memory Access 
While the Cortex CPU can be used to move data between peripherals and the internal SRAM, many of these 
operations can be automated with the internal DMA unit. The STM32 DMA unit has seven independently 
configurable channels that can perform autonomous transfers from memory to memory, peripheral to memory,   
memory to peripheral and peripheral to peripheral. The memory to memory transfers will be performed as fast as 
the DMA channel can move the data. In the case of the peripheral transfers, the DMA unit is placed under the 
control of a selected peripheral and the data is transferred on demand to or from the controlling peripheral. As 
well as transferring blocks of data, each DMA unit can continually transfer data to a circular buffer. Since most   
communications peripherals do not contain any FIFO buffers, the DMA units are used to stream data to and from 

After rest many of the peripherals have their clock disabled and are held in reset.  Before using a 
peripheral enable its clock and release it from reset. 
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buffers in SRAM.  The DMA unit has been specifically designed for the STM32 and as such it is optimised for the 
short but frequent data transfers that you typically find in microcontroller applications.  

 
 
 
 
 
 
 
 
 
 

 
 
 
Each DMA transfer is made up of four phases: a sample and arbitration phase, an address computation phase, 
bus access phase and a final acknowledgement phase. Each phase takes a single cycle, with the exception of the 
bus access phase. The bus access phase (which is where the actual data transfer takes place), takes three 
cycles for each word transferred. The DMA unit and the Cortex CPU are designed to work together in an 
interleaved fashion so the DMA will not block the CPU and vice versa. We will see how this works in a moment, 
but it is only necessary to prioritise DMA transfers between different DMA channels.  Each DMA channel is 
assigned one of four priority levels by the application software. During the arbitration phase the highest priority 
level will be granted the bus. If two DMA units have pending transfers and both have the same priority level, the 
unit with the lowest channel number will be granted the bus. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
The DMA unit can perform both the arbitration and address computation phase while another DMA Channel is in 
its bus access phase. As soon as the active channel finishes its data transfer on the internal bus, the next DMA 
channel transfer is ready to begin immediately while the original transfer finishes off its transfer by performing its 
acknowledgement phase. So the DMA channels not only transfer data faster than the CPU, but are also tightly 
interleaved and only occupy the bus for actual data transfer.  
  

Each DMA memory to memory transfer is made up of four phases each 1 cycle long except for the 
bus access phase that takes five cycles for each word transferred 
 

The DMA unit is designed for fast but short data transfers of the kind found in typical small embedded systems. 
The DMA unit only occupies the bus during the bus access phase. 
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In the case of a memory to memory  transfer each DMA channel only occupies the data bus during its bus access 
phase and takes five cycles to transfer each word of data. That is, one cycle to read the data and one cycle to 
write, interleaved with idle cycles where the bus is left free for the Cortex CPU. This means that the DMA units will 
consume a maximum of 40% for the data bus bandwidth even during continuous maximum data transfer. In the 
case of peripheral to peripheral and peripheral to memory transfers the situation is a little more complicated. 
Transfers over the AHB bus take two cycles at the AHB clock frequency and transfers involving the APB take two 
cycles at the APB bus frequency and a further 2 cycles at the AHB clock frequency. Each DMA transfer consists 
of two bus transfer periods and a free cycle. So for example, a transfer from the SPI peripheral to the SRAM will 
consist of a transfer from the SPI, plus a transfer to the SRAM plus one free cycle thus; 
 
 SPI to SRAM DMA transfer  = SPI transfer (APB) + SRAM transfer (AHB) + free cycle(AHB) 
    = ( 2 APB cycles + 2 AHB cycles) + 2 AHB cycles + 1 AHB cycle 
    = 2APB Cycles + 5 AHB cycles 
 
Remember that this only refers to data transfers  as all of the Cortex program instructions are fetched on the 
separate I-Bus. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The next good news about the DMA unit is that is very easy to use. The first thing you must remember to do is to 
switch in its clock and release it from reset. This is done in the AHB clock enable register within the reset and 
clock control unit. 
 
RCC->AHBENR |= 0x00000001;  // enable the DMA clock 
 
Once the DMA unit is powered up, each DMA channel is controlled by four registers. Two registers hold the 
source and destination addresses for the peripheral register and the memory location. The size of the transfer is 
held in the “number of data” register and the configuration register defines the overall characteristics of the DMA 
transfer. 

During the bus access phase three cycles  per transfer are free for the CPU. In a memory to memory transfer 
this guarantees the Cortex-M3 60% of the bus even when the DMA is running continuously  (remember this is 
for data transfer only). The Cortex has a separate I-code bus to fetch instructions. 

The DMA unit has seven channels. Each channel is 
fully orthogonal  
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Each DMA channel can be assigned a priority of “very high”, “high”, “medium” and “low”. The transfer word size 
can also be defined separately for the memory and the peripheral.  For example, we can flow a 32-bit word into 
the DMA channel (3 cycles) from memory and then flow four 8-bit words to the UART data register (a total of 35 
cycles rather than 64 cycles if everything was moved as 8-bit quantities.) It is also possible to increment the 
memory and peripheral addresses, so for example you can transfer data repeatedly from the ADC results register 
but increment the memory address, so that the results are written to an array in memory for processing. The 
Transfer Direction Bit allows us to specify if the flow of data is memory to peripheral or peripheral to memory. For 
a memory to memory transfer we must set bit 14 to enable a “fast as you can” data transfer between two SRAM 
buffers. Though you can use the DMA channels in a polled mode, each DMA channel has three interrupt sources: 
transfer finished, half-finished and transfer error. Finally, once the DMA transfer is fully configured, the Channel 
Enable Bit must be set and the transfer will begin. A memory to memory transfer can be performed with the 
following code: 
 
 
 
 
 
 
 
 
DMA_Channel1->CCR   = 0x00007AC0;               //configure for mem2mem transfer 
DMA_Channel1->CPAR  = (unsigned int)src_arry;   //set source and destination   
DMA_Channel1->CMAR  = (unsigned int)arry_dest;   
DMA_Channel1->CNDTR = 0x000A;     //set size of transfer  
   
TIM2->CR1   = 0x00000001;     //start a timer  
DMA_Channel1->CCR   |= 0x00000001;    //start the DMA transfer  
while(!(DMA->ISR & 0x0000001))     //wait till the transfer ends  
{ 
; 
} 
TIM2->CR1 = 0;       //halt the Timer  
TIM2->CNT = 0;       //Clear the count    
TIM2->CR1 = 1;       //restart timer  
for(index = 0;index <0xA;index++)    //repeat the operation using the CPU 
{ 
arry_dest[index] = arry_src[index]; 
} 
TIM2->CR1 = 0;       //halt the timer   
   
} 
 
The above code transfers ten words of data between two arrays in SRAM first with the DMA and then using the 
Cortex CPU. In both cases a timer is started at the beginning of the transfer and when the transfer ends. In this 
example the DMA unit takes 220 cycles and the CPU takes 536. 
  

Each DMA channel is controlled by four registers 
and has three interrupt sources, finished, half- 
finished and error. 

This code shows a simple DMA memory to 
memory transfer and uses an internal timer to 
count the number of cycles taken. 



Chapter 4: System Architecture  

 

© Hitex (UK) Ltd.                                                                                     Page 43 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
While memory to memory transfers can be useful for initialising regions of memory and performing block 
transfers, most of the time the DMA channels will be used to move data between memory and the various user 
peripherals. In this case, each of the DMA channels is mapped to a selection of peripherals. First we must 
initialise the peripheral and enable its DMA support, then we must configure the matched DMA channel to transfer 
data on request of the supported peripheral. We will have a more detailed look at the ADC later, but in a simple 
conversion mode it can perform continuous 10-bit conversions to a single results register. Without the DMA the 
Cortex CPU would be continually responding to ADC conversion complete interrupts and these would start to 
steal useful amounts of CPU runtime.  However, by using the DMA the ADC can request a DMA transfer at the 
end of each conversion. The DMA will transfer the ADC results data to an incrementing address in the SRAM. 
The ADC data can then be processed once a suitable sample of data has been transferred. 
 
ADC dma pics 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
To make this process more efficient, we can enable the circular buffer support so that the ADC data will 
continuously write to our buffer. Then, by using the half complete and transfer complete interrupts, we can create 
a double buffer. So when the first half of the buffer is full, an interrupt will be generated and we can process this 
data while the DMA continues to fill the second half. Once the second half is full, we can process this data while 
the DMA starts to refill the buffer from the top. All the other peripherals with DMA support are handled in a similar 
way. It should be noted that the communication peripherals have separate transmit and receive DMA channels. 
For example, the SPI can simultaneously flow data in both directions. 
 

Each peripheral with DMA support is assigned to a specific channel. When enabled, the peripheral 
becomes the flow controller for the DMA transfer. This allows it to sink or source data as it requires 
without taking any CPU cycles. 

The STM32 peripherals do not 
contain any internal buffering. By 
using the DMA in its circular mode, 
any size of memory can be used as a 
peripheral buffer. This can be 
combined with the DMA’s half-
finished and finished interrupts to 
provide a circular double buffer. 
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5. Peripherals  
This chapter will present an introduction to the user peripherals on the existing STM32 variants. For convenience,  
these are split into two groups: general purpose microcontroller peripherals and communications peripherals.  All 
of the peripherals on the STM32 have a high level of sophistication and are tightly integrated with the DMA unit. 
Each peripheral has some form of extended hardware functionality, which can be useful in minimising the amount 
of CPU time required to drive a given peripheral. In other words, there are lots of clever features that can help you 
to automate the hardware, reducing the CPU effort in driving the peripherals. 
 

5.1 General Purpose Peripherals 
The general purpose peripherals on the STM32 consist of: general purpose IO, external interrupt controller, 
analogue to digital converters, general purpose and advanced timer units, and real-time clock with backup 
registers and tamper pin. 
 

5.1.1 General Purpose IO 
The STM32 is well served with general purpose IO pins, having up to 80 bidirectional IO pins. The IO pins are 
arranged as five ports each having 16 IO lines.  
 
 
 
 
 
 
 
 
 
 
 
 
These ports are names A-E and are all 5v tolerant. Many of the external pins may be switched from general 
purpose IO to serve as the Input/Output of a user peripheral, for example a USART or I2C peripheral. Additionally 
there is an external interrupt unit which allows 16 external interrupt lines to be mapped onto any combination of 
GPIO lines.    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Each GPIO port has two 32-bit wide configuration registers; these two registers combine to give a 64-bit wide 
configuration register. Within these 64 bits each pin has a four bit field that allows its characteristics to be defined. 
The four bit configuration field is made up of a two bit wide mode field and a two bit wide configuration field. The 

Each digital pin may be configured as GPIO or as 
an alternate function. Each pin can simultaneously 
be configured as one of 16 external interrupt lines. 

Each GPIO port can configure individual pins as 
input or output with different driver configurations. 
It has registers to write word-wide or for atomic bit 
manipulation. Once a configuration is defined it 
can be locked.  
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mode field allows the user to define the pin as an input or an output, while the configuration field defines the drive 
characteristics: 
 
As well as being able to define a port pin as an input or output, its drive characteristics may also be selected. In 
the case of an input, an internal resistor can be connected as a pull up or pull down resistor. For an output, each 
port pin may be configured with a push pull or an open drain driver. Each output pin can also be configured with a 
maximum output speed of 2MHz,10MHz or 50MHz. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Once the port configuration has been set, these parameters can be protected by writing to the configuration lock 
register. In this register each pin has a lock bit which when set will prevent any writes to the matching 
configuration and mode fields. When all of the required lock bits have been set, the lock can be activated by 
writing a sequence of 1,0,1 to bit 16 in the lock register, followed by two reads of the same bit which will return 0,1 
if the lock has been successfully activated. The input and output data registers allow port wide access to the IO 
pins. Atomic bit manipulation is supported by either using the Cortex bit banding technique on the input and 
output data registers, or through two dedicated bit manipulation registers. The bit set/reset register is a 32-bit wide 
register. The upper 16 bits are mapped to each port pin. Writing a logic 1 to these locations will reset the matching 
port pin. Similarly, writing a logic 1 to any of the lower 16 bits will set the matching port pin. The second bit 
manipulation register is a bit reset register. This is a 16-bit wide register where writing logic 1 in the lower 16 bits 
will reset the matching port pin.  The combination of port registers, bit banding and atomic bit manipulation 
registers allows you very fine control of all the STM32 port pins and can be used very efficiently for IO intensive 
applications. 
 

5.1.1.1 Alternate Functions 
The alternate function registers allow you to remap the port pins from GPIO to alternate peripheral functions. To 
allow flexibility in hardware design, a given peripheral function can be mapped to one of several pins. 
 
 
 
 
 
 
 
 
 
 
 
The STM32 alternate functions are controlled in the remap and debug IO register. Each of the digital user 
peripherals (USART,CAN, timers, I2C and SPI) has a 1 or two bit field which allows mapping to several different 
pin combinations. Once the alternate function pins have been selected, the GPIO configuration registers must be 
used to switch from IO to alternate function. The remap register also controls the configuration of the JTAG debug 

A late-arriving high priority interrupt will pre-empt 
a low priority interrupt without incurring an 
additional stacking overhead. 
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pins. After reset, the JTAG port is enabled with the data trace disabled. The JTAG can be switched to serial wire 
(two pin debug) or disabled, the unused pins in each case can be used as GPIO. 
 

5.1.1.2 Event Out  
The Cortex processor can generate an event out pulse that is intended to wake up a separate microcontroller 
from a low power mode. Typically, the event out pulse would be connected to the wake up pin of a second 
STM32. The event out pulse is generated by executing the SEV Thumb-2 instruction. In the STM32 the event 
control register is used to route the event out pulse to a selected GPI pin. The event control register contains 
fields to select the port and pin within the port. Once the port pin is selected, the event out enable bit is set to 
finish the configuration. 
 

5.1.2 External Interrupts 
The external interrupt unit has 19 interrupt lines that are connected to interrupt vectors via the NVIC. Sixteen of 
these interrupt lines are connected to GPIO pins and can generate an interrupt on a rising or falling edge, or both. 
The remaining three exit lines are connected to the RTC alarm interrupt, the USB wake up and the Power voltage 
detect unit. The NVIC provides individual interrupt vectors for EXTI lines 0-4, the RTC alarm, Power voltage 
detect and the USB wake up. The remaining EXTI lines are connected in groups of lines 5-9 and lines 10 – 15 to 
two additional interrupt vectors. The EXTI is important for power control on the STM32. As it is not a clocked 
peripheral, it can be used to wake up the microcontroller from its STOP mode where both the main oscillators are 
halted. The EXTI can generate both interrupts to exit Wait for interrupt mode and events to exit Wait for event 
mode. 
 
 
 
 
 
 
 
 
 
 
 
 
 
The 16 EXTI lines dedicated to the GPIO pins can be mapped to any combination of port pins. This is done 
through four configuration registers. In these registers each EXTI line is mapped to a four bit field. This field 
allows each EXTI line to be mapped onto any of the five IO ports, so for example EXTI line zero can be mapped 
onto pin 0 of port A, B, C, D or E. This scheme allows any external pin to be mapped to an interrupt line. The 
EXTI can also be used in conjunction with an alternate function that has been remapped to an external pin. 
 
 
        //Map the external interrupts to port pins 
        AFIO->EXTICR[0] = 0x00000000;  
        //Enable External interrupt sources   
        EXTI->IMR      = 0x00000001; 
        //Enable wake up events     
        EXTI->EMR      = 0x00000000;     
        //Select falling edge trigger sources 
        EXTI->FTSR     = 0x00000001;   
        //Select Rising edge trigger sources 
        EXTI->RTSR     = 0x00000000; 
        //Enable interrupt sources in the NVIC 
        NVIC->Enable[0] = 0x00000040;     
        NVIC->Enable[1] = 0x00000000; 
 
 
 

The STM32 has 16 external 
interrupt lines which may be 
connected to each of the port 
pins. 

Once mapped the external interrupt pins can generate an interrupt on a rising and/or falling edge. 
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Once the EXTI configuration registers have been set, each external interrupt can be configured to generate an 
interrupt or event on rising or falling edges. It is also possible to force an EXTI interrupt by writing to the matching 
bit in the software interrupt register.  
 

5.1.3 ADC 
The STM32 features up to two independent analogue to digital converters, depending on variant. The ADC has 
an independent supply which can be between 2.4V to 3.6V, depending on the package type. The ADC reference 
is connected internally to the ADC supply, or brought out to a dedicated pin. The ADC converters offer a 12 bit 
resolution with a 1 MHz conversion rate. With up to 18 multiplexed channels, 16 can be available to measure 
external signals. Of the remaining two one is connected to an internal temperature sensor and the second is 
connected to an internal reference voltage. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.1.3.1 Conversion Time And Conversion Groups 
When the ADC is configured, it is also possible to individually program the conversion time for each channel. 
There are eight discrete conversion times ranging from 1.5 cycles to 239.5 cycles. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Each ADC has two basic conversion modes: regular and injected. In regular mode conversion allows you to 
specify a channel or group of channels to be converted on a round robin basis. The regular conversion group can 
be configured to have up to 16 channels. Additionally, the order in which the channels are converted can also be 

The STM32 is a highly featured 12 bit 1MHz sample rate converter with internal band gap and 
temperature sensor. 

Each ADC channel may be 
configured with an individual sample 
rate. 



Chapter 5: Peripherals  

 

© Hitex (UK) Ltd.                                                                                     Page 49 

programmed and in one conversion cycle a channel can be converted several times. The regular group 
conversion can be started by software, or by a hardware event from a range of timer signals or EXTI line 1. Once 
triggered, the regular group can perform continuous conversions. Alternatively it can operate in a discontinuous 
mode, whereby a selected number of channels are converted and then conversion halts until the next regular 
group trigger occurs.  
 
 
 
 
 
 
 
 
 
 
 
 
 
Each time a regular group conversion is made, the result is stored in a single results register and an interrupt can 
be generated. The 12-bit result is stored in a 16-bit wide register and the converted value can be aligned left or 
right. 
 
 
 
 
 
 
 
 
ADC1 has a dedicated DMA channel that can be used to transfer each conversion value from the results register 
to a buffer in memory. Using this method a regular group conversion cycle can be copied to memory, with a single 
DMA interrupt being generated at the end of the group conversion cycle. If you want to be clever, you can make 
the memory buffer double the size of the regular group conversion cycle and use the DMA half-finished and 
finished interrupts to create a double buffer. This can be combined with the DMA circular buffer mode to place a 
lot of ADC results-handling under hardware control. 
 
 
 
 
 
 
 
 
 
 
 
 
 
The second conversion group is called the injected group. The injected group is a conversion sequence of up to 
four channels that can be triggered by a software or hardware event. Once triggered, it will halt the regular 
conversion group, perform its sequence of conversions and then allow the regular group to continue. Like the 
regular group, any sequence of channels can be configured and a channel can be converted more than once in a 
conversion sequence. However, unlike the regular group, each injected conversion has its own results register 
and an offset register.  
 
 
 
 

The regular group conversion sequence can run in a continuous round robin cycle. Or, in discontinuous 
mode it can convert a selected number of channels after each trigger event. 

The 12-bit result can be left or 
right aligned in the 16-bit 
results register. 

ADC1 has DMA support 
which can automatically 
transfer results to a user-
defined buffer in SRAM. 

The injected group results 
registers are sign-extended 
and can be left or right 
justified. 
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The offset register can be programmed with a 16-bit value that will automatically be deducted from the ADC 
result. If the result is a negative value, the injected group results register is sign-extended. Like the regular group 
the result can be left or right justified. 
 
 
 
 

5.1.3.2 Analogue Watchdog 
In addition to the two conversion modes, the ADC has an analogue watchdog. This watchdog can be 
programmed with high and low threshold values to detect over or under voltage conditions. Once triggered, the 
analogue watchdog can generate an interrupt. The analogue watchdog can be used to monitor a selected regular 
and injected channel, or all injected and regular channels. In addition to voltage monitoring, the analogue 
watchdog could be used as a zero voltage crossing detector. 

 
 
 
 
 
 
 
 
 
 
 
 

 

5.1.3.3 Basic ADC Configuration 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The ADC has register blocks to configure:  the individual sample time, regular and injected conversion sequences 
along with the injected group offset values and watchdog threshold values.  The overall ADC configuration is 
through the status and control registers. 
 

The analogue 
watchdog can 
monitor a channel or 
all channels for a 
user defined high 
and low threshold. 

The ADC registers breakdown into six groups, with the status 
and control registers defining the operating configuration of the 
ADC. 
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ADC1->CR2   = 0x005E7003; //Switch on the ADC and enable continuous conversion 
ADC1->SQR1  = 0x0000; //set sequence length to one 
ADC1->SQR2  = 0x0000; //select conversion on channel zero 
ADC1->SQR3  = 0x0001;    
ADC1->CR2  |= 0x005E7003; //rewrite on bit 
 
ADC1->CR1  =0x000100; //Start conversion of regular channels, enable ADC 

//interrupt 
 
NVIC->Enable[0] = 0x00040000; //enable ADC interrupt 
NVIC->Enable[1] = 0x00000000; 
 
In the ADC interrupt read the result register and copy the conversion result to a bank of port pins. 
 
void ADC_IRQHandler  (void) 
{ 
GPIOB->ODR = ADC1->DR<<5; // Copy ADC result to port pins 
} 
 
If the interrupt is not used a DMA channel can be used to transfer the ADC result directly to the port pins.  
 
DMA_Channel1->CCR  = 0x00003A28; //Circular mode,  
       //peripheral and memory increment disabled 
 
//Load destination address into peripheral register,GPIO port data register 
DMA_Channel1->CPAR  = (unsigned int) 0x4001244C; 
 
//Load source address into memory register 
DMA_Channel1->CMAR  = (unsigned int) 0x40010C0C;  
 
DMA_Channel1->CNDTR = 0x1;  //Load number of words to transfer 
DMA_Channel1->CCR  |= 0x00000001;//Enable the DMA transfer 
 
In the ADC the DMA support must be enabled. 
 
ADC1->CR2    |= 0x0100;  
 
  

The two control registers define the ADC operating mode. A single channel interrupt driven conversion is 
shown below. 
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5.1.3.4 Dual Conversion Modes 
 
For a low cost general purpose microcontroller, the ADC on the STM32 is very sophisticated. You should take 
time to understand all of its features, as the ADC hardware can be configured to perform some operations that a 
more basic ADC would require additional software intervention to achieve. If all this isn’t enough, on the STM32 
variants with two ADC converters there are additional dual conversion modes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In the dual conversion modes ADC2 is slaved to ADC1 allowing eight additional conversion modes.  
 
 

5.1.3.4.1 Injected Simultaneous Mode And Regular Simultaneous Modes 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The first two dual conversion modes synchronise conversion of the regular and injected conversion groups on the 
two ADC converters. This is very useful if you need to measure two quantities such as voltage and current 
simultaneously. 
 
  

The ADC dual conversion modes 
synchronise operation of the two 
converters providing eight additional 
modes. 
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5.1.3.5 Combined Regular/Injected Simultaneous Mode 
 
 
 
 
 
 
 
 
 
A further combined mode allows both the regular and injected groups on both ADCs to have their conversion 
sequences synchronised. 
 

5.1.3.6 Fast Interleave And Slow Interleave Modes 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The fast and slow interleave modes synchronise the conversion of both ADC regular conversion groups, but 
unlike the simultaneous mode there is a delay between the start of conversion on ADC 1. In fast interleave mode 
this is seven ADC clock cycles after the start of ADC2 conversion. In slow interleave mode the delay is 14 ADC 
clock cycles. Both these modes can be used to increase the overall sampling rate by combining the two 
converters.  
 

5.1.3.7 Alternate Trigger Mode 
 
 
 
 
 
 
 
 
 
In alternate trigger mode a hardware trigger on ADC1 will first trigger an injected group conversion on ADC1. The 
next trigger will start a conversion on the injected group of ADC2.  
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5.1.3.8 Combined Regular Simultaneous And Alternate Trigger Mode 
 
 
 
 
 
 
 
 
 
 
The alternate trigger mode can also be combined with the regular group simultaneous mode. This synchronises 
the regular conversions on both ADCs and makes alternate conversions on the two injected groups. 
 

5.1.3.9 Combined Injected Simultaneous And Interleaved Mode 

 
 
 
 
 
 
 
 
 
 
 
 
The final conversion mode performs an interleaved conversion on the two ADC regular groups but performs 
synchronised simultaneous conversion for the two injected groups. 
 

5.1.4 General Purpose and Advanced Timers 
The STM32 has four timer units. Timer 1 is an advanced timer intended for motor control. The remaining timers 
are general purpose timer units. All of the timers have a common architecture; the advanced timer simply has 
additional hardware features. In this section we will look at the general purpose timers first and then move on to 
the advanced timer. 
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5.1.4.1 General Purpose Timers 
All of the timer units are based on a 16-bit counter with a 16-bit prescaler and auto-reload register. The timer 
counter can be configured as count up, count down or centred counting (count up then count down).  The clock 
input to the timer counter can be selected from eight different sources. These include: a dedicated clock 
generated from the main system clock, a trigger out clock from one of the other timers or an external clock 
through the capture compare pins. The timer trigger inputs and the external clock sources have a gated input to 
the timer counter which is controlled by an external trigger pin ETR. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In addition to the basic timer counter, each timer unit has a four channel capture compare unit. This unit can 
perform simple capture and compare functions but also has a number of special modes that allow common 
operations to be performed in hardware.  Each of the timers has both interrupt and DMA support.  
 

5.1.4.1.1 Capture Compare Unit 
Each capture compare channel is controlled by a single register. This register has different functions, depending 
on the setting of the selection bits. In capture mode it has input filters and a special PWM measurement mode, 
plus support for encoder inputs. In compare mode it has standard compare functions and a PWM generation 
option plus a one pulse mode. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

The four timers within the STM32 have a 16-bit counter with 16-bit prescaler and a four 
channel capture compare unit. They may be clocked from the system clock, external events 
or other timers. 

Each Capture/Compare channel has a single mode register. The 
Capture compare selection bits define the operating mode of the Cap 
Com channel 
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5.1.4.1.2 Capture Unit 
The basic capture unit has four input channels connected to configurable edge detectors. When a rising or falling 
edge is detected, the current timer count is captured into the channel’s 16-bit capture/compare register. When a 
capture event occurs, the timer counter can be reset or halted. In addition, an interrupt or DMA transfer can be 
triggered.  
 
 
 
 
 
 
 
 
 
 
 
 
 

5.1.4.1.3 PWM Input Mode 
The capture unit can also be configured to use two capture channels to automatically measure an external PWM 
signal; both duty cycle and period can be measured. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
M3->CR1   = 0x00000000;  //default 
TIM3->PSC   = 0x000000FF;  //set max prescaler 
TIM3->ARR   = 0x00000FFF;  //set max reload count 
TIM3->CCMR1  = 0x00000001;    //Input IC1 mapped to TI1 
TIM3->CCER  |=0x00000000;  //IC1 triggers on rising edge 
TIM3->CCMR1  |=0x00000200;  //Input IC2 mapped to TI1 
TIM3->CCER       |=0x00000020;  //IC2 triggers on falling edge 
TIM3->SMCR  = 0x00000054;  //Select TI1FP1 as input,rising edge trigger 
         //resets the counter 
TIM3->CCER  |=0x00000011;  //enable capture channels 
TIM3->CR1  = 0x00000001;  //enable the timer 
 
In PWM mode the input signal is routed to two capture channels. At the beginning of a PWM cycle the main 
counter is reset by capture channel 2 (using the rising edge of the PWM signal) and it will start counting up. On 
the falling edge of the PWM signal capture channel one is triggered, capturing the duty cycle value. On the next 
rising edge at the beginning of the next cycle capture 2 is again triggered, resetting the timer and capturing the 
PWM period value.  
 
  

The four capture units 
have input filter and edge 
detection. A capture event 
can trigger an interrupt or 
DMA transfer.  

In PWM measurement mode two 
channels are used to automatically 
capture the period and duty cycle of the 
PWM waveform. 
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5.1.4.1.4 Encoder Interface 
 
The capture unit on all of the timers are also designed to interface directly to an external encoder. A typical 
application of such an encoder is used to detect speed and angular position of a motor.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In this configuration the capture pins are providing the clock count to the timer counter. The count is then used to 
determine position. To obtain speed information a second timer must be used. This will provide a time base so 
that we can detect the number of encoder ticks that have occurred in a given period. 
 

5.1.4.1.5 Output Compare 
Each of the STM32 timer units also provides four channels of output compare. Using the basic compare mode, 
when the timer count matches the 16-bit value stored in the channel capture/compare register, a capture event is 
generated. This capture event can be used to:  modify the state of the associated capture/compare channel pin, 
generate a timer reset, an interrupt or a DMA transfer.  
 
 
 
 
 
 
 
 
 
 
 
 
  

Each timer may be interfaced to a 
linear or rotary encoder to capture 
position, speed and direction 
information. 

In compare mode, each channel can 
be used to generate an interrupt, or 
change the state of the cap/com pin, 
when contents of the compare 
register match the timer count. 
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5.1.4.1.6 PWM Mode 
In addition to the basic compare mode, each timer has a dedicated PWM generation mode. In this mode the 
PWM period is defined by the value stored in the timer auto reload register. The duty cycle is defined by the value 
stored in the channel capture/compare register. This allows each timer to generate up to four independent PWM 
signals. As we will see later the timers can be synchronised together so it is possible to generate up to 16 
synchronised PWM signals. 

 
 
  
 
Each channel can generate either an edge-aligned or centre-aligned PWM signal. In edge-aligned mode, the 
falling edge always coincides with the timer reload update event.  Changing the capture/compare value simply 
modulates the rising edge of the PWM signal.  In centre-aligned mode, the timer is configured as a centre counter 
(count up then count down). When a match is made with the capture/compare channel, the channel output pin is 
inverted.  
 
TIM2->CR1   = 0x00000000;  //default 
TIM2->PSC   = 0x000000FF;  //set max prescaler 
TIM2->ARR   = 0x00000FFF;  //set max reload count 
TIM2->CCMR1  = 0x00000068;  //Set PWM mode 
TIM2->CCR1  = 0x000000FF;  //Set PWM start value 
TIM2->CCER  = 0x00000101;  //Enable CH1 output 
TIM2->DIER   = 0x00000000;  //enable update interrupt 
TIM2->EGR  = 0x00000001;  //enable update 
TIM2->CR1   = 0x00000001;  //enable timer 
 
 
 

5.1.4.1.7 One Pulse Mode 
In the basic compare and PWM mode the timer units will generate a continuous output waveform. Each of the 
timers also has a one pulse mode option. This is really a special case of the PWM mode, where an external 
trigger (an external pin or another timer trigger output) can start the PWM mode running for one cycle. This 
generates a single pulse with a programmable start delay and pulse width. 
 
 
 
 
 
 
 
 
 

5.1.4.2 Advanced Timer 
 
The advanced timer is timer unit 1. This timer contains additional hardware specifically intended for motor control. 
Three of the advanced timer channel output pins have complementary outputs.  This provides a six channel PWM 
unit.  As this unit is intended for three phase motor control, each channel has programmable dead time and there 
is a global break input line. There is also a Hall sensor interface in addition to the encoder interface. 

Each timer has a dedicated PWM mode that can generate edge or centre-aligned PWM waveforms. 

The one pulse mode allows you to define 
a single shot pulse with configurable 
delay and duration. 
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Each of the three complementary PWM channels has a programmable dead time which places a delay between 
the switch-off of a PWM output and the switching on of its complementary channel. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.1.4.2.1 Break Function 
The advanced timer can place its PWM outputs and their complementary outputs into a predefined configuration 
in response to a break input. This input can be from a dedicated external break pin or from the clock security 
system which monitors the external high speed oscillator. Once enabled, the break function operates entirely in 
hardware and guarantees to place the PWM outputs into a safe state if the STM32 system clock fails, or if there is 
a fault on the external hardware. 
 

5.1.4.2.2 Hall Sensor Interface 
Each of the timers including the advanced timer is designed to easily interface with a Hall Sensor to allow easy 
measurement of angular motor speed.  The first three capture pins of each timer can be connected to channel 1 
through an XOR gate. As the motor rotates and passes each sensor, a capture event will be generated on 
channel one. This captures the current timer count into the channel one capture register and also causes a reset 
on the timer. Thus the count value in the capture register can be related back to the motor speed.  
 
 
  

The advanced timer has the same basic structure 
as the general purpose timers. Three of the 
compare channels have complementary outputs. 
There is an additional break input and Hall 
sensor interface. 

The advanced timer complementary PWM outputs have 
programmable dead time for motor control. 
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5.1.4.3 Timer Synchronisation 
Although each of the timer units is a completely independent timer, any or all of the timer units can be 
synchronised together. This allows complex timer arrays to be designed in hardware, reducing the amount of 
software overhead required to perform a complex time-based function. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Each of the timer units has a trigger output which is routed as an input to the other three timers.  Additionally, a 
capture input pin from timer 1 and timer 2 (TI1FP1 and TI2FP2) is routed to the trigger controller of each timer 
block. The timers may be synchronised in several different modes. The examples below show a couple of typical 
configurations.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
One timer acts as a master with two slaves. The master can provide a clock to the two slave timers, creating one 
large timer. Alternatively, it can provide a time delay that is used to trigger or gate the two slaves. Similarly, an 
external trigger can be used to gate the activity of each timer. 
 

5.1.5 RTC And Backup Registers 
The STM32 contains two power domains: the main STM32 system and peripheral power domain and the backup 
domain. Located within the backup domain are ten 16-bit wide registers, the RTC and the independent watchdog. 
The backup registers are simply ten memory locations that can be used to hold critical data values during the 
STM32 standby mode when the main power domain is switched off.  In the low power modes both the RTC and 

Each of the timers has trigger inputs from the other three timers as well as external 
inputs from the cap/com pins. 

All of the timers may be cascaded in 
a highly configurable fashion to build 
complex timer arrays. 
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the independent watchdog can be kept running and may be used to wake up the main STM32 system, or to 
perform a chip reset. 
 
The STM32 contains a basic real-time clock. This is a 32- bit counter that is optimised to increment each second if 
clocked from a 32.768 KHz clock source. When configuring the clock tree, the RTC oscillator can be selected 
from:  the low speed internal oscillator, the low speed external oscillator, or the high speed external oscillator via a 
fixed divide by 128 prescaler.  A further RTC prescaler allows you to get an accurate seconds count. The RTC 
counter itself can generate three interrupts: a seconds increment, a counter overflow and an alarm interrupt. The 
alarm interrupt occurs when the RTC counter reaches the value stored in a matching alarm register.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
RTC is located in the backup power domain which is powered by the VBAT voltage supply and the alarm interrupt 
is also connected to EXTI line 17. This means that when the main power domain of the STM32 is placed in a low 
power mode, the RTC will keep running. Through the EXTI it can generate an interrupt of events on the Cortex 
NVIC to wake up the main STM32 power domain.  This configuration of the RTC is crucial for low power designs 
that need to spend most of their time in stop mode, but need some method of auto wakeup. 
 

5.1.6 Backup Registers And Tamper Pin 
The backup power domain also contains ten 16-bit registers which act as battery-backed SRAM. The data held in 
these registers can be cleared by writing to the RCC backup control register. An external tamper pin can also be 
enabled in the same register. This pin can be configured to be high or low at startup. During normal operation a 
change in logic level will trigger a tamper detect event, which will clear the backup registers. A tamper interrupt 
can also be enabled, which allows the application software to take defensive action if a tamper condition is 
detected. 

  

The real-time clock may use the 
internal or external low speed 
oscillator. It provides a seconds 
counter with an alarm register. 
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5.2 Connectivity 
As well as having an excellent set of general purpose peripherals, the STM32 has five different types of 
communication peripheral. For communication between integrated circuits on the same PCB, the STM32 has SPI 
and I2C interfaces. For communication between different modules, there is a CAN bus interface and for 
communication to a PC, there is a USB device interface. Finally, there is the ever popular USART. 
 

5.2.1 SPI 
For fast communication between integrated circuits, the STM32 provides two SPI peripherals which can provide 
full duplex communication at rates up to 18 MHz. It is important to note that one SPI peripheral is located on the 
APB2 high speed peripheral bus, which can run at speeds up to 72 MHz. The second is on the low speed APB1, 
which can run at speeds up to 37 MHz. Each SPI peripheral has programmable clock polarity and phase and the 
data can be transmitted as 8 or 16-bit words, MSB first or LSB first. This allows each SPI peripheral to be 
configured as a master or slave, which can communicate with any other SPI device available. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
To support high data communication rates, each SPI peripheral has two DMA channels: one for transmitting data 
and one to read received data to memory. Using the DMA support allows high speed streaming of bi-directional 
data under hardware control. In addition to the standard SPI peripheral features, the STM32 SPI peripheral 
contains two hardware CRC units. One CRC unit is used for transmitted data and one for reception. Both units 
can generate and check CRC8 and CRC16 codes. This feature is particularly useful if you want to use either SPI 
peripheral as an interface to an MMC/SD card. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

Each SPI peripheral can operate as 
master or slave up to 18 MHz. Two 
DMA channels are provided for 
efficient data transfer 

The SPI peripheral contains a 
hardware CRC unit which is designed 
to support interfacing with 
multimedia and SD memory cards. 



Chapter 5: Peripherals  

 

© Hitex (UK) Ltd.                                                                                     Page 63 

5.2.2 I2C 
The STM32 can also communicate to other integrated circuits through a dedicated I2C interface. The I2C 
interface is capable of operating as a slave or bus master and is also capable of bus arbitration in a multi-master 
system. The I2C interface will support standard bus speeds of up to 100 kHz and fast speeds of up to 400 Khz. 
The peripheral also supports the I2C seven and ten bit addressing modes. The I2C peripheral is designed to 
simply read and write I2C data to and from the bus. Your software must control the I2C ‘engine’ to provide the 
protocol necessary for communication with various different bus devices.  The I2C peripheral provides two 
interrupts to the Cortex processor: one for error containment and the other to control the communication address 
and data transmission. In addition, the DMA unit provides two DMA channels which can read and write data to the 
I2C transmit buffer. Thus, once the initial address and data transfer negotiation has been done, data can be 
streamed to and from the STM32 under hardware control. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
All of the above features make the STM32 I2C peripheral a fast and efficient bus interface. However there are 
some additional enhanced features that extend the basic I2C functionality. The STM32 I2 C peripheral contains 
hardware packet error checking (PEC). When enabled, the PEC will generate an 8-bit CRC error detection byte. 
This byte is automatically placed at the end of the transmitted data stream. The PEC will also error check 
received data against the PEC error protection byte.  
 
 
 
 
 
 
 
  
The STM32 I2C peripheral is also designed to support two further communication protocols. These two protocols 
are System Management Bus (SMBus) and Power Management Bus (PMB). System Management Bus is a 
protocol defined by Intel in 1995 for use within PCs and servers. System Management Bus defines a data link 
layer which includes the use of the PEC and an additional networking layer standardising configuration 
communication between the PC BIOS and different manufacturers’ devices. When operating in SMBus mode, the 
I2C peripheral has additional support for some SMBus features in addition to the PEC. These include support for 
the SMN address resolution protocol, host notify protocol and the SMBALERT signal. The Power Management 
Bus protocol is a version of System Management Bus designed for use within power conversion systems. PMBus 
is intended to allow configuration, programming and real-time monitoring of power systems. 
 

  

The two I2C peripherals have 
enhanced support for the 
system management bus and 
the power management bus. 
They include hardware-
packed error correction. 
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5.2.3 USART 
Although serial communication ports have largely disappeared from PCs, they are still widely used in many 
embedded applications as a simple serial communication interface. Because of their utility and ease of use they 
will be with us for many years to come. The STM32 has up to three USARTs, each with several enhanced 
operating modes which support the latest serial communications applications. Each of the three USARTs are 
capable of up to 4.5 Mbps communication. Each USART has a fully programmable serial interface with 
programmable data size (8 or 9 bits), parity stop bit and baud rate. One USART is located on the APB2 bus which 
runs at up to 72 MHz, while the others are located on APB1 which runs at 36MHz.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The baud rate generator on each USART is a fractional BAUD rate generator. This is more sophisticated than a 
simple clock divider and allows standard BAUD rates to be derived from any bus frequency. Like the other serial 
communications peripherals, each USART has two DMA channels which are used to transfer Tx and Rx data to 
and from memory.  When used as a UART, the USART supports a number of special communication modes. The 
USART is capable of single wire half-duplex mode communication, using just the Tx pin. For modem 
communication  and hardware flow control  each USART has additional CTS and RTS control lines. 
 
 
 
 
 
 
 
 
 
 
 
 
 Each USART can also be used for local interconnect bus (LIN). This is an automotive standard for 
low cost networking to a cluster of microcontrollers. Each USART can be used as a serial infra red 
(SIR) encoder/decoder. This conforms to the IrDA standard for infra red communication for bit rate up 
to 115200bps, using half-duplex NRZ modulation with low power operation when the USART is 
clocked between 1.4MHz and 2.12MHz. Each USART has an additional smart card mode which 
conforms to the ISO 7618-3 standard.  
 
 
 
 
 
 
 
 
 

The USARTs are 
capable of supporting 
asynchronous 
communication with 
UARTS and modems as 
well as LIN IrDA and 
smart cards. 

The USART’s support single wire 
half-duplex communication. 

The USARTS can support smartcard and IrDA communication. 
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In addition to high speed UART type operation, the USART can be configured for synchronous communication 
which allows a three wire connection to SPI peripherals. When in this mode, the USART acts as an SPI master 
and has programmable clock polarity and phase so it can communicate with any SPI slave. 
 
 
 
 
 
 

5.3 Can And USB Controller 
The two remaining communication peripherals on the STM32 are the CAN controller and the USB full speed 
device interface. Both of these communication protocols are quite complicated.  If you are new to either of these 
protocols you should read the CAN tutorial and/or the USB tutorial that comes with this book. Both of the USB and 
CAN peripherals require a relatively large amount of SRAM for message-filtering message buffers. The STM32 
has a dedicated 512 byte region of SRAM that is shared between the CAN and USB peripherals. This memory 
can only be accessed by these peripherals. It is also assigned exclusively to the CAN peripheral or the USB 
peripheral. This means that  you cannot use the CAN peripheral and the USB peripheral simultaneously, although 
it is possible to switch from one to the other in the same application. 
 

5.3.1 CAN Controller 
The STM32 CAN controller is a fully-featured CAN node that supports CAB 2.0A and 2.0B active and passive with 
data rates up to the maximum 1 Mbit/s. The CAN controller also has extensions to support fully deterministic 
communication defined under the time-triggered CAN protocol TTCAN. When enabled, the TTCAN extensions 
support automatic message retransmission and will place a message timestamp in the last two data bytes of the 
CAN message packet. When enabled, these extensions allow the application software to use the CAN peripheral 
for hard real-time control. 
 

 
 
 
 
 

 
 
 
The full name of the CAN controller is the bxCAN peripheral, where the bx stands for basic extended. A basic 
CAN peripheral is defined as having a single transmit and receive buffer, whereas an extended CAN peripheral 
has multiple transmit and receive buffers. The bx CAN peripheral is a hybrid of the two CAN peripheral 
architectures. The bxCAN peripheral has three transmit mailboxes and two receive mailboxes. Each of the 
receive mailboxes has a FIFO queue three messages deep.  This design is a trade-off between having a low 
performance CAN module with a small silicon footprint and a high performance module that takes a large amount 
of the die area. 

In synchronous operation the USARTS can be used 
as additional SPI masters. 

The CAN peripheral supports CAN 
2.0B with extensions for time-
triggered CAN.  
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The next most important feature of a CAN controller is its receive message filtering. Because CAN is a broadcast 
network, every message transmitted is received by every node on the network. In a CAN network of any 
reasonable complexity there will be a large number of messages sent over the CAN bus. In such a network the 
CPU of a CAN node will spend all its runtime responding to CAN messages. To avoid this problem all CAN 
controllers have some form of message filtering that blocks unwanted messages from reaching the receive 
buffers. The CAN controller on the STM32 has 14 filter banks which can be used to block all CAN messages 
except selected message identifiers or groups of message identifiers. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Each filter bank consists of two 32-bit registers. Each filter bank can be configured in one of four modes. The 
basic method programs each register of the filter bank with a message ID. When a message arrives, it must 
match this ID or be rejected. This mode has two configurations. In the first, the filter bank registers are used 3 bits 
wide and are able to filter the 11-bit and 29-bit message ID fields as well as the RTR and IDE bits in 16-bit mode. 

 
 
 
 
 
 
 
 
 
 
 
 
 

In the second configuration, the first 32-bit register is written with the message ID and the second register is used 
as a message mask. The mask register marks bits in the ID register as ‘care’ or ‘don’t care’. This allows a group 
of messages to be received through a single filter bank. When a message is received through the receive filters, a 
filter match index is stored with the message in the receive FIFO. This provides the application software with a 
shorthand method of determining the message data without having to read and decode the message packet ID. 
 

The CAN peripheral has 
three transmit mailboxes 
with automatic time 
stamping for TTCAN. 

The same filter banks can be 
used to filter groups of 
messages.  

The 14 message filters have 
two configurations that can 
be used to filter individual 
messages. 
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All CAN controllers have two operating modes: a normal mode for receiving and transmitting message packets 
and an initialising mode for setting the communication parameters. The STM32 has a low power sleep mode. In 
sleep mode the clock to the bxCAN module is halted, but the mailbox registers may still be accessed. The bxCAN 
module will wake up when it detects activity on the CAN bus; it may also be reactivated by the application 
software. There are two additional sub modes when it is operating in normal mode. The first is silent mode, where 
the CAN controller may receive messages, but cannot transmit and does not generate error frames or message 
acknowledge bits. This mode is intended for passive monitoring of a CAN network Secondly, there is a loopback 
mode where all transmitted messages are looped back into the receive buffer. This mode is intended for self-
testing and is also useful during code development. Both modes may be combined and this is ideal for self-testing 
when connected to a running network. 

  

5.3.2 USB 
The USB interface on the STM32 is a full speed (12Mb/sec) device interface, which can be controlled by a USB 
host such as a PC. The USB peripheral is a complete USB layer 1 and 2 protocol interface, which implements the 
USB physical layer interface and the data transfer layer with all packet error checking and retransmission. The 
USB device interface also supports the USB suspend and resume operations for low power operation. Developing 
a USB-based application does require a good knowledge of the USB specification and its application classes.   A 
full USB developer’s kit is available from the ST website. This provides a software stack to initialise the USB 
interface and has support for commonly used USB classes such as Human Interface Device (HID), mass storage, 
audio and legacy communications port. Using this stack, or a similar third party software stack, greatly speeds up 
development rather than reinventing the wheel. 
 

 
 
 
 
 
 
 
 

 
 
 The USB interface supports up to eight endpoints, which are user configurable as endpoints for control, interrupt, 
bulk or isochronous pipes. The endpoint packet buffers are stored in the 512bytes of SRAM which is shared with 
the CAN controller. When the device is initialised, the application software divides this SRAM into a series of 
buffers.  
 
 The SRAM is configured into the endpoint buffers by a buffer description table held at the base of the SRAM. 
Here each endpoint is provided with a start address in the SRAM and a count to indicate its size. Each active 
control, interrupt and bulk endpoint is allocated an endpoint packet buffer, while isochronous endpoints are 
allocated a double buffer. This allows data to be received into one buffer while data in the second buffer is 
processed. When the next packet is received, the new data goes into the second buffer while the first is 
processed. This double buffer approach supports the streaming of real-time data such as audio.  
 
The 512bytes of SRAM shared with the Can controller is used to store the USB packet data. During initialisation 
this region of memory is divided into individual buffers for each of the active endpoints.  The endpoints used by 
isochronous pipes have a special double buffer so that data can be received into one buffer while an earlier 
packet is being read from a second   
 

The USB peripheral supports 
USB 2.0 device 
communications.  
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6. Low Power Operation 
As well as being a high performance microcontroller, the STM32 has several low power modes in addition to its 
normal RUN mode. When used judiciously, the SLEEP, STOP and STANDBY low power modes make powering 
applications from batteries a practical prospect. The STM32 squares the circle by being a low power 
microcontroller with a high performance processor. In the Cortex overview we saw how the Cortex processor can 
enter a low power mode in which the CPU and Cortex peripherals are halted and consume minimal power. When 
the Cortex Processor enters a low power mode, it can export a SLEEPDEEP signal to the surrounding 
microcontroller, signalling it to enter a low power mode. All of the low power modes are entered by the Cortex 
CPU executing a WFI or WFE instruction. The low power mode that the STM32 then enters depends on the 
setting in the power control registers. In the next section we will have a look at each of the power modes in turn 
and look at comparison of their power consumption and wake up times. 
 

6.1 RUN Mode 
RUN mode is when the STM32 is executing program instructions and is at its highest level of power consumption. 
This section looks at various ways to reduce overall power consumption during program execution. It is important 
to remember that all of these features can be used dynamically as the code runs. This means that it is possible to 
run code in a low power, low performance configuration and then switch to high power, high performance 
configuration in response to an interrupt or program event.  
 
During normal operation the Cortex processor and most of the STM32 can run at 72 MHz. When it is running at 
full speed, the STM32 consumes in excess of 30mA. The power consumption of the STM32 can be reduced by 
first gating the clocks of any unused peripherals. This stops any unused areas of the chip from consuming power. 
The peripheral clocks can be switched on and off dynamically through the Reset clock control module. 
Additionally, big power savings can be made by slowing down the system clock. If high speed operation is not a 
necessity, the PLL can be switched off and the STM32 can be clocked directly from the HSE oscillator. Further 
power reduction can be achieved by switching off the HSE oscillator and using the HSI oscillator. This has the 
disadvantage that the HSI oscillator is not as accurate a clock source as the HSE oscillator. Similarly, if the 
windowed watchdog and the real-time clock are not being used, the LSI oscillator can be switched off in order to 
shave off a bit more power consumption.  
 

6.1.1 Prefetch Buffer And Half-Cycle Mode 
If you are running directly from the HSE oscillator at a maximum of 8MHz, you can also disable the FLASH pre 
fetch buffer and enable the half-cycle operation. This incurs extra wait states, but reduces the RUN mode power 
consumption.  
 

 
 
 

Full speed 
power 
consumption is 
around 34mA, 
but at 8 MHz 
(9.6 DMIPS) the 
power 
consumption is 
below 1mA. 
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6.2 Low Power Modes 
 Careful configuration of the STM32 RUN mode can reduce power consumption to around 8.5mA. In order to get 
a true low power application we have to make use of the STM32 low power modes.  
 

6.2.1 SLEEP 
The first level of low power operation is the SLEEP mode. By default, when an WFE or WFI instruction is 
executed the Cortex processor will halt its internal clocks and stop executing the application code. In SLEEP 
mode the remainder of the STM32 will continue to operate. The STM32 will leave SLEEP mode when a peripheral 
generates an interrupt.  When the STM32 enters SLEEP mode with all peripherals enabled and it is running at 
72MHz from the HSE through the PLL, its SLEEP mode power consumption will be around 14.4mA. However, if 
the STM32 is prepared for low power operation by: firstly disabling all peripheral clocks (except for the peripheral 
used to wake up the Cortex processor) and secondly switching to the HIS oscillator (which can be further divided 
down to 1MHz or below) we can get power consumption figures of around 0.5mA. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In low power applications you should try to enter SLEEP mode as often as possible, in order to consume 
minimum power. The next issue is how long it takes for the STM32 to exit its low power mode and resume 
processing. The figures below show the wake up time for the Cortex CPU to resume processing using the HIS RC 
clock. 
 
  

SLEEP mode power consumption 
can be as low as 0.14mA. 
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6.2.2 STOP Mode 
The STM32 can be configured to enter the low power STOP Mode by setting the SLEEPDEEP bit in the Cortex 
power control register and clearing the Power Down Deep Sleep (PDDS) bit in the STM32 power control register. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
When configured for STOP mode, execution of a WFI or WFE instruction will halt the Cortex processor and switch 
off the HIS and HSE oscillators. The FLASH, SRAM and peripherals are still powered, so the state of the STM32 
is preserved. Like SLEEP mode, STOP mode can be left via an STM32 peripheral generating an interrupt. 
However, in STOP mode all the peripheral clocks are halted, with the exception of the External Interrupt 
peripheral. The use of the EXTI peripheral allows the STM32 to exit STOP mode when there is a state change on 
any GPIO pin. In addition, the EXTI has a line which can both request an interrupt and generate an interrupt from 
a real-time clock Alarm event. As the real-time clock has its own dedicated oscillator (either the LSI or LSE 
oscillator) it can provide a periodic interrupt to wake up the STM32 from STOP mode.  
 
Once the STM32 has entered STOP mode, its power consumption drops mA in RUN mode to around 24 uA. 
Further power savings can be made by placing the internal regulator in a special low power mode when it enters 
STOP mode.  The low power mode for the voltage regulator is selected by setting the LPDS bit in the STM32 
power control register.  With this bit set when the STM32 enters STOP mode, its power consumption will drop to 
14uA. If the RTC is being used, a further 1.4 uA will be consumed. 
 

 
The wake up times you can expect in STOP mode are a worst case of 5.5 usec with the voltage regulator fully on 
and 7.3 usec with the regulator in its low power mode. 
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6.3 Standby 
The STM32 can be configured to enter its standby mode by setting the SLEEPDEEP bit in the Cortex power 
control register and setting the Power Down Deep Sleep bit in the STM32. Now, when the WFI or WFE 
instructions are executed, the STM32 will drop into its lowest power mode. In Standby mode the STM32 is really 
switched off. The internal voltage regulator is switched off and the HSE and HIS oscillators are off. In this mode 
the STM32 consumes a mere 2uA. 

 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
You can exit Standby mode by using an RTC alarm event in the same way as STOP mode. Additionally, you can 
use an external STM32 reset or a reset from the independent watchdog. Standby mode can also be exited by a 
rising edge on pin 0 of PortA. This pin must be configured as wakeup pin WKUP, by setting the EWUP bit in the 
power control and status register. As the lowest power mode, Standby mode takes the longest to leave and it will 
take around 50usec before the Cortex CPU will restart processing instructions. Once in Standby mode, all data in 
the SRAM, Cortex and STM32 registers is lost.  An exit from Standby mode is effectively the same as a program 
reset.   
 

6.4 Backup Region Power Consumption 
The backup region containing the battery backed RAM and the RTC will be kept alive during all power down 
modes. This power domain will consume around 1.4 uA at 3.3V. 
 

6.5 Debug Support 
On traditional microcontroller systems, debugging an application which uses low power modes can be extremely 
painful.  As soon as the microcontroller enters low power mode it stops responding to the debugger, which then 
throws an error or ceases to work. Within the STM32 it is possible to configure the low power modes to keep the 
HSI oscillator running in each of the low power modes, providing a dedicated clock path to the CoreSight debug 
architecture. This means that you can fully debug low power applications without having to remove entries into 
low power mode. This eliminates debug timeout problems. The STM32 enhanced debug features are configured 
with the DBG_MCU register. 
 

In Standby mode power consumption 
is 2uA with a wakeup time of 50uS. 
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7. Safety Features 
 
The STM32 has also been designed with a number of inherent features that will detect incorrect operation of the 
application code or the STM32 itself. To ensure that there is a reliable power supply, the STM32 has its own 
internal reset that will place the chip in reset if the supply voltage is below minimum VDD. Additionally there is a 
programmable power voltage detect circuit that can be used to detect power failure early. It will then generate an  
interrupt to place the chip into a safe state. The clock tree also includes a clock security system which monitors 
the HSE oscillator. If this fails, the CSS will force the STM32 to fail back to the HSI oscillator. Correct program 
execution can be monitored by two internal watchdogs. Firstly, a windowed watchdog which must be refreshed at 
a specific rate. Secondly, an independent watchdog which is clocked by a separate oscillator from the main 
system clock. Additionally, the on-chip FLASH memory has a data retention of 30 years at 85 degrees C. This is a 
‘best in class’ data retention for a general-purpose microcontroller.  These safety features are not suitable for the 
highest levels of safety-critical equipment (at high software integrity levels hardware such as watchdogs must be 
separate external devices.) However, the STM32 does allow you to develop rugged self-correcting systems using 
the techniques employed by safety-critical applications such as avionics and automotive systems, but using very 
low cost hardware. This brings a new level of quality and reliability to even the simplest and most cost-sensitive 
applications. 
 

7.1 Reset Control 
The STM32 has a number of reset sources other than the external reset line. A reset on the STM32 
microcontroller can be forced from:  the internal watchdogs, a software reset via the NVIC, the internal Power on 
reset/Power down reset and the low power voltage detect circuits. If a reset occurs, a set of flags in the RCC 
control and status register can be read to determine the cause of the reset. The state of these flags will persist 
until the next power on reset or until a logic one is written to the remove reset bit. 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

7.2 Power Voltage Detect 
As part of the internal power supply supervisor the STM32 contains a power monitoring unit called the Power 
Voltage Detect (PVD). The PVD has a programmable threshold that can be set in the in steps of 0.1V from 2.2V 
to 2.9V. This threshold is configured in the power control register.  
 
 
 
 
 
 
 
 
 
 

The STM32 may be reset from a number of sources. After reset the 
RCC control and status register reports the last reset source.  

The power supply is monitored by the 
power voltage detect unit, which can 
generate an interrupt if the supply dips 
below a configured threshold. 
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The output of the PVD is connected to line 16 of the external interrupt unit.  Since the EXTI lines can be 
configured to generate an interrupt on a falling or rising edge, or both, the PVD unit can be used to generate an 
interrupt for both under and over voltage conditions.  
 

7.3 Clock Security System 
In most STM32 applications the main system clock used for the Cortex processor and the STM32 peripherals will 
be derived from an external crystal connected to the HSE pins. This clock tree contains a Clock Security System 
that monitors the external crystal. If this crystal fails, it will cause the STM32 clock system to fail back to the 
internal 8 MHz oscillator.  
 
 
 
 
 
 
 
 
 
 
 
 
The Clock Security System is enabled by setting the Clock Security Enable bit in the RCC control register. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
The CSS has an interrupt line which is connected to the break interrupt of advanced timer 1, which in turn is 
connected to the Cortex NVIC non-maskable interrupt line. This ensures that if the main oscillator fails, the PWM 
outputs of the advanced timer will immediately be placed in a pre-programmed safe state by hardware control.  
This ensures that any hardware driven by the advanced timer PWM outputs will not be allowed to run while not 
under control of the Cortex processor. It is particularly  important for motor control applications. 
 

  

The Clock Security System generates 
an interrupt if the external oscillator 
fails and switches to the internal RC 
oscillator. 

The Clock Security System is enabled 
by setting the CSS enable bit in the 
RCC control register. 
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7.4 Watchdogs 
The STM32 contains two completely separate watchdogs. The independent watchdog is completely separate 
from the main STM32 system. It is located within the backup power domain and derives its clock from the internal 
Low Speed Oscillator (LSI). The windowed watchdog is part of the main STM32 system and is clocked via the 
peripheral bus 1 clock. Both watchdogs must be individually enabled and can be used simultaneously. 
  
  
 
 
 
 
 
 
 
 
 
 

7.4.1 Windowed Watchdog 
The windowed watchdog is a more advanced version of a traditional on-chip watchdog. Once enabled, the 
watchdog will count down and will generate a reset on a transition from 0x40 to 0x3F i.e. when bit T6 is cleared. 
An additional count value is stored in the windowed watchdog configuration register. This provides an upper count 
value. If the application software refreshes the watchdog count while the actual watchdog counter value is greater 
than the configuration value, a reset will also be generated. The windowed watchdog provides a programmable 
refresh window which is the only valid time that the watchdog can be written to. This allows you to build extra 
confidence that the application software is running within its expected parameters. 
 
 
 
 
 

 
 
 
 
 
 
 
 
The windowed watchdog is a six-bit down counter, which is clocked from PCLK1 via a 12 bit prescaler that divides 
PCLK1 down by 4096. The prescaler has a further 4 bits that are user programmable allowing a further divide by 
1,2,4 or 8.  The prescaler bits are contained in bits 6,7 of the control register. 
 
 
 
 
 
 
 
 
 
Hence the timeout period of the windowed watchdog is given by: 
 
Twwdg = Tpclk1x4096x2POW (WDGTB) x (reload value+1) 
 
With Pclk1 running at its maximum 36 MHz, the windowed watchdog minimum timeout period is 910uSec and the 
maximum period is 58.25mSec. 

The STM32 has two internal 
watchdogs one of which has its own 
separate oscillator. 



Chapter 7: Safety Features  

 

© Hitex (UK) Ltd.                                                                                     Page 77 

Once the windowed watchdog has been configured, it can be enabled by setting the watchdog activation bit in the 
control register. Once the windowed watchdog has been enabled by software it cannot be disabled, except by a 
reset. 
 

7.4.2 Independent Watchdog 
Although the independent watchdog is fabricated on the same silicon as the main STM32 system, it has its own 
oscillator separate from the main STM32 clock. The independent watchdog is also located within the VDD voltage 
domain, which is kept alive in the STOP and STANDBY modes. 
 
 
 
 
 
 
 
 
 
 
 
The independent watchdog is a 12-bit count down timer, which will force a reset on the STM32 when it 
underflows. It is clocked from the low speed internal oscillator via an 8 bit prescaler.  The LSI oscillator has a 
nominal frequency of 32.768, but in practice this can vary between 30 KHz to 60 KHz. The independent watchdog 
is initialised by first setting the prescaler register, which divides down the LSI oscillator in powers of two between 
4 to 256. The minimum timeout period for the independent watchdog is 0.mSec and the maximum period is just 
over 26 seconds. The timeout period value is programmed directly into the reload register. 
 
 
 
 
 
Watchdog debug support 
 
 
 
 
The option bytes in the FLASH memory small information block can be used to configure the independent 
watchdog to start after a reset, or by software command. If under software control, the independent watchdog can 
be started by writing 0xCCCC to the key register. The Independent watchdog will count down from an initial value 
of 0xFFF. The value 0xAAAA must be written to the key register to refresh the watchdog. This causes the reload 
value to be loaded into the down counter register, refreshing the count value. 
 
Traditionally it is very difficult to debug small microcontrollers if the watchdog is enabled. As soon as the CPU is 
halted, the watchdog cannot be updated. It will timeout and force a reset, which destroys the debug session. 
Normally a watchdog has to be disabled so that it does not upset the debugger. Consequently it is very difficult to 
test and prove that watchdog refreshes are occurring at an optimum rate. Within the STM32 MCUDBG register it 
is possible to configure both the independent watchdog and the window watchdog to halt when the Cortex-M3 
CPU is under control of the CoreSight debug system. This allows you to step through your code with both 
watchdogs enabled and they will be incremented in sync. with the number of cycles executed on the CPU.  
 
 
 
 

  

The independent watchdog is a 
countdown watchdog with its own 
oscillator. It is also located in the 
backup domain so that it can remain 
active during Stop and Standby 
modes. 
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7.5 Peripheral Features 
The user peripherals have also been designed with a number of features that help to ensure the safe operation of 
the STM32. These are fully described in the relevant user peripheral section but will be reviewed here:  
 

7.5.1 GPIO Port Locking 
When the GPIO ports are initialised, each IO line will be configured as an input or output. Once configured, the 
STM32 GPIO port configuration can be locked. This prevents any further accidental changes to the port 
configuration. Each port may be locked on a bitwise basis. 
 

7.5.2 Analog Watchdog 
Each of the Analog to digital converters has two analog watchdogs. These watchdogs can be set to generate an 
interrupt on over-range or under-range voltages.  
 

7.5.3 Break Input 
For motor-based applications, the break line within the advanced timer can be used to place the three 
complementary PWM outputs into a predefined state, in response to an input on the break pin, or a failure in the 
main STM32 oscillator.  
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8. The FLASH Module 
The on-chip FLASH memory of the STM32 is arranged in three main regions. First, there is the main FLASH 
memory designed to hold program instructions. This memory is 64 bits wide to provide efficient memory access 
with the prefetch buffer. For flash program and erase operations this memory is divided into 4K pages. This 
memory has a WRITE endurance of 10000 cycles and data retention of 30 years at 85 degrees C. Most 
microcontroller FLASH memory data retention is rated at 25 degrees C, so the STM32 has an exceptional FLASH 
memory. Aside from the main program memory, there are two smaller memory regions: the big information block 
and the small information block. The big information block is a further 2k of FLASH memory holding a factory 
programmed bootloader, which is designed to download code over USART 1. The small information block 
contains six configuration bytes, which are used to define the reset properties of the STM32 and its memory 
protection. 
 

8.1 Internal FLASH Security And Programming 
The internal FLASH memory can be updated by the internal bootloader, by a JTAG tool, or by in-application 
programming through a dedicated set of registers called the FLASH program and erase controller FPEC. The 
FPEC is also used to program the option bytes in the small information block. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

8.2 Erase And Write Operations 
After reset, the FPEC registers are protected and must be unlocked by writing a special sequence to the key 
register. To unlock the FPEC you must write 0x45670123, followed by 0xCDEF89AB. If there is a mistake in this 
sequence, the FPEC will stay locked until the next reset. Once the FPEC has been unlocked, it is possible to 
erase and WRITE operations on the main FLASH memory. Within the main FLASH memory block it is possible to 
perform a mass erase or an erase of a selected 4k page. A mass erase is done by simply setting the mass erase 
and start bits in the control register. When the busy bit in the same register is reset, each location in the main 
FLASH memory will be reset to 0xFFFF.  A page erase is equally easy to perform. First, you must program the 
start address of a FLASH page into the Address register, then set the page erase and start bits in the control 
register. Again, when the busy bit is clear, the page will be erased. New data can be written to a FLASH memory 
cell only after it has been erased. A WRITE operation is performed by setting the program bit in the control 
register and then performing a half-word write to the desired location. If the FLASH location is erased and not 
write protected, the FPEC will program the new value into the FLASH memory cell. 
 

8.3 Option Bytes 
The small information block contains eight user-configurable option bytes. Four of these bytes are used to define 
write protection on the main FLASH memory. The fifth is used to set read protection which prevents access to 
regions of memory when the chip is in debug mode. A sixth byte is used to configure low power and reset 
operation. The final two bytes are simple FLASH memory cells that are available for user-defined options. Before 
the Option bytes can be written to, the FPEC must be unlocked as described above. Then the Option bytes must 
be unlocked by writing the same two keys to the option key register. The Option bytes have a separate program 

The FPEC module is used to allow in- 
application programming of the 
FLASH memory. The FLASH memory 
can also be read-protected from 
debug tools and write-protected. 
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and erase procedure to the main FLASH memory. The small information block is erased by setting the OPTER bit 
in the control register and then the STRT bit. Once the BSY bit is reset, the small information block is erased. To 
program an Option byte, set the OPTPG bit in the FLASH control register and perform a half-word write to the 
Option byte. Each Option byte is stored as a half-word. The Option byte is stored in the lower byte of the half-
word and its complemented value is stored in the upper half-word. You must write a correct value in the lower 
half-word and the FPEC will automatically calculate the complemented value. 
 

8.3.1 Write Protection 
When it is set, each bit in the write protection option bytes enables protection over a given FLASH page. Write 
protection can be disabled by an erase of the small information block. 
 

8.3.2 Read Protection 
When the read protection is set, all read accesses to the FLASH memory are disabled when the device enters 
debug mode. Access to the SRAM is still possible and code may be downloaded and executed in this region. So it 
is possible to disable the read protection by running a program out of SRAM. However, when read protection is 
disabled a mass erase of the internal FLASH is also performed, to ensure protection from software piracy. When 
read protection is enabled, the  FLASH memory is also write protected to prevent a malicious program from being 
inserted into the memory region containing the vector table.  The STM FLASH memory is protected if the read 
protection byte and its complement are set to 0xFF. The memory can be unprotected by writing 0xFA and its 
complement as a half-word to the read protection Option byte.  
 

8.3.3 Configuration Byte 
The configuration Option byte contains three active bits. Two of these bits govern how the STM32 enters Standby 
and Stop modes. Either mode can be configured to generate a reset on entry. This will configure the digital IO 
pins as inputs, reducing the overall power consumption of the STM32. The PLL and external oscillator will also be 
disabled and the chip will revert to using the internal high speed RC oscillator as the main system clock. The final 
bit in the configuration Option byte configures the activation of the independent watchdog. This watchdog has a 
hardware watchdog mode where it will start immediately after a processor reset, or software watchdog where it 
must be started under software control. 
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9. Development Tools  
The adoption of ARM7 and ARM9 into standard microcontrollers has lead to an explosion in development tools’ 
support for these CPUs. All of the major compiler developers such as GCC, Greenhills, Keil, IAR and Tasking 
provide ARM development tools. With the introduction of the Cortex processor, all of these development tools 
have been extended to support the Thumb-2 instruction set. If you are already using an ARM-based 
microcontroller, the chances are that it will already generate code for the STM32.  The worst case scenario is that 
you will have to get an upgrade from your supplier.  
 
If this is your first project with an ARM-based microcontroller, you will be able to select a toolset from your 
preferred manufacturer. While it is hard to find a bad toolset these days, two compilers are worth discussing 
further. Firstly the “GCC” or “GNU” compiler is an open source tool which can be downloaded and used for ‘free’. 
The GCC compiler has been integrated into a number of commercial IDEs and debuggers to make low-cost 
development tools and evaluation kits. While the GCC compiler is a reliable and stable compiler, our experience 
has been that its code generation is not as efficient as the commercial compilers. There is also generally not a 
direct support route if you run into problems, which can slow down development. Of the commercial compilers, 
the ARM RealView compiler is the original and most refined C compiler and was developed by ARM for use with 
their CPUs. The RealView compiler is available as part of the ARM RealView toolset. This toolset is aimed at 
system-on-chip developers and is not really suitable for microcontroller projects.  However since January 2006 
the RealView compiler has been integrated into the Keil Microcontroller Development Kit (MDK-ARM). As its 
name implies, MDK-ARM is a complete tool chain designed exclusively for ARM-based microcontrollers. The 
MDK is easy to use (selecting about 4 options configures a whole project) and provides a tightly-integrated tool 
chain, which is controlled by one manufacturer.  
 
If you are making a decision between using the GCC compiler and a commercial compiler, you will partly be 
driven by the project budget. A one off ‘simple’ project is unlikely to have the budget to justify a commercial 
toolset.   However, if you plan to standardise on ARM-based microcontrollers, then an ‘expensive’ toolset will 
soon pay for itself both in reduced development time and a more compact final image. It is also important to bear 
in mind your relative level of experience. If you are a hard-core embedded developer, then you are likely to be 
able to develop a whole project with the GCC compiler. If, however, you are less experienced, or do some C 
coding, then it is possible to get into a huge mess. 
 

9.1.1 Evaluation Tools 
Most compiler vendors will also provide an evaluation kit or starter kit. This is traditionally a hardware board and a 
cut down or time-limited version of their toolset.  An up-to-date list of evaluation kits is available on the ST 
website. One of the best evaluation tools is the Hitex STM32 Performance Stick.  Costing about 50 Eur, the 
Performance Stick is a complete evaluation tool for the STM32. It is designed as a USB dongle that allows you to 
develop and debug an unrestricted amount of code with the GCC or Tasking compilers, via the HiTOP IDE. In 
addition to the STM32, the Performance Stick hardware has a second microcontroller in the shape of the 
STR750. This microcontroller uses its ADC and timers to measure the STM32’s power consumption and interrupt 
latency. This information is sent to a ‘dashboard’ application on the PC. The dashboard allows you to manually 
experiment with the different features of the STM32 and get some verification of the data sheet values for power 
consumption, wake up time etc.     
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The Hitex  Performance Stick is a very low-cost evaluation tool for the STM32. It provides an unlimited 
development environment based on the HiTOP debugger and the GCC compiler. For full product 
development, the same IDE and compiler are available  for the Hitex Tantino JTAG debugger. 
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9.1.2 Libraries And Protocol Stacks 
To support rapid code development, ST have provided a STM32 firmware library as a free download from their 
website. The firmware library provides low- level driver functions for all of the on-chip peripherals. This gives you 
some basic building blocks on which to start building your application. The most complex peripheral on the current 
STM32 variants is the USB device controller. In order to help you build common USB class devices, ST also 
provide a free USB developer’s kit. Like the firmware library, the USB developer’s kit can be downloaded from the 
ST website. The USB developer’s kit provides a USB library and demonstration applications for HID, Mass 
Storage, Audio and Device Field Upgrade. 

 
 
 
 
 
 
 
 
 
 
 

 
As new variants of the STM32 are released, they will have more and more complex peripherals (Ethernet MAC, 
TFT interface etc). As this complexity increases, it becomes just about impossible to develop all the application 
code yourself. So when selecting development tools it is also important to consider the availability of protocol 
stacks, such as a TCP/IP stack and other application software, such as a GUI, which may be required on future 
projects. Ideally these should be from the same vendor and well integrated into your chosen toolset. 
 

9.1.3 RTOS 
If you are moving from an eight or sixteen bit microcontroller, the chances are that you are not currently using an 
RTOS. As we have seen, the Cortex-M3 provides you with significantly more processing power than comparably-
priced microcontrollers and is designed to support a small footprint RTOS.  Thus, if you have not been using an 
RTOS it is worth considering when you start work with the STM32. The use of an RTOS gives you the advantage 
of more abstract code development, enhanced code re-use, easier project management and enhanced 
debugging. The use of an RTOS also provides a structure to your code, which forces you to plan the application 
before you dive in and start writing. There are more RTOSes available for ARM and Cortex than for most 
embedded CPUs.   Many compiler vendors will provide their own and have ports for third party RTOSes, but one 
of the most popular open source operating systems is “FreeRTOS”, which is available from www.freertos.org.  A 
commercial version of FreeRTOS is called “SafeRTOS”, which has been tested to meet the IEC 61508 safety 
standard and is also available from the same site.  

With the increasing complexity of 
microcontroller peripherals, it is 
important to select a tool chain which 
is well supported with protocol and 
application software stacks. 

http://www.freertos.org/
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10. End Note 
If you have read through this far, I think you will agree that the Cortex STM32 is a new generation of very low cost 
general purpose microcontrollers. Centred around a high performance processor with a deterministic interrupt 
system with sophisticated peripherals, the STM32 is suitable for many industrial and consumer applications. 
Additionally the low power modes make it suitable for battery-powered and hand held products.  
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