
November 2018 RM0401 Rev 3 1/771

1

RM0401
Reference manual

STM32F410 advanced Arm®-based 32-bit MCUs

Introduction

This reference manual targets application developers. It provides complete information on
how to use the memory and the peripherals of the STM32F410 microcontrollers.

The STM32F410 is a line of microcontrollers with different memory sizes, packages and
peripherals.

For ordering information, mechanical and electrical device characteristics refer to the
datasheets.

For information on the Arm® Cortex®-M4 with FPU core, refer to the Cortex®-M4 with FPU
Technical Reference Manual.

Related documents

Available from STMicroelectronics web site (http://www.st.com):

• STM32F410 datasheet

• PM0214 “STM32F3 Series, STM32F4 Series, STM32L4 Series and STM32L4+ Series
Cortex®-M4 programming manual” for information on Arm® Cortex®-M4 with FPU

www.st.com

http://www.st.com

Contents RM0401

2/771 RM0401 Rev 3

Contents

1 Documentation conventions . 34

1.1 General information . 34

1.2 List of abbreviations for registers . 34

1.3 Glossary . 35

1.4 Availability of peripherals . 35

2 System and memory overview . 36

2.1 System architecture . 36

2.1.1 I-bus . 37

2.1.2 D-bus . 37

2.1.3 S-bus . 37

2.1.4 DMA memory bus . 37

2.1.5 DMA peripheral bus . 37

2.1.6 BusMatrix . 37

2.1.7 AHB/APB bridges (APB) . 37

2.2 Memory organization . 38

2.2.1 Introduction . 38

2.2.2 Memory map and register boundary addresses 38

2.3 Embedded SRAM . 41

2.4 Flash memory overview . 41

2.5 Bit banding . 42

2.6 Boot configuration . 43

3 Embedded Flash memory interface . 45

3.1 Introduction . 45

3.2 Main features . 45

3.3 Embedded Flash memory . 46

3.4 Read interface . 47

3.4.1 Relation between CPU clock frequency and Flash memory read time . 47

3.4.2 Adaptive real-time memory accelerator (ART Accelerator™) 48

3.5 Erase and program operations . 50

3.5.1 Unlocking the Flash control register . 50

3.5.2 Program/erase parallelism . 51

RM0401 Rev 3 3/771

RM0401 Contents

23

3.5.3 Erase . 51

3.5.4 Programming . 52

3.5.5 Interrupts . 53

3.6 Option bytes . 53

3.6.1 Description of user option bytes . 53

3.6.2 Programming user option bytes . 55

3.6.3 Read protection (RDP) . 55

3.6.4 Write protections . 57

3.6.5 Proprietary code readout protection (PCROP) 58

3.7 One-time programmable bytes . 60

3.8 Flash interface registers . 61

3.8.1 Flash access control register (FLASH_ACR) . 61

3.8.2 Flash key register (FLASH_KEYR) . 62

3.8.3 Flash option key register (FLASH_OPTKEYR) 62

3.8.4 Flash status register (FLASH_SR) . 63

3.8.5 Flash control register (FLASH_CR) . 64

3.8.6 Flash option control register (FLASH_OPTCR) 65

3.8.7 Flash interface register map . 68

4 Power controller (PWR) . 69

4.1 Power supplies . 69

4.1.1 Independent A/D converter supply and reference voltage 70

4.1.2 Battery backup domain . 70

4.1.3 Voltage regulator . 71

4.2 Power supply supervisor . 72

4.2.1 Power-on reset (POR)/power-down reset (PDR) 72

4.2.2 Brownout reset (BOR) . 73

4.2.3 Programmable voltage detector (PVD) . 74

4.3 Low-power modes . 74

4.3.1 Optimizing PLL VCO frequency . 76

4.3.2 Slowing down system clocks . 76

4.3.3 Peripheral clock gating . 76

4.3.4 Flash memory in low-power mode for code execution from RAM 77

4.3.5 Sleep mode . 77

4.3.6 Batch acquisition mode . 78

4.3.7 Stop mode . 79

Contents RM0401

4/771 RM0401 Rev 3

4.3.8 Standby mode . 82

4.3.9 Programming the RTC alternate functions to wake up the device from
the Stop and Standby modes . 83

4.4 Power control registers . 86

4.4.1 PWR power control register (PWR_CR) . 86

4.4.2 PWR power control/status register (PWR_CSR) 88

4.5 PWR register map . 90

5 Reset and clock control (RCC) . 91

5.1 Reset . 91

5.1.1 System reset . 91

5.1.2 Power reset . 92

5.1.3 Backup domain reset . 93

5.2 Clocks . 93

5.2.1 HSE clock . 96

5.2.2 HSI clock . 97

5.2.3 PLL configuration . 97

5.2.4 LSE clock . 97

5.2.5 LSI clock . 98

5.2.6 System clock (SYSCLK) selection . 98

5.2.7 Clock security system (CSS) . 98

5.2.8 RTC/AWU clock . 99

5.2.9 Watchdog clock . 99

5.2.10 Clock-out capability . 100

5.2.11 Internal/external clock measurement using TIM5/TIM11 100

5.3 RCC registers . 102

5.3.1 RCC clock control register (RCC_CR) . 102

5.3.2 RCC PLL configuration register (RCC_PLLCFGR) 104

5.3.3 RCC clock configuration register (RCC_CFGR) 106

5.3.4 RCC clock interrupt register (RCC_CIR) . 109

5.3.5 RCC AHB1 peripheral reset register (RCC_AHB1RSTR) 111

5.3.6 RCC APB1 peripheral reset register for (RCC_APB1RSTR) 112

5.3.7 RCC APB2 peripheral reset register (RCC_APB2RSTR) 114

5.3.8 RCC AHB1 peripheral clock enable register (RCC_AHB1ENR) 116

5.3.9 RCC APB1 peripheral clock enable register (RCC_APB1ENR) 117

5.3.10 RCC APB2 peripheral clock enable register
(RCC_APB2ENR) . 119

RM0401 Rev 3 5/771

RM0401 Contents

23

5.3.11 RCC AHB1 peripheral clock enable in low power mode register
(RCC_AHB1LPENR) . 121

5.3.12 RCC APB1 peripheral clock enable in low power mode register
(RCC_APB1LPENR) . 123

5.3.13 RCC APB2 peripheral clock enabled in low power mode register
(RCC_APB2LPENR) . 125

5.3.14 RCC Backup domain control register (RCC_BDCR) 127

5.3.15 RCC clock control & status register (RCC_CSR) 128

5.3.16 RCC spread spectrum clock generation register (RCC_SSCGR) 130

5.3.17 RCC Dedicated Clocks Configuration Register (RCC_DCKCFGR) . . 131

5.3.18 RCC dedicated Clocks Configuration Register 2 (RCC_DCKCFGR2) 132

5.3.19 RCC register map . 133

6 General-purpose I/Os (GPIO) . 135

6.1 GPIO introduction . 135

6.2 GPIO main features . 135

6.3 GPIO functional description . 135

6.3.1 General-purpose I/O (GPIO) . 137

6.3.2 I/O pin multiplexer and mapping . 138

6.3.3 I/O port control registers . 140

6.3.4 I/O port data registers . 141

6.3.5 I/O data bitwise handling . 141

6.3.6 GPIO locking mechanism . 141

6.3.7 I/O alternate function input/output . 142

6.3.8 External interrupt/wakeup lines . 142

6.3.9 Input configuration . 142

6.3.10 Output configuration . 143

6.3.11 Alternate function configuration . 143

6.3.12 Analog configuration . 144

6.3.13 Using the OSC32_IN/OSC32_OUT pins as GPIO PC14/PC15
port pins . 145

6.3.14 Using the OSC_IN/OSC_OUT pins as GPIO PH0/PH1 port pins 145

6.3.15 Selection of RTC additional functions . 145

6.4 GPIO registers . 147

6.4.1 GPIO port mode register (GPIOx_MODER) (x = A..C and H) 147

6.4.2 GPIO port output type register (GPIOx_OTYPER)
(x = A..C and H) . 147

Contents RM0401

6/771 RM0401 Rev 3

6.4.3 GPIO port output speed register (GPIOx_OSPEEDR)
(x = A..C and H) . 148

6.4.4 GPIO port pull-up/pull-down register (GPIOx_PUPDR)
(x = A..C and H) . 148

6.4.5 GPIO port input data register (GPIOx_IDR) (x = A..C and H) 149

6.4.6 GPIO port output data register (GPIOx_ODR) (x = A..C and H) 149

6.4.7 GPIO port bit set/reset register (GPIOx_BSRR) (x = A..C and H) 149

6.4.8 GPIO port configuration lock register (GPIOx_LCKR)
(x = A..C and H) . 150

6.4.9 GPIO alternate function low register (GPIOx_AFRL) (x = A..C and H) 151

6.4.10 GPIO alternate function high register (GPIOx_AFRH)
(x = A..C and H) . 152

6.4.11 GPIO register map . 152

7 System configuration controller (SYSCFG) . 155

7.1 I/O compensation cell . 155

7.2 SYSCFG registers . 155

7.2.1 SYSCFG memory remap register (SYSCFG_MEMRMP) 155

7.2.2 SYSCFG peripheral mode configuration register (SYSCFG_PMC) . . 156

7.2.3 SYSCFG external interrupt configuration register 1
(SYSCFG_EXTICR1) . 157

7.2.4 SYSCFG external interrupt configuration register 2
(SYSCFG_EXTICR2) . 157

7.2.5 SYSCFG external interrupt configuration register 3
(SYSCFG_EXTICR3) . 158

7.2.6 SYSCFG external interrupt configuration register 4
(SYSCFG_EXTICR4) . 158

7.2.7 SYSCFG configuration register 2 (SYSCFG_CFGR2) 159

7.2.8 Compensation cell control register (SYSCFG_CMPCR) 159

7.2.9 Compensation cell control register (SYSCFG_CFGR) 160

7.2.10 SYSCFG register map . 161

8 Direct memory access controller (DMA) . 162

8.1 DMA introduction . 162

8.2 DMA main features . 162

8.3 DMA functional description . 164

8.3.1 DMA block diagram . 164

8.3.2 DMA overview . 164

8.3.3 DMA transactions . 165

RM0401 Rev 3 7/771

RM0401 Contents

23

8.3.4 Channel selection . 166

8.3.5 Arbiter . 167

8.3.6 DMA streams . 167

8.3.7 Source, destination and transfer modes . 168

8.3.8 Pointer incrementation . 171

8.3.9 Circular mode . 172

8.3.10 Double-buffer mode . 172

8.3.11 Programmable data width, packing/unpacking, endianness 173

8.3.12 Single and burst transfers . 175

8.3.13 FIFO . 175

8.3.14 DMA transfer completion . 178

8.3.15 DMA transfer suspension . 179

8.3.16 Flow controller . 179

8.3.17 Summary of the possible DMA configurations 180

8.3.18 Stream configuration procedure . 181

8.3.19 Error management . 182

8.4 DMA interrupts . 183

8.5 DMA registers . 184

8.5.1 DMA low interrupt status register (DMA_LISR) 184

8.5.2 DMA high interrupt status register (DMA_HISR) 185

8.5.3 DMA low interrupt flag clear register (DMA_LIFCR) 186

8.5.4 DMA high interrupt flag clear register (DMA_HIFCR) 186

8.5.5 DMA stream x configuration register (DMA_SxCR) 187

8.5.6 DMA stream x number of data register (DMA_SxNDTR) 190

8.5.7 DMA stream x peripheral address register (DMA_SxPAR) 191

8.5.8 DMA stream x memory 0 address register (DMA_SxM0AR) 191

8.5.9 DMA stream x memory 1 address register (DMA_SxM1AR) 191

8.5.10 DMA stream x FIFO control register (DMA_SxFCR) 192

8.5.11 DMA register map . 194

9 Interrupts and events . 198

9.1 Nested vectored interrupt controller (NVIC) . 198

9.1.1 NVIC features . 198

9.1.2 SysTick calibration value register . 198

9.1.3 Interrupt and exception vectors . 198

9.2 External interrupt/event controller (EXTI) . 198

9.2.1 EXTI main features . 202

Contents RM0401

8/771 RM0401 Rev 3

9.2.2 EXTI block diagram . 203

9.2.3 Wakeup event management . 203

9.2.4 Functional description . 203

9.2.5 External interrupt/event line mapping . 205

9.3 EXTI registers . 206

9.3.1 Interrupt mask register (EXTI_IMR) . 206

9.3.2 Event mask register (EXTI_EMR) . 206

9.3.3 Rising trigger selection register (EXTI_RTSR) 207

9.3.4 Falling trigger selection register (EXTI_FTSR) 207

9.3.5 Software interrupt event register (EXTI_SWIER) 208

9.3.6 Pending register (EXTI_PR) . 208

9.3.7 EXTI register map . 210

10 CRC calculation unit . 211

10.1 CRC introduction .211

10.2 CRC main features .211

10.3 CRC functional description .211

10.4 CRC registers . 212

10.4.1 Data register (CRC_DR) . 212

10.4.2 Independent data register (CRC_IDR) . 213

10.4.3 Control register (CRC_CR) . 213

10.4.4 CRC register map . 214

11 Analog-to-digital converter (ADC) . 215

11.1 ADC introduction . 215

11.2 ADC main features . 215

11.3 ADC functional description . 215

11.3.1 ADC on-off control . 217

11.3.2 ADC clock . 217

11.3.3 Channel selection . 217

11.3.4 Single conversion mode . 218

11.3.5 Continuous conversion mode . 218

11.3.6 Timing diagram . 219

11.3.7 Analog watchdog . 219

11.3.8 Scan mode . 220

11.3.9 Injected channel management . 220

RM0401 Rev 3 9/771

RM0401 Contents

23

11.3.10 Discontinuous mode . 221

11.4 Data alignment . 222

11.5 Channel-wise programmable sampling time . 223

11.6 Conversion on external trigger and trigger polarity 224

11.7 Fast conversion mode . 225

11.8 Data management . 225

11.8.1 Using the DMA . 225

11.8.2 Managing a sequence of conversions without using the DMA 226

11.8.3 Conversions without DMA and without overrun detection 226

11.9 Temperature sensor . 226

11.10 Battery charge monitoring . 228

11.11 ADC interrupts . 228

11.12 ADC registers . 229

11.12.1 ADC status register (ADC_SR) . 229

11.12.2 ADC control register 1 (ADC_CR1) . 230

11.12.3 ADC control register 2 (ADC_CR2) . 232

11.12.4 ADC sample time register 1 (ADC_SMPR1) . 234

11.12.5 ADC sample time register 2 (ADC_SMPR2) . 234

11.12.6 ADC injected channel data offset register x (ADC_JOFRx) (x=1..4) . . 235

11.12.7 ADC watchdog higher threshold register (ADC_HTR) 235

11.12.8 ADC watchdog lower threshold register (ADC_LTR) 235

11.12.9 ADC regular sequence register 1 (ADC_SQR1) 236

11.12.10 ADC regular sequence register 2 (ADC_SQR2) 237

11.12.11 ADC regular sequence register 3 (ADC_SQR3) 237

11.12.12 ADC injected sequence register (ADC_JSQR) 238

11.12.13 ADC injected data register x (ADC_JDRx) (x= 1..4) 238

11.12.14 ADC regular data register (ADC_DR) . 239

11.12.15 ADC Common status register (ADC_CSR) . 239

11.12.16 ADC common control register (ADC_CCR) . 240

11.12.17 ADC register map . 241

12 Digital-to-analog converter (DAC) . 243

12.1 Introduction . 243

12.2 DAC main features . 243

12.3 DAC output buffer enable . 244

12.4 DAC channel enable . 245

Contents RM0401

10/771 RM0401 Rev 3

12.5 Single mode functional description . 245

12.5.1 DAC data format . 245

12.5.2 DAC channel conversion . 245

12.5.3 DAC output voltage . 247

12.5.4 DAC trigger selection . 247

12.6 Noise generation . 248

12.7 Triangle-wave generation . 249

12.8 DMA request . 250

12.9 DAC registers . 251

12.9.1 DAC control register (DAC_CR) . 251

12.9.2 DAC software trigger register (DAC_SWTRIGR) 253

12.9.3 DAC channel1 12-bit right-aligned data holding register
(DAC_DHR12R1) . 253

12.9.4 DAC channel1 12-bit left-aligned data holding register
(DAC_DHR12L1) . 254

12.9.5 DAC channel1 8-bit right-aligned data holding register
(DAC_DHR8R1) . 254

12.9.6 DAC channel1 data output register (DAC_DOR1) 254

12.9.7 DAC status register (DAC_SR) . 255

12.9.8 DAC register map . 256

13 True random number generator (RNG) . 257

13.1 Introduction . 257

13.2 RNG main features . 257

13.3 RNG functional description . 258

13.3.1 RNG block diagram . 258

13.3.2 RNG internal signals . 258

13.3.3 Random number generation . 259

13.3.4 RNG initialization . 261

13.3.5 RNG operation . 261

13.3.6 RNG clocking . 262

13.3.7 Error management . 262

13.4 RNG low-power usage . 263

13.5 RNG interrupts . 263

13.6 RNG processing time . 263

13.7 Entropy source validation . 264

13.7.1 Introduction . 264

RM0401 Rev 3 11/771

RM0401 Contents

23

13.7.2 Validation conditions . 264

13.8 RNG registers . 265

13.8.1 RNG control register (RNG_CR) . 265

13.8.2 RNG status register (RNG_SR) . 266

13.8.3 RNG data register (RNG_DR) . 267

13.8.4 RNG register map . 268

14 Advanced-control timers (TIM1) . 269

14.1 TIM1 introduction . 269

14.2 TIM1 main features . 269

14.3 TIM1 functional description . 271

14.3.1 Time-base unit . 271

14.3.2 Counter modes . 273

14.3.3 Repetition counter . 282

14.3.4 Clock selection . 284

14.3.5 Capture/compare channels . 287

14.3.6 Input capture mode . 290

14.3.7 PWM input mode . 291

14.3.8 Forced output mode . 291

14.3.9 Output compare mode . 292

14.3.10 PWM mode . 293

14.3.11 Complementary outputs and dead-time insertion 296

14.3.12 Using the break function . 298

14.3.13 Clearing the OCxREF signal on an external event 301

14.3.14 6-step PWM generation . 302

14.3.15 One-pulse mode . 303

14.3.16 Encoder interface mode . 304

14.3.17 Timer input XOR function . 307

14.3.18 Interfacing with Hall sensors . 307

14.3.19 TIMx and external trigger synchronization . 309

14.3.20 Debug mode . 312

14.4 TIM1 registers . 313

14.4.1 TIM1 control register 1 (TIMx_CR1) . 313

14.4.2 TIM1 control register 2 (TIMx_CR2) . 314

14.4.3 TIM1 slave mode control register (TIMx_SMCR) 316

14.4.4 TIM1 DMA/interrupt enable register (TIMx_DIER) 318

14.4.5 TIM1 status register (TIMx_SR) . 320

Contents RM0401

12/771 RM0401 Rev 3

14.4.6 TIM1 event generation register (TIMx_EGR) . 321

14.4.7 TIM1 capture/compare mode register 1 (TIMx_CCMR1) 323

14.4.8 TIM1 capture/compare mode register 2 (TIMx_CCMR2) 326

14.4.9 TIM1 capture/compare enable register (TIMx_CCER) 327

14.4.10 TIM1 counter (TIMx_CNT) . 331

14.4.11 TIM1 prescaler (TIMx_PSC) . 331

14.4.12 TIM1 auto-reload register (TIMx_ARR) . 331

14.4.13 TIM1 repetition counter register (TIMx_RCR) 332

14.4.14 TIM1 capture/compare register 1 (TIMx_CCR1) 332

14.4.15 TIM1 capture/compare register 2 (TIMx_CCR2) 333

14.4.16 TIM1 capture/compare register 3 (TIMx_CCR3) 333

14.4.17 TIM1 capture/compare register 4 (TIMx_CCR4) 334

14.4.18 TIM1 break and dead-time register (TIMx_BDTR) 334

14.4.19 TIM1 DMA control register (TIMx_DCR) . 336

14.4.20 TIM1 DMA address for full transfer (TIMx_DMAR) 337

14.4.21 TIM1 register map . 338

15 General-purpose timers (TIM5) . 340

15.1 TIM5 introduction . 340

15.2 TIM5 main features . 340

15.3 TIM5 functional description . 341

15.3.1 Time-base unit . 341

15.3.2 Counter modes . 343

15.3.3 Clock selection . 351

15.3.4 Capture/compare channels . 353

15.3.5 Input capture mode . 355

15.3.6 PWM input mode . 356

15.3.7 Forced output mode . 357

15.3.8 Output compare mode . 358

15.3.9 PWM mode . 359

15.3.10 One-pulse mode . 362

15.3.11 Encoder interface mode . 363

15.3.12 Timer input XOR function . 366

15.3.13 Timers and external trigger synchronization . 366

15.3.14 Debug mode . 368

15.4 TIM5 registers . 369

15.4.1 TIMx control register 1 (TIMx_CR1) . 369

RM0401 Rev 3 13/771

RM0401 Contents

23

15.4.2 TIMx control register 2 (TIMx_CR2) . 371

15.4.3 TIMx slave mode control register (TIMx_SMCR) 372

15.4.4 TIMx DMA/Interrupt enable register (TIMx_DIER) 373

15.4.5 TIMx status register (TIMx_SR) . 374

15.4.6 TIMx event generation register (TIMx_EGR) . 376

15.4.7 TIMx capture/compare mode register 1 (TIMx_CCMR1) 377

15.4.8 TIMx capture/compare mode register 2 (TIMx_CCMR2) 380

15.4.9 TIMx capture/compare enable register (TIMx_CCER) 381

15.4.10 TIMx counter (TIMx_CNT) . 383

15.4.11 TIMx prescaler (TIMx_PSC) . 383

15.4.12 TIMx auto-reload register (TIMx_ARR) . 383

15.4.13 TIMx capture/compare register 1 (TIMx_CCR1) 384

15.4.14 TIMx capture/compare register 2 (TIMx_CCR2) 384

15.4.15 TIMx capture/compare register 3 (TIMx_CCR3) 384

15.4.16 TIMx capture/compare register 4 (TIMx_CCR4) 385

15.4.17 TIMx DMA control register (TIMx_DCR) . 385

15.4.18 TIMx DMA address for full transfer (TIMx_DMAR) 386

15.4.19 TIM5 option register (TIM5_OR) . 387

15.4.20 TIMx register map . 388

16 General-purpose timers (TIM9 and TIM11) . 390

16.1 TIM9 and TIM11 introduction . 390

16.2 TIM9 and TIM11 main features . 390

16.2.1 TIM9 main features . 390

16.2.2 TIM11 main features . 391

16.3 TIM9 and TIM11 functional description . 393

16.3.1 Time-base unit . 393

16.3.2 Counter modes . 395

16.3.3 Clock selection . 398

16.3.4 Capture/compare channels . 400

16.3.5 Input capture mode . 401

16.3.6 PWM input mode (only for TIM9) . 402

16.3.7 Forced output mode . 403

16.3.8 Output compare mode . 404

16.3.9 PWM mode . 405

16.3.10 One-pulse mode . 406

16.3.11 TIM9 external trigger synchronization . 408

Contents RM0401

14/771 RM0401 Rev 3

16.3.12 Debug mode . 411

16.4 TIM9 registers .411

16.4.1 TIM9 control register 1 (TIMx_CR1) . 411

16.4.2 TIM9 slave mode control register (TIMx_SMCR) 413

16.4.3 TIM9 Interrupt enable register (TIMx_DIER) . 414

16.4.4 TIM9 status register (TIMx_SR) . 415

16.4.5 TIM9 event generation register (TIMx_EGR) . 417

16.4.6 TIM9 capture/compare mode register 1 (TIMx_CCMR1) 417

16.4.7 TIM9 capture/compare enable register (TIMx_CCER) 421

16.4.8 TIM9 counter (TIMx_CNT) . 422

16.4.9 TIM9 prescaler (TIMx_PSC) . 422

16.4.10 TIM9 auto-reload register (TIMx_ARR) . 422

16.4.11 TIM9 capture/compare register 1 (TIMx_CCR1) 423

16.4.12 TIM9 capture/compare register 2 (TIMx_CCR2) 423

16.4.13 TIM9 register map . 424

16.5 TIM11 registers . 426

16.5.1 TIM11 control register 1 (TIMx_CR1) . 426

16.5.2 TIM11 Interrupt enable register (TIMx_DIER) 427

16.5.3 TIM11 status register (TIMx_SR) . 427

16.5.4 TIM11 event generation register (TIMx_EGR) 428

16.5.5 TIM11 capture/compare mode register 1
(TIMx_CCMR1) . 429

16.5.6 TIM11 capture/compare enable register
(TIMx_CCER) . 432

16.5.7 TIM11 counter (TIMx_CNT) . 433

16.5.8 TIM11 prescaler (TIMx_PSC) . 433

16.5.9 TIM11 auto-reload register (TIMx_ARR) . 433

16.5.10 TIM11 capture/compare register 1 (TIMx_CCR1) 434

16.5.11 TIM11 option register 1 (TIM11_OR) . 434

16.5.12 TIM11 register map . 435

17 Basic timers (TIM6) . 437

17.1 Introduction . 437

17.2 TIM6 main features . 437

17.3 TIM6 functional description . 438

17.3.1 Time-base unit . 438

17.3.2 Counting mode . 440

RM0401 Rev 3 15/771

RM0401 Contents

23

17.3.3 Clock source . 443

17.3.4 Debug mode . 444

17.4 TIM6 registers . 445

17.4.1 TIM6 control register 1 (TIMx_CR1) . 445

17.4.2 TIM6 control register 2 (TIMx_CR2) . 446

17.4.3 TIM6 DMA/Interrupt enable register (TIMx_DIER) 446

17.4.4 TIM6 status register (TIMx_SR) . 447

17.4.5 TIM6 event generation register (TIMx_EGR) . 447

17.4.6 TIM6 counter (TIMx_CNT) . 447

17.4.7 TIM6 prescaler (TIMx_PSC) . 448

17.4.8 TIM6 auto-reload register (TIMx_ARR) . 448

17.4.9 TIM6 register map . 449

18 Low-power timer (LPTIM) . 450

18.1 Introduction . 450

18.2 LPTIM main features . 450

18.3 LPTIM implementation . 450

18.4 LPTIM functional description . 451

18.4.1 LPTIM block diagram . 451

18.4.2 LPTIM trigger mapping . 451

18.4.3 LPTIM input1 multiplexing . 452

18.4.4 LPTIM reset and clocks . 452

18.4.5 Glitch filter . 452

18.4.6 Prescaler . 453

18.4.7 Trigger multiplexer . 454

18.4.8 Operating mode . 454

18.4.9 Timeout function . 456

18.4.10 Waveform generation . 456

18.4.11 Register update . 457

18.4.12 Counter mode . 458

18.4.13 Timer enable . 458

18.4.14 Encoder mode . 459

18.4.15 Debug mode . 460

18.5 LPTIM low-power modes . 460

18.6 LPTIM interrupts . 461

18.7 LPTIM registers . 461

Contents RM0401

16/771 RM0401 Rev 3

18.7.1 LPTIM interrupt and status register (LPTIM_ISR) 461

18.7.2 LPTIM interrupt clear register (LPTIM_ICR) . 463

18.7.3 LPTIM interrupt enable register (LPTIM_IER) 464

18.7.4 LPTIM configuration register (LPTIM_CFGR) 465

18.7.5 LPTIM control register (LPTIM_CR) . 468

18.7.6 LPTIM compare register (LPTIM_CMP) . 469

18.7.7 LPTIM autoreload register (LPTIM_ARR) . 470

18.7.8 LPTIM counter register (LPTIM_CNT) . 470

18.7.9 LPTIM1 option register (LPTIM1_OR) . 471

18.7.10 LPTIM register map . 472

19 Window watchdog (WWDG) . 473

19.1 WWDG introduction . 473

19.2 WWDG main features . 473

19.3 WWDG functional description . 473

19.4 How to program the watchdog timeout . 475

19.5 Debug mode . 476

19.6 WWDG registers . 477

19.6.1 Control register (WWDG_CR) . 477

19.6.2 Configuration register (WWDG_CFR) . 478

19.6.3 Status register (WWDG_SR) . 478

19.6.4 WWDG register map . 479

20 Independent watchdog (IWDG) . 480

20.1 IWDG introduction . 480

20.2 IWDG main features . 480

20.3 IWDG functional description . 480

20.3.1 Hardware watchdog . 480

20.3.2 Register access protection . 480

20.3.3 Debug mode . 481

20.4 IWDG registers . 482

20.4.1 Key register (IWDG_KR) . 482

20.4.2 Prescaler register (IWDG_PR) . 483

20.4.3 Reload register (IWDG_RLR) . 484

20.4.4 Status register (IWDG_SR) . 484

20.4.5 IWDG register map . 485

RM0401 Rev 3 17/771

RM0401 Contents

23

21 Real-time clock (RTC) . 486

21.1 Introduction . 486

21.2 RTC main features . 486

21.3 RTC functional description . 488

21.3.1 Clock and prescalers . 488

21.3.2 Real-time clock and calendar . 488

21.3.3 Programmable alarms . 489

21.3.4 Periodic auto-wakeup . 489

21.3.5 RTC initialization and configuration . 490

21.3.6 Reading the calendar . 492

21.3.7 Resetting the RTC . 493

21.3.8 RTC synchronization . 493

21.3.9 RTC reference clock detection . 494

21.3.10 RTC coarse digital calibration . 494

21.3.11 RTC smooth digital calibration . 495

21.3.12 Timestamp function . 497

21.3.13 Tamper detection . 498

21.3.14 Calibration clock output . 499

21.3.15 Alarm output . 500

21.4 RTC and low power modes . 500

21.5 RTC interrupts . 501

21.6 RTC registers . 502

21.6.1 RTC time register (RTC_TR) . 502

21.6.2 RTC date register (RTC_DR) . 503

21.6.3 RTC control register (RTC_CR) . 504

21.6.4 RTC initialization and status register (RTC_ISR) 506

21.6.5 RTC prescaler register (RTC_PRER) . 508

21.6.6 RTC wakeup timer register (RTC_WUTR) . 509

21.6.7 RTC calibration register (RTC_CALIBR) . 509

21.6.8 RTC alarm A register (RTC_ALRMAR) . 511

21.6.9 RTC alarm B register (RTC_ALRMBR) . 512

21.6.10 RTC write protection register (RTC_WPR) . 513

21.6.11 RTC sub second register (RTC_SSR) . 513

21.6.12 RTC shift control register (RTC_SHIFTR) . 514

21.6.13 RTC time stamp time register (RTC_TSTR) . 515

21.6.14 RTC time stamp date register (RTC_TSDR) . 515

Contents RM0401

18/771 RM0401 Rev 3

21.6.15 RTC timestamp sub second register (RTC_TSSSR) 516

21.6.16 RTC calibration register (RTC_CALR) . 516

21.6.17 RTC tamper and alternate function configuration register
(RTC_TAFCR) . 517

21.6.18 RTC alarm A sub second register (RTC_ALRMASSR) 519

21.6.19 RTC alarm B sub second register (RTC_ALRMBSSR) 520

21.6.20 RTC backup registers (RTC_BKPxR) . 521

21.6.21 RTC register map . 522

22 Fast-mode Plus Inter-integrated circuit (FMPI2C) interface 524

22.1 Introduction . 524

22.2 FMPI2C main features . 524

22.3 FMPI2C implementation . 525

22.4 FMPI2C functional description . 525

22.4.1 FMPI2C block diagram . 526

22.4.2 FMPI2C pins and internal signals . 527

22.4.3 FMPI2C clock requirements . 527

22.4.4 Mode selection . 528

22.4.5 FMPI2C initialization . 528

22.4.6 Software reset . 533

22.4.7 Data transfer . 534

22.4.8 FMPI2C slave mode . 536

22.4.9 FMPI2C master mode . 545

22.4.10 FMPI2C_TIMINGR register configuration examples 557

22.4.11 SMBus specific features . 558

22.4.12 SMBus initialization . 561

22.4.13 SMBus: FMPI2C_TIMEOUTR register configuration examples 563

22.4.14 SMBus slave mode . 563

22.4.15 Error conditions . 570

22.4.16 DMA requests . 572

22.4.17 Debug mode . 573

22.5 FMPI2C low-power modes . 573

22.6 FMPI2C interrupts . 574

22.7 FMPI2C registers . 575

22.7.1 FMPI2C control register 1 (FMPI2C_CR1) . 575

22.7.2 FMPI2C control register 2 (FMPI2C_CR2) . 578

22.7.3 FMPI2C own address 1 register (FMPI2C_OAR1) 581

RM0401 Rev 3 19/771

RM0401 Contents

23

22.7.4 FMPI2C own address 2 register (FMPI2C_OAR2) 582

22.7.5 FMPI2C timing register (FMPI2C_TIMINGR) 583

22.7.6 FMPI2C timeout register (FMPI2C_TIMEOUTR) 584

22.7.7 FMPI2C interrupt and status register (FMPI2C_ISR) 585

22.7.8 FMPI2C interrupt clear register (FMPI2C_ICR) 587

22.7.9 FMPI2C PEC register (FMPI2C_PECR) . 588

22.7.10 FMPI2C receive data register (FMPI2C_RXDR) 589

22.7.11 FMPI2C transmit data register (FMPI2C_TXDR) 589

22.7.12 FMPI2C register map . 590

23 Inter-integrated circuit (I2C) interface . 592

23.1 I2C introduction . 592

23.2 I2C main features . 593

23.3 I2C functional description . 594

23.3.1 Mode selection . 594

23.3.2 I2C slave mode . 595

23.3.3 I2C master mode . 598

23.3.4 Error conditions . 604

23.3.5 Programmable noise filter . 605

23.3.6 SDA/SCL line control . 606

23.3.7 SMBus . 606

23.3.8 DMA requests . 609

23.3.9 Packet error checking . 610

23.4 I2C interrupts .611

23.5 I2C debug mode . 613

23.6 I2C registers . 613

23.6.1 I2C Control register 1 (I2C_CR1) . 613

23.6.2 I2C Control register 2 (I2C_CR2) . 615

23.6.3 I2C Own address register 1 (I2C_OAR1) . 617

23.6.4 I2C Own address register 2 (I2C_OAR2) . 617

23.6.5 I2C Data register (I2C_DR) . 618

23.6.6 I2C Status register 1 (I2C_SR1) . 618

23.6.7 I2C Status register 2 (I2C_SR2) . 622

23.6.8 I2C Clock control register (I2C_CCR) . 623

23.6.9 I2C TRISE register (I2C_TRISE) . 624

23.6.10 I2C FLTR register (I2C_FLTR) . 625

Contents RM0401

20/771 RM0401 Rev 3

23.6.11 I2C register map . 626

24 Universal synchronous receiver transmitter (USART)
/universal asynchronous receiver transmitter (UART) 627

24.1 USART introduction . 627

24.2 USART main features . 628

24.3 USART implementation . 629

24.4 USART functional description . 629

24.4.1 USART character description . 632

24.4.2 Transmitter . 633

24.4.3 Receiver . 636

24.4.4 Fractional baud rate generation . 641

24.4.5 USART receiver tolerance to clock deviation . 651

24.4.6 Multiprocessor communication . 652

24.4.7 Parity control . 654

24.4.8 LIN (local interconnection network) mode . 655

24.4.9 USART synchronous mode . 657

24.4.10 Single-wire half-duplex communication . 659

24.4.11 Smartcard . 660

24.4.12 IrDA SIR ENDEC block . 662

24.4.13 Continuous communication using DMA . 664

24.4.14 Hardware flow control . 666

24.5 USART interrupts . 668

24.6 USART registers . 669

24.6.1 Status register (USART_SR) . 669

24.6.2 Data register (USART_DR) . 672

24.6.3 Baud rate register (USART_BRR) . 672

24.6.4 Control register 1 (USART_CR1) . 673

24.6.5 Control register 2 (USART_CR2) . 675

24.6.6 Control register 3 (USART_CR3) . 676

24.6.7 Guard time and prescaler register (USART_GTPR) 678

24.6.8 USART register map . 679

25 Serial peripheral interface/ inter-IC sound (SPI/I2S) 680

25.1 Introduction . 680

25.1.1 SPI main features . 681

25.1.2 SPI extended features . 682

RM0401 Rev 3 21/771

RM0401 Contents

23

25.1.3 I2S features . 682

25.2 SPI/I2S implementation . 682

25.3 SPI functional description . 683

25.3.1 General description . 683

25.3.2 Communications between one master and one slave 684

25.3.3 Standard multi-slave communication . 687

25.3.4 Multi-master communication . 688

25.3.5 Slave select (NSS) pin management . 688

25.3.6 Communication formats . 690

25.3.7 SPI configuration . 692

25.3.8 Procedure for enabling SPI . 692

25.3.9 Data transmission and reception procedures 693

25.3.10 Procedure for disabling the SPI . 695

25.3.11 Communication using DMA (direct memory addressing) 696

25.3.12 SPI status flags . 698

25.3.13 SPI error flags . 699

25.4 SPI special features . 700

25.4.1 TI mode . 700

25.4.2 CRC calculation . 701

25.5 SPI interrupts . 703

25.6 I2S functional description . 704

25.6.1 I2S general description . 704

25.6.2 I2S full-duplex . 705

25.6.3 Supported audio protocols . 706

25.6.4 Clock generator . 713

25.6.5 I2S master mode . 715

25.6.6 I2S slave mode . 717

25.6.7 I2S status flags . 718

25.6.8 I2S error flags . 719

25.6.9 I2S interrupts . 720

25.6.10 DMA features . 720

25.7 SPI and I2S registers . 721

25.7.1 SPI control register 1 (SPI_CR1) (not used in I2S mode) 721

25.7.2 SPI control register 2 (SPI_CR2) . 723

25.7.3 SPI status register (SPI_SR) . 724

25.7.4 SPI data register (SPI_DR) . 726

Contents RM0401

22/771 RM0401 Rev 3

25.7.5 SPI CRC polynomial register (SPI_CRCPR) (not used in I2S
mode) . 726

25.7.6 SPI RX CRC register (SPI_RXCRCR) (not used in I2S mode) 727

25.7.7 SPI TX CRC register (SPI_TXCRCR) (not used in I2S mode) 727

25.7.8 SPI_I2S configuration register (SPI_I2SCFGR) 728

25.7.9 SPI_I2S prescaler register (SPI_I2SPR) . 729

25.7.10 SPI register map . 731

26 Debug support (DBG) . 732

26.1 Overview . 732

26.2 Reference Arm® documentation . 733

26.3 SWJ debug port (serial wire and JTAG) . 733

26.3.1 Mechanism to select the JTAG-DP or the SW-DP 734

26.4 Pinout and debug port pins . 734

26.4.1 SWJ debug port pins . 735

26.4.2 Flexible SWJ-DP pin assignment . 735

26.4.3 Internal pull-up and pull-down on JTAG pins . 736

26.4.4 Using serial wire and releasing the unused debug pins as GPIOs . . . 737

26.5 JTAG TAP connection . 737

26.6 ID codes and locking mechanism . 739

26.6.1 MCU device ID code . 739

26.6.2 Boundary scan TAP . 739

26.6.3 Cortex®-M4 with FPU TAP . 739

26.6.4 Cortex®-M4 with FPU JEDEC-106 ID code . 740

26.7 JTAG debug port . 740

26.8 SW debug port . 742

26.8.1 SW protocol introduction . 742

26.8.2 SW protocol sequence . 742

26.8.3 SW-DP state machine (reset, idle states, ID code) 743

26.8.4 DP and AP read/write accesses . 743

26.8.5 SW-DP registers . 744

26.8.6 SW-AP registers . 745

26.9 AHB-AP (AHB access port) - valid for both JTAG-DP
and SW-DP . 745

26.10 Core debug . 746

26.11 Capability of the debugger host to connect under system reset 747

RM0401 Rev 3 23/771

RM0401 Contents

23

26.12 FPB (Flash patch breakpoint) . 747

26.13 DWT (data watchpoint trigger) . 748

26.14 ITM (instrumentation trace macrocell) . 748

26.14.1 General description . 748

26.14.2 Time stamp packets, synchronization and overflow packets 748

26.15 ETM (Embedded trace macrocell) . 750

26.15.1 General description . 750

26.15.2 Signal protocol, packet types . 750

26.15.3 Main ETM registers . 750

26.15.4 Configuration example . 751

26.16 MCU debug component (DBGMCU) . 751

26.16.1 Debug support for low-power modes . 751

26.16.2 Debug support for timers, watchdog, and I2C 752

26.16.3 Debug MCU configuration register . 752

26.16.4 Debug MCU APB1 freeze register (DBGMCU_APB1_FZ) 753

26.16.5 Debug MCU APB2 Freeze register (DBGMCU_APB2_FZ) 755

26.17 TPIU (trace port interface unit) . 756

26.17.1 Introduction . 756

26.17.2 TRACE pin assignment . 757

26.17.3 TPUI formatter . 758

26.17.4 TPUI frame synchronization packets . 759

26.17.5 Transmission of the synchronization frame packet 759

26.17.6 Synchronous mode . 759

26.17.7 Asynchronous mode . 760

26.17.8 TRACECLKIN connection . 760

26.17.9 TPIU registers . 760

26.17.10 Example of configuration . 761

26.18 DBG register map . 762

27 Device electronic signature . 763

27.1 Unique device ID register (96 bits) . 763

27.2 Flash size . 764

27.3 Package data register . 764

28 Revision history . 765

List of tables RM0401

24/771 RM0401 Rev 3

List of tables

Table 1. Register boundary addresses. 39
Table 2. Boot modes. 43
Table 3. Embedded bootloader interfaces . 43
Table 4. Memory mapping vs. Boot mode/physical remap in STM32F410 44
Table 5. Flash module organization . 46
Table 6. Number of wait states according to CPU clock (HCLK) frequency 47
Table 7. Program/erase parallelism . 51
Table 8. Flash interrupt request . 53
Table 9. Option byte organization. 53
Table 10. Description of the option bytes . 54
Table 11. Access versus read protection level . 57
Table 12. OTP area organization . 60
Table 13. Flash register map and reset values. 68
Table 14. Low-power mode summary . 76
Table 15. Sleep-now entry and exit . 77
Table 16. Sleep-on-exit entry and exit . 78
Table 17. BAM-now entry and exit . 79
Table 18. BAM-on-exit entry and exit . 79
Table 19. Stop operating modes. 80
Table 20. Stop mode entry and exit . 81
Table 21. Standby mode entry and exit . 83
Table 22. PWR - register map and reset values. 90
Table 23. RCC register map and reset values . 133
Table 24. Port bit configuration table . 136
Table 25. Flexible SWJ-DP pin assignment . 139
Table 26. RTC additional functions. 145
Table 27. GPIO register map and reset values . 152
Table 28. SYSCFG register map and reset values. 161
Table 29. DMA1 request mapping . 166
Table 30. DMA2 request mapping . 167
Table 31. Source and destination address . 168
Table 32. Source and destination address registers in double-buffer mode (DBM = 1) 173
Table 33. Packing/unpacking and endian behavior (bit PINC = MINC = 1) 174
Table 34. Restriction on NDT versus PSIZE and MSIZE . 174
Table 35. FIFO threshold configurations . 176
Table 36. Possible DMA configurations . 180
Table 37. DMA interrupt requests . 183
Table 38. DMA register map and reset values . 194
Table 39. Vector table. 198
Table 40. External interrupt/event controller register map and reset values. 210
Table 41. CRC calculation unit register map and reset values. 214
Table 42. ADC pins. 217
Table 43. Analog watchdog channel selection . 220
Table 44. Configuring the trigger polarity . 224
Table 45. External trigger for regular channels. 224
Table 46. External trigger for injected channels . 225
Table 47. ADC interrupts . 228
Table 48. ADC global register map. 241

RM0401 Rev 3 25/771

RM0401 List of tables

27

Table 49. ADC register map and reset values . 241
Table 50. ADC register map and reset values (common ADC registers) . 242
Table 51. DAC pins. 244
Table 52. External triggers . 247
Table 53. DAC register map and reset values . 256
Table 54. RNG internal input/output signals . 258
Table 55. RNG interrupt requests . 263
Table 56. RNG register map and reset map. 268
Table 57. Counting direction versus encoder signals . 305
Table 58. TIMx Internal trigger connection . 318
Table 59. Output control bits for complementary OCx and OCxN channels

 with break feature . 330
Table 60. TIM1 register map and reset values . 338
Table 61. Counting direction versus encoder signals . 364
Table 62. TIMx internal trigger connection . 373
Table 63. Output control bit for standard OCx channels. 382
Table 64. TIM5 register map and reset values . 388
Table 65. TIMx internal trigger connections . 414
Table 66. Output control bit for standard OCx channels. 422
Table 67. TIM9 register map and reset values . 424
Table 68. Output control bit for standard OCx channels. 432
Table 69. TIM11 register map and reset values . 435
Table 70. TIM6 register map and reset values . 449
Table 71. STM32F410 LPTIM features . 450
Table 72. LPTIM1 external trigger connection . 451
Table 73. Prescaler division ratios . 453
Table 74. Encoder counting scenarios . 459
Table 75. Effect of low-power modes on the LPTIM. 460
Table 76. Interrupt events. 461
Table 77. LPTIM register map and reset values. 472
Table 78. WWDG register map and reset values . 479
Table 79. Min/max IWDG timeout period at 32 kHz (LSI). 481
Table 80. IWDG register map and reset values . 485
Table 81. Effect of low power modes on RTC . 500
Table 82. Interrupt control bits . 501
Table 83. RTC register map and reset values . 522
Table 84. STM32F410 FMPI2C implementation . 525
Table 85. FMPI2C input/output pins . 527
Table 86. FMPI2C internal input/output signals . 527
Table 87. Comparison of analog vs. digital filters . 529
Table 88. I2C-SMBUS specification data setup and hold times . 532
Table 89. FMPI2C configuration . 536
Table 90. I2C-SMBUS specification clock timings . 547
Table 91. Examples of timing settings for fI2CCLK = 8 MHz . 557
Table 92. Examples of timings settings for fI2CCLK = 16 MHz . 557
Table 93. SMBus timeout specifications. 560
Table 94. SMBUS with PEC configuration . 562
Table 95. Examples of TIMEOUTA settings for various FMPI2CCLK frequencies

(max tTIMEOUT = 25 ms) . 563
Table 96. Examples of TIMEOUTB settings for various FMPI2CCLK frequencies. 563
Table 97. Examples of TIMEOUTA settings for various FMPI2CCLK frequencies

(max tIDLE = 50 µs) . 563

List of tables RM0401

26/771 RM0401 Rev 3

Table 98. Effect of low-power modes on the FMPI2C . 573
Table 99. FMPI2C Interrupt requests . 574
Table 100. FMPI2C register map and reset values . 590
Table 101. Maximum DNF[3:0] value to be compliant with Thd:dat(max) . 605
Table 102. SMBus vs. I2C . 607
Table 103. I2C Interrupt requests . 611
Table 104. I2C register map and reset values . 626
Table 105. USART features . 629
Table 106. Noise detection from sampled data . 639
Table 107. Error calculation for programmed baud rates at fPCLK = 8 MHz or fPCLK = 12 MHz,

oversampling by 16. 643
Table 108. Error calculation for programmed baud rates at fPCLK = 8 MHz or fPCLK = 12 MHz,

oversampling by 8. 643
Table 109. Error calculation for programmed baud rates at fPCLK = 16 MHz or fPCLK = 24 MHz,

oversampling by 16. 644
Table 110. Error calculation for programmed baud rates at fPCLK = 16 MHz or fPCLK = 24 MHz,

oversampling by 8. 645
Table 111. Error calculation for programmed baud rates at fPCLK = 8 MHz or fPCLK = 16 MHz,

oversampling by 16. 645
Table 112. Error calculation for programmed baud rates at fPCLK = 8 MHz or fPCLK = 16 MHz,

oversampling by 8. 646
Table 113. Error calculation for programmed baud rates at fPCLK = 30 MHz or fPCLK = 60 MHz,

oversampling by 16. 647
Table 114. Error calculation for programmed baud rates at fPCLK = 30 MHz or fPCLK = 60 MHz,

oversampling by 8 . 647
Table 115. Error calculation for programmed baud rates at fPCLK = 42 MHz or fPCLK = 84 Hz,

oversampling by 16. 648
Table 116. Error calculation for programmed baud rates at fPCLK = 42 MHz or fPCLK = 84 MHz,

oversampling by 8. 649
Table 117. Error calculation for programmed baud rates at fPCLK = 100 MHz or fPCLK = 50 MHz,

oversampling by 16. 650
Table 118. Error calculation for programmed baud rates at fPCLK = 100 MHz or fPCLK = 50 MHz,

oversampling by 8. 651
Table 119. USART receiver tolerance when DIV fraction is 0 . 652
Table 120. USART receiver tolerance when DIV_Fraction is different from 0 652
Table 121. Frame formats . 654
Table 122. USART interrupt requests. 668
Table 123. USART register map and reset values . 679
Table 124. STM32F410 SPI implementation . 682
Table 125. SPI interrupt requests . 703
Table 126. Audio-frequency precision using standard 8 MHz HSE . 714
Table 127. I2S interrupt requests . 720
Table 128. SPI register map and reset values . 731
Table 129. SWJ debug port pins . 735
Table 130. Flexible SWJ-DP pin assignment . 735
Table 131. JTAG debug port data registers . 740
Table 132. 32-bit debug port registers addressed through the shifted value A[3:2] 741
Table 133. Packet request (8-bits) . 742
Table 134. ACK response (3 bits). 743
Table 135. DATA transfer (33 bits) . 743
Table 136. SW-DP registers . 744
Table 137. Cortex®-M4 with FPU AHB-AP registers . 745

RM0401 Rev 3 27/771

RM0401 List of tables

27

Table 138. Core debug registers . 746
Table 139. Main ITM registers . 749
Table 140. Main ETM registers. 751
Table 141. Asynchronous TRACE pin assignment. 757
Table 142. Synchronous TRACE pin assignment . 757
Table 143. Flexible TRACE pin assignment . 758
Table 144. Important TPIU registers. 760
Table 145. DBG register map and reset values . 762
Table 146. Document revision history . 765

List of figures RM0401

28/771 RM0401 Rev 3

List of figures

Figure 1. System architecture . 36
Figure 2. Memory map. 38
Figure 3. Flash memory interface connection inside system architecture . 45
Figure 4. Sequential 32-bit instruction execution . 49
Figure 5. RDP levels . 57
Figure 6. PCROP levels . 59
Figure 7. Power supply overview . 69
Figure 8. Power-on reset/power-down reset waveform . 72
Figure 9. BOR thresholds . 73
Figure 10. PVD thresholds. 74
Figure 11. Simplified diagram of the reset circuit . 92
Figure 12. Clock tree . 94
Figure 13. HSE/ LSE clock sources. 96
Figure 14. Frequency measurement with TIM5 in Input capture mode . 101
Figure 15. Frequency measurement with TIM11 in Input capture mode . 101
Figure 16. Basic structure of a five-volt tolerant I/O port bit . 136
Figure 17. Selecting an alternate function . 140
Figure 18. Input floating/pull up/pull down configurations . 142
Figure 19. Output configuration . 143
Figure 20. Alternate function configuration . 144
Figure 21. High impedance-analog configuration . 144
Figure 22. DMA block diagram . 164
Figure 23. System implementation of the two DMA controllers . 165
Figure 24. Channel selection . 166
Figure 25. Peripheral-to-memory mode . 169
Figure 26. Memory-to-peripheral mode . 170
Figure 27. Memory-to-memory mode . 171
Figure 28. FIFO structure. 176
Figure 29. External interrupt/event controller block diagram . 203
Figure 30. External interrupt/event GPIO mapping . 205
Figure 31. CRC calculation unit block diagram . 211
Figure 32. Single ADC block diagram . 216
Figure 33. Timing diagram . 219
Figure 34. Analog watchdog’s guarded area . 219
Figure 35. Injected conversion latency . 221
Figure 36. Right alignment of 12-bit data . 223
Figure 37. Left alignment of 12-bit data . 223
Figure 38. Left alignment of 6-bit data . 223
Figure 39. Temperature sensor and VREFINT channel block diagram . 227
Figure 40. DAC channel block diagram . 244
Figure 41. Data registers in single DAC channel mode . 245
Figure 42. Timing diagram for conversion with trigger disabled TEN = 0 . 246
Figure 43. DAC LFSR register calculation algorithm . 248
Figure 44. DAC conversion (SW trigger enabled) with LFSR wave generation. 248
Figure 45. DAC triangle wave generation . 249
Figure 46. DAC conversion (SW trigger enabled) with triangle wave generation 249
Figure 47. RNG block diagram . 258
Figure 48. Entropy source model . 259

RM0401 Rev 3 29/771

RM0401 List of figures

33

Figure 49. Advanced-control timer block diagram . 270
Figure 50. Counter timing diagram with prescaler division change from 1 to 2 272
Figure 51. Counter timing diagram with prescaler division change from 1 to 4 272
Figure 52. Counter timing diagram, internal clock divided by 1 . 273
Figure 53. Counter timing diagram, internal clock divided by 2 . 274
Figure 54. Counter timing diagram, internal clock divided by 4 . 274
Figure 55. Counter timing diagram, internal clock divided by N. 274
Figure 56. Counter timing diagram, update event when ARPE=0

(TIMx_ARR not preloaded). 275
Figure 57. Counter timing diagram, update event when ARPE=1

(TIMx_ARR preloaded) . 275
Figure 58. Counter timing diagram, internal clock divided by 1 . 277
Figure 59. Counter timing diagram, internal clock divided by 2 . 277
Figure 60. Counter timing diagram, internal clock divided by 4 . 278
Figure 61. Counter timing diagram, internal clock divided by N. 278
Figure 62. Counter timing diagram, update event when repetition counter is not used. 279
Figure 63. Counter timing diagram, internal clock divided by 1, TIMx_ARR = 0x6 280
Figure 64. Counter timing diagram, internal clock divided by 2 . 280
Figure 65. Counter timing diagram, internal clock divided by 4, TIMx_ARR=0x36 281
Figure 66. Counter timing diagram, internal clock divided by N. 281
Figure 67. Counter timing diagram, update event with ARPE=1 (counter underflow) 282
Figure 68. Counter timing diagram, update event with ARPE=1 (counter overflow) 282
Figure 69. Update rate examples depending on mode and TIMx_RCR register settings 283
Figure 70. Control circuit in normal mode, internal clock divided by 1 . 284
Figure 71. TI2 external clock connection example. 285
Figure 72. Control circuit in external clock mode 1 . 286
Figure 73. External trigger input block . 286
Figure 74. Control circuit in external clock mode 2 . 287
Figure 75. Capture/compare channel (example: channel 1 input stage) . 288
Figure 76. Capture/compare channel 1 main circuit . 288
Figure 77. Output stage of capture/compare channel (channels 1 to 3) . 289
Figure 78. Output stage of capture/compare channel (channel 4). 289
Figure 79. PWM input mode timing . 291
Figure 80. Output compare mode, toggle on OC1. 293
Figure 81. Edge-aligned PWM waveforms (ARR=8) . 294
Figure 82. Center-aligned PWM waveforms (ARR=8) . 295
Figure 83. Complementary output with dead-time insertion. 297
Figure 84. Dead-time waveforms with delay greater than the negative pulse. 297
Figure 85. Dead-time waveforms with delay greater than the positive pulse. 297
Figure 86. Output behavior in response to a break.. 300
Figure 87. Clearing TIMx OCxREF . 301
Figure 88. 6-step generation, COM example (OSSR=1) . 302
Figure 89. Example of one pulse mode. . 303
Figure 90. Example of counter operation in encoder interface mode. 306
Figure 91. Example of encoder interface mode with TI1FP1 polarity inverted. 306
Figure 92. Example of Hall sensor interface . 308
Figure 93. Control circuit in reset mode . 309
Figure 94. Control circuit in gated mode . 310
Figure 95. Control circuit in trigger mode. 311
Figure 96. Control circuit in external clock mode 2 + trigger mode . 312
Figure 97. General-purpose timer block diagram . 341
Figure 98. Counter timing diagram with prescaler division change from 1 to 2 342

List of figures RM0401

30/771 RM0401 Rev 3

Figure 99. Counter timing diagram with prescaler division change from 1 to 4 343
Figure 100. Counter timing diagram, internal clock divided by 1 . 344
Figure 101. Counter timing diagram, internal clock divided by 2 . 344
Figure 102. Counter timing diagram, internal clock divided by 4 . 344
Figure 103. Counter timing diagram, internal clock divided by N. 345
Figure 104. Counter timing diagram, Update event when ARPE=0 (TIMx_ARR not preloaded). 345
Figure 105. Counter timing diagram, Update event when ARPE=1 (TIMx_ARR preloaded). 346
Figure 106. Counter timing diagram, internal clock divided by 1 . 347
Figure 107. Counter timing diagram, internal clock divided by 2 . 347
Figure 108. Counter timing diagram, internal clock divided by 4 . 347
Figure 109. Counter timing diagram, internal clock divided by N. 348
Figure 110. Counter timing diagram, Update event . 348
Figure 111. Counter timing diagram, internal clock divided by 1, TIMx_ARR=0x6 349
Figure 112. Counter timing diagram, internal clock divided by 2 . 350
Figure 113. Counter timing diagram, internal clock divided by 4, TIMx_ARR=0x36 350
Figure 114. Counter timing diagram, internal clock divided by N. 350
Figure 115. Counter timing diagram, Update event with ARPE=1 (counter underflow). 351
Figure 116. Counter timing diagram, Update event with ARPE=1 (counter overflow) 351
Figure 117. Control circuit in normal mode, internal clock divided by 1 . 352
Figure 118. TI2 external clock connection example. 352
Figure 119. Control circuit in external clock mode 1 . 353
Figure 120. Capture/compare channel (example: channel 1 input stage) . 354
Figure 121. Capture/compare channel 1 main circuit . 354
Figure 122. Output stage of capture/compare channel (channel 1). 355
Figure 123. PWM input mode timing . 357
Figure 124. Output compare mode, toggle on OC1. 359
Figure 125. Edge-aligned PWM waveforms (ARR=8) . 360
Figure 126. Center-aligned PWM waveforms (ARR=8) . 361
Figure 127. Example of one-pulse mode . 362
Figure 128. Example of counter operation in encoder interface mode . 365
Figure 129. Example of encoder interface mode with TI1FP1 polarity inverted 365
Figure 130. Control circuit in reset mode . 366
Figure 131. Control circuit in gated mode . 367
Figure 132. Control circuit in trigger mode. 368
Figure 133. General-purpose timer block diagram (TIM9) . 391
Figure 134. General-purpose timer block diagram (TIM11) . 392
Figure 135. Counter timing diagram with prescaler division change from 1 to 2 394
Figure 136. Counter timing diagram with prescaler division change from 1 to 4 394
Figure 137. Counter timing diagram, internal clock divided by 1 . 395
Figure 138. Counter timing diagram, internal clock divided by 2 . 396
Figure 139. Counter timing diagram, internal clock divided by 4 . 396
Figure 140. Counter timing diagram, internal clock divided by N. 396
Figure 141. Counter timing diagram, update event when ARPE=0

 (TIMx_ARR not preloaded) . 397
Figure 142. Counter timing diagram, update event when ARPE=1

 (TIMx_ARR preloaded) . 397
Figure 143. Control circuit in normal mode, internal clock divided by 1 . 398
Figure 144. TI2 external clock connection example. 399
Figure 145. Control circuit in external clock mode 1 . 399
Figure 146. Capture/compare channel (example: channel 1 input stage) . 400
Figure 147. Capture/compare channel 1 main circuit . 401
Figure 148. Output stage of capture/compare channel (channel 1). 401

RM0401 Rev 3 31/771

RM0401 List of figures

33

Figure 149. PWM input mode timing . 403
Figure 150. Output compare mode, toggle on OC1. 405
Figure 151. Edge-aligned PWM waveforms (ARR=8) . 406
Figure 152. Example of one pulse mode. . 407
Figure 153. Control circuit in reset mode . 409
Figure 154. Control circuit in gated mode . 410
Figure 155. Control circuit in trigger mode. 410
Figure 156. Basic timer block diagram. 437
Figure 157. Counter timing diagram with prescaler division change from 1 to 2 439
Figure 158. Counter timing diagram with prescaler division change from 1 to 4 439
Figure 159. Counter timing diagram, internal clock divided by 1 . 440
Figure 160. Counter timing diagram, internal clock divided by 2 . 441
Figure 161. Counter timing diagram, internal clock divided by 4 . 441
Figure 162. Counter timing diagram, internal clock divided by N. 442
Figure 163. Counter timing diagram, update event when ARPE = 0 (TIMx_ARR not

preloaded). 442
Figure 164. Counter timing diagram, update event when ARPE=1 (TIMx_ARR

preloaded). 443
Figure 165. Control circuit in normal mode, internal clock divided by 1 . 444
Figure 166. Low-power timer block diagram . 451
Figure 167. Glitch filter timing diagram . 453
Figure 168. LPTIM output waveform, single counting mode configuration . 455
Figure 169. LPTIM output waveform, Single counting mode configuration

and Set-once mode activated (WAVE bit is set) . 455
Figure 170. LPTIM output waveform, Continuous counting mode configuration 456
Figure 171. Waveform generation . 457
Figure 172. Encoder mode counting sequence . 460
Figure 173. Watchdog block diagram . 474
Figure 174. Window watchdog timing diagram . 475
Figure 175. Independent watchdog block diagram . 481
Figure 176. RTC block diagram . 487
Figure 177. FMPI2C block diagram . 526
Figure 178. I2C bus protocol . 528
Figure 179. Setup and hold timings . 530
Figure 180. FMPI2C initialization flowchart . 533
Figure 181. Data reception . 534
Figure 182. Data transmission . 535
Figure 183. Slave initialization flowchart . 538
Figure 184. Transfer sequence flowchart for FMPI2C slave transmitter,

NOSTRETCH= 0 . 540
Figure 185. Transfer sequence flowchart for FMPI2C slave transmitter,

NOSTRETCH= 1 . 541
Figure 186. Transfer bus diagrams for FMPI2C slave transmitter . 542
Figure 187. Transfer sequence flowchart for slave receiver with NOSTRETCH=0 543
Figure 188. Transfer sequence flowchart for slave receiver with NOSTRETCH=1 544
Figure 189. Transfer bus diagrams for FMPI2C slave receiver . 544
Figure 190. Master clock generation . 546
Figure 191. Master initialization flowchart . 548
Figure 192. 10-bit address read access with HEAD10R=0 . 548
Figure 193. 10-bit address read access with HEAD10R=1 . 549
Figure 194. Transfer sequence flowchart for FMPI2C master transmitter for N≤255 bytes. 550
Figure 195. Transfer sequence flowchart for FMPI2C master transmitter for N>255 bytes. 551

List of figures RM0401

32/771 RM0401 Rev 3

Figure 196. Transfer bus diagrams for FMPI2C master transmitter . 552
Figure 197. Transfer sequence flowchart for FMPI2C master receiver for N≤255 bytes 554
Figure 198. Transfer sequence flowchart for FMPI2C master receiver for N >255 bytes 555
Figure 199. Transfer bus diagrams for FMPI2C master receiver . 556
Figure 200. Timeout intervals for tLOW:SEXT, tLOW:MEXT. 560
Figure 201. Transfer sequence flowchart for SMBus slave transmitter N bytes + PEC. 564
Figure 202. Transfer bus diagrams for SMBus slave transmitter (SBC=1) . 565
Figure 203. Transfer sequence flowchart for SMBus slave receiver N Bytes + PEC 566
Figure 204. Bus transfer diagrams for SMBus slave receiver (SBC=1). 567
Figure 205. Bus transfer diagrams for SMBus master transmitter . 568
Figure 206. Bus transfer diagrams for SMBus master receiver . 570
Figure 207. I2C bus protocol . 594
Figure 208. I2C block diagram. 595
Figure 209. Transfer sequence diagram for slave transmitter . 597
Figure 210. Transfer sequence diagram for slave receiver . 598
Figure 211. Transfer sequence diagram for master transmitter. 601
Figure 212. Transfer sequence diagram for master receiver . 603
Figure 213. I2C interrupt mapping diagram . 612
Figure 214. USART block diagram . 631
Figure 215. Word length programming . 632
Figure 216. Configurable stop bits . 634
Figure 217. TC/TXE behavior when transmitting . 635
Figure 218. Start bit detection when oversampling by 16 or 8 . 636
Figure 219. Data sampling when oversampling by 16 . 639
Figure 220. Data sampling when oversampling by 8 . 639
Figure 221. Mute mode using Idle line detection . 653
Figure 222. Mute mode using address mark detection . 654
Figure 223. Break detection in LIN mode (11-bit break length - LBDL bit is set) 656
Figure 224. Break detection in LIN mode vs. Framing error detection. 657
Figure 225. USART example of synchronous transmission. 658
Figure 226. USART data clock timing diagram (M=0) . 658
Figure 227. USART data clock timing diagram (M=1) . 659
Figure 228. RX data setup/hold time . 659
Figure 229. ISO 7816-3 asynchronous protocol . 660
Figure 230. Parity error detection using the 1.5 stop bits . 661
Figure 231. IrDA SIR ENDEC- block diagram . 663
Figure 232. IrDA data modulation (3/16) -Normal mode . 663
Figure 233. Transmission using DMA . 665
Figure 234. Reception using DMA . 666
Figure 235. Hardware flow control between 2 USARTs . 666
Figure 236. RTS flow control . 667
Figure 237. CTS flow control . 667
Figure 238. USART interrupt mapping diagram . 669
Figure 239. SPI block diagram. 683
Figure 240. Full-duplex single master/ single slave application . 684
Figure 241. Half-duplex single master/ single slave application . 685
Figure 242. Simplex single master/single slave application (master in transmit-only/

slave in receive-only mode) . 686
Figure 243. Master and three independent slaves. 687
Figure 244. Multi-master application . 688
Figure 245. Hardware/software slave select management . 689
Figure 246. Data clock timing diagram . 691

RM0401 Rev 3 33/771

RM0401 List of figures

33

Figure 247. TXE/RXNE/BSY behavior in master / full-duplex mode (BIDIMODE=0,
RXONLY=0) in the case of continuous transfers . 694

Figure 248. TXE/RXNE/BSY behavior in slave / full-duplex mode (BIDIMODE=0,
RXONLY=0) in the case of continuous transfers . 695

Figure 249. Transmission using DMA . 697
Figure 250. Reception using DMA . 698
Figure 251. TI mode transfer . 701
Figure 252. I2S block diagram . 704
Figure 253. Full-duplex communication . 706
Figure 254. I2S Philips protocol waveforms (16/32-bit full accuracy, CPOL = 0). 707
Figure 255. I2S Philips standard waveforms (24-bit frame with CPOL = 0) . 707
Figure 256. Transmitting 0x8EAA33 . 708
Figure 257. Receiving 0x8EAA33 . 708
Figure 258. I2S Philips standard (16-bit extended to 32-bit packet frame with CPOL = 0) 708
Figure 259. Example of 16-bit data frame extended to 32-bit channel frame 709
Figure 260. MSB Justified 16-bit or 32-bit full-accuracy length with CPOL = 0 709
Figure 261. MSB justified 24-bit frame length with CPOL = 0 . 709
Figure 262. MSB justified 16-bit extended to 32-bit packet frame with CPOL = 0 710
Figure 263. LSB justified 16-bit or 32-bit full-accuracy with CPOL = 0 . 710
Figure 264. LSB justified 24-bit frame length with CPOL = 0. 710
Figure 265. Operations required to transmit 0x3478AE. 711
Figure 266. Operations required to receive 0x3478AE . 711
Figure 267. LSB justified 16-bit extended to 32-bit packet frame with CPOL = 0 711
Figure 268. Example of 16-bit data frame extended to 32-bit channel frame 712
Figure 269. PCM standard waveforms (16-bit) . 712
Figure 270. PCM standard waveforms (16-bit extended to 32-bit packet frame). 712
Figure 271. Audio sampling frequency definition . 713
Figure 272. I2S clock generator architecture . 713
Figure 273. Block diagram of STM32 MCU and Cortex®-M4 with FPU-level

debug support . 732
Figure 274. SWJ debug port . 734
Figure 275. JTAG TAP connections . 738
Figure 276. TPIU block diagram . 756

Documentation conventions RM0401

34/771 RM0401 Rev 3

1 Documentation conventions

1.1 General information

The STM32F410 devices have an Arm®(a) Cortex®-M4 with FPU core.

1.2 List of abbreviations for registers

The following abbreviations(b) are used in register descriptions:

a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

b. This is an exhaustive list of all abbreviations applicable to STM microcontrollers, some of them may not be
used in the current document.

read/write (rw) Software can read and write to this bit.

read-only (r) Software can only read this bit.

write-only (w) Software can only write to this bit. Reading this bit returns the reset value.

read/clear write0 (rc_w0) Software can read as well as clear this bit by writing 0. Writing 1 has no
effect on the bit value.

read/clear write1 (rc_w1) Software can read as well as clear this bit by writing 1. Writing 0 has no
effect on the bit value.

read/clear write (rc_w) Software can read as well as clear this bit by writing to the register. The
value written to this bit is not important.

read/clear by read (rc_r) Software can read this bit. Reading this bit automatically clears it to 0.
Writing this bit has no effect on the bit value.

read/set by read (rs_r) Software can read this bit. Reading this bit automatically sets it to 1.
Writing this bit has no effect on the bit value.

read/set (rs) Software can read as well as set this bit. Writing 0 has no effect on the bit
value.

read/write once (rwo) Software can only write once to this bit and can also read it at any time.
Only a reset can return the bit to its reset value.

toggle (t) The software can toggle this bit by writing 1. Writing 0 has no effect.

read-only write trigger (rt_w1) Software can read this bit. Writing 1 triggers an event but has no effect on
the bit value.

Reserved (Res.) Reserved bit, must be kept at reset value.

RM0401 Rev 3 35/771

RM0401 Documentation conventions

35

1.3 Glossary

This section gives a brief definition of acronyms and abbreviations used in this document:

• The CPU core integrates two debug ports:

– JTAG debug port (JTAG-DP) provides a 5-pin standard interface based on the
Joint Test Action Group (JTAG) protocol.

– SWD debug port (SWD-DP) provides a 2-pin (clock and data) interface based on
the Serial Wire Debug (SWD) protocol.

For both the JTAG and SWD protocols, refer to the Cortex®-M4 with FPU
Technical Reference Manual.

• Word: data of 32-bit length.

• Half-word: data of 16-bit length.

• Byte: data of 8-bit length.

• IAP (in-application programming): IAP is the ability to re-program the Flash memory
of a microcontroller while the user program is running.

• ICP (in-circuit programming): ICP is the ability to program the Flash memory of a
microcontroller using the JTAG protocol, the SWD protocol or the bootloader while the
device is mounted on the user application board.

• I-Code: this bus connects the Instruction bus of the CPU core to the Flash instruction

• interface. Prefetch is performed on this bus.

• D-Code: this bus connects the D-Code bus (literal load and debug access) of the CPU

• to the Flash data interface.

• Option bytes: product configuration bits stored in the Flash memory.

• OBL: option byte loader.

• AHB: advanced high-performance bus.

• CPU: refers to the Cortex®-M4 with FPU core.

1.4 Availability of peripherals

For availability of peripherals and their number across all sales types, refer to the particular
device datasheet.

System and memory overview RM0401

36/771 RM0401 Rev 3

2 System and memory overview

2.1 System architecture

In STM32F410, the main system consists of 32-bit multilayer AHB bus matrix that
interconnects:

• Six masters:

– Cortex®-M4 with FPU core I-bus, D-bus and S-bus

– DMA1 memory bus

– DMA2 memory bus

– DMA2 peripheral bus

• Five slaves:

– Internal Flash memory ICode bus

– Internal Flash memory DCode bus

– Main internal SRAM

– AHB1 peripherals including AHB to APB bridges and APB peripherals

– AHB2 peripherals

The bus matrix provides access from a master to a slave, enabling concurrent access and
efficient operation even when several high-speed peripherals work simultaneously. This
architecture is shown in Figure 1.

Figure 1. System architecture

1. The Flash memory size is 512 Kbytes or 128 Mbytes while SRAM1 size is 256 Kbytes.

RM0401 Rev 3 37/771

RM0401 System and memory overview

37

2.1.1 I-bus

This bus connects the Instruction bus of the Cortex®-M4 with FPU core to the BusMatrix.
This bus is used by the core to fetch instructions. The target of this bus is a memory
containing code (internal Flash memory/SRAM1).

2.1.2 D-bus

This bus connects the databus of the Cortex®-M4 with FPU to the BusMatrix. This bus is
used by the core for literal load and debug access. The target of this bus is a memory
containing code or data (internal Flash memory/SRAM1).

2.1.3 S-bus

This bus connects the system bus of the Cortex®-M4 with FPU core to a BusMatrix. This
bus is used to access data located in a peripheral or in SRAM1. Instructions may also be
fetch on this bus (less efficient than ICode). The targets of this bus are the internal SRAM1,
the AHB1 peripherals including the APB peripherals, and the AHB2 peripherals.

2.1.4 DMA memory bus

This bus connects the DMA memory bus master interface to the BusMatrix. It is used by the
DMA to perform transfer to/from memories. The targets of this bus are data memories:
internal Flash memory, internal SRAM1 and additionally for S4 the AHB1/AHB2 peripherals
including the APB peripherals.

2.1.5 DMA peripheral bus

This bus connects the DMA peripheral master bus interface to the BusMatrix. This bus is
used by the DMA to access AHB peripherals or to perform memory-to-memory transfers.
The targets of this bus are the AHB and APB peripherals plus data memories: Flash
memory and internal SRAM1.

2.1.6 BusMatrix

The BusMatrix manages the access arbitration between masters. The arbitration uses a
round-robin algorithm.

2.1.7 AHB/APB bridges (APB)

The two AHB/APB bridges, APB1 and APB2, provide full synchronous connections between
the AHB and the two APB buses, allowing flexible selection of the peripheral frequency.

Refer to the device datasheets for more details on APB1 and APB2 maximum frequencies,
and to Table 1 for the address mapping of AHB and APB peripherals.

After each device reset, all peripheral clocks are disabled (except for the SRAM and Flash
memory interface). Before using a peripheral you have to enable its clock in the
RCC_AHBxENR or RCC_APBxENR register.

Note: When a 16- or an 8-bit access is performed on an APB register, the access is transformed
into a 32-bit access: the bridge duplicates the 16- or 8-bit data to feed the 32-bit vector.

RM0401

38/771 RM0401 Rev 3

2.2 Memory organization

2.2.1 Introduction

Program memory, data memory, registers and I/O ports are organized within the same linear
4-Gbyte address space.

The bytes are coded in memory in Little Endian format. The lowest numbered byte in a word
is considered the word’s least significant byte and the highest numbered byte the most
significant.

The addressable memory space is divided into eight main blocks, of 512 Mbytes each.

2.2.2 Memory map and register boundary addresses

Figure 2. Memory map

RM0401 Rev 3 39/771

RM0401

44

All the memory map areas that are not allocated to on-chip memories and peripherals are
considered “Reserved”. For the detailed mapping of available memory and register areas,
refer to the following table.

The following table gives the boundary addresses of the peripherals available in the
devices.

Table 1. Register boundary addresses

Bus Boundary address Peripheral

- 0xE010 0000 - 0xFFFF FFFF Reserved

Cortex®-M4 0xE000 0000 - 0xE00F FFFF Cortex-M4 internal peripherals

- 0x5000 0000 - 0xDFFF FFFF Reserved

AHB1

0x4008 0400 - 0x4FFF FFFF Reserved

0x4008 0000 - 0x4008 03FF RNG

0x4002 6800 - 0x4007 FFFF Reserved

0x4002 6400 - 0x4002 67FF DMA2

0x4002 6000 - 0x4002 63FF DMA1

0x4002 5000 - 0x4002 4FFF Reserved

0x4002 3C00 - 0x4002 3FFF Flash interface register

0x4002 3800 - 0x4002 3BFF RCC

0x4002 3400 - 0x4002 37FF Reserved

0x4002 3000 - 0x4002 33FF CRC

0x4002 2800 - 0x4002 2FFF Reserved

0x4002 2400 - 0x4002 27FF LPTIM1

0x4002 2000 - 0x4002 23FF Reserved

0x4002 1C00 - 0x4002 1FFF GPIOH

0x4002 0C00 - 0x4002 1BFF Reserved

0x4002 0800 - 0x4002 0BFF GPIOC

0x4002 0400 - 0x4002 07FF GPIOB

0x4002 0000 - 0x4002 03FF GPIOA

RM0401

40/771 RM0401 Rev 3

APB2

0x4001 5400- 0x4001 FFFF Reserved

0x4001 5000 - 0x4001 53FF SPI5/I2S5

0x4001 4C00- 0x4001 4FFF Reserved

0x4001 4800 - 0x4001 4BFF TIM11

0x4001 4400 - 0x4001 47FF Reserved

0x4001 4000 - 0x4001 43FF TIM9

0x4001 3C00 - 0x4001 3FFF EXTI

0x4001 3800 - 0x4001 3BFF SYSCFG

0x4001 3400 - 0x4001 37FF Reserved

0x4001 3000 - 0x4001 33FF SPI1/I2S1

0x4001 2400 - 0x4001 2FF Reserved

0x4001 2000 - 0x4001 23FF ADC1

0x4001 1800 - 0x4001 1FFF Reserved

0x4001 1400 - 0x4001 17FF USART6

0x4001 1000 - 0x4001 13FF USART1

0x4001 0400 - 0x4001 0FFF Reserved

0x4001 0000 - 0x4001 03FF TIM1

Table 1. Register boundary addresses (continued)

Bus Boundary address Peripheral

RM0401 Rev 3 41/771

RM0401

44

2.3 Embedded SRAM

STM32F410 devices feature 32 Kbytes of system SRAM.

The embedded SRAM can be accessed as bytes, half-words (16 bits) or full words (32 bits).
Read and write operations are performed at CPU speed with 0 wait state.

The CPU can access the embedded SRAM1, through the System Bus or through the I-
Code/D-Code buses when boot from SRAM is selected or when physical remap is selected
(Section 7.2.1: SYSCFG memory remap register (SYSCFG_MEMRMP) in the SYSCFG
controller). To get the max performance on SRAM execution, physical remap should be
selected (boot or software selection).

2.4 Flash memory overview

The Flash memory interface manages CPU AHB I-Code and D-Code accesses to the Flash
memory. It implements the erase and program Flash memory operations and the read and
write protection mechanisms. It accelerates code execution with a system of instruction
prefetch and cache lines.

APB1

0x4000 7800 - 0x4000 FFFF Reserved

0x4000 7400 - 0x4000 77FF DAC

0x4000 7000 - 0x4000 73FF PWR

0x4000 6400 - 0x4000 6FFF Reserved

0x4000 6000 - 0x4000 63FF I2C4 FM+

0x4000 5C00 - 0x4000 5FFF Reserved

0x4000 5800 - 0x4000 5BFF I2C2

0x4000 5400 - 0x4000 57FF I2C1

0x4000 4800 - 0x4000 53FF Reserved

0x4000 4400 - 0x4000 47FF USART2

0x4000 3C00 - 0x4000 43FF Reserved

0x4000 3800 - 0x4000 3BFF SPI2 / I2S2

0x4000 3400 - 0x4000 37FF Reserved

0x4000 3000 - 0x4000 33FF IWDG

0x4000 2C00 - 0x4000 2FFF WWDG

0x4000 2800 - 0x4000 2BFF RTC & BKP Registers

0x4000 1400 - 0x4000 27FF Reserved

0x4000 1000 - 0x4000 13FF TIM6

0x4000 0C00 - 0x4000 0FFF TIM5

0x4000 0000 - 0x4000 0BFF Reserved

Table 1. Register boundary addresses (continued)

Bus Boundary address Peripheral

RM0401

42/771 RM0401 Rev 3

The Flash memory is organized as follows:

• A main memory block divided into sectors.

• System memory from which the device boots in System memory boot mode

• 512 OTP (one-time programmable) bytes for user data.

• Option bytes to configure read and write protection, BOR level, watchdog
software/hardware and reset when the device is in Standby or Stop mode.

Refer to Section 3: Embedded Flash memory interface for more details.

2.5 Bit banding

The Cortex®-M4 with FPU memory map includes two bit-band regions. These regions map
each word in an alias region of memory to a bit in a bit-band region of memory. Writing to a
word in the alias region has the same effect as a read-modify-write operation on the
targeted bit in the bit-band region.

In the STM32F410 devices both the peripheral registers and the SRAM1 are mapped to a
bit-band region, so that single bit-band write and read operations are allowed. The
operations are only available for Cortex®-M4 with FPU accesses, and not from other bus
masters (e.g. DMA).

A mapping formula shows how to reference each word in the alias region to a corresponding
bit in the bit-band region. The mapping formula is:

bit_word_addr = bit_band_base + (byte_offset x 32) + (bit_number × 4)

where:

– bit_word_addr is the address of the word in the alias memory region that maps to
the targeted bit

– bit_band_base is the starting address of the alias region

– byte_offset is the number of the byte in the bit-band region that contains the
targeted bit

– bit_number is the bit position (0-7) of the targeted bit

Example

The following example shows how to map bit 2 of the byte located at SRAM1 address
0x20000300 to the alias region:

0x22006008 = 0x22000000 + (0x300*32) + (2*4)

Writing to address 0x22006008 has the same effect as a read-modify-write operation on bit
2 of the byte at SRAM1 address 0x20000300.

Reading address 0x22006008 returns the value (0x01 or 0x00) of bit 2 of the byte at SRAM1
address 0x20000300 (0x01: bit set; 0x00: bit reset).

For more information on bit-banding, refer to the Cortex®-M4 with FPU programming
manual (see Related documents on page 1).

RM0401 Rev 3 43/771

RM0401

44

2.6 Boot configuration

Due to its fixed memory map, the code area starts from address 0x0000 0000 (accessed
through the ICode/DCode buses) while the data area (SRAM) starts from address
0x2000 0000 (accessed through the system bus). The Cortex®-M4 with FPU CPU always
fetches the reset vector on the ICode bus, which implies to have the boot space available
only in the code area (typically, Flash memory). STM32F4xx microcontrollers implement a
special mechanism to be able to boot from other memories (like the internal SRAM).

In the STM32F410, three different boot modes can be selected through the BOOT[1:0] pins
as shown in Table 2.

The values on the BOOT pins are latched on the 4th rising edge of SYSCLK after a reset. It
is up to the user to set the BOOT1 and BOOT0 pins after reset to select the required boot
mode.

BOOT0 is a dedicated pin while BOOT1 is shared with a GPIO pin. Once BOOT1 has been
sampled, the corresponding GPIO pin is free and can be used for other purposes.

The BOOT pins are also resampled when the device exits the Standby mode. Consequently,
they must be kept in the required Boot mode configuration when the device is in the Standby
mode. After this startup delay is over, the CPU fetches the top-of-stack value from address
0x0000 0000, then starts code execution from the boot memory starting from 0x0000 0004.

Note: When the device boots from SRAM, in the application initialization code, you have to
relocate the vector table in SRAM using the NVIC exception table and the offset register.

Embedded bootloader

The embedded bootloader mode is used to reprogram the Flash memory using interfaces
that depend on the package (refer to Table 3):

Table 2. Boot modes

Boot mode selection pins
Boot mode Aliasing

BOOT1 BOOT0

x 0 Main Flash memory Main Flash memory is selected as the boot space

0 1 System memory System memory is selected as the boot space

1 1 Embedded SRAM Embedded SRAM is selected as the boot space

Table 3. Embedded bootloader interfaces

Package USART1 USART2 I2C1 I2C2 I2C4 FM+ SPI1 SPI3

WLCSP36 X PA2/PA3 PB6/PB7 X PB10/PB3
PA15/PA5/
PB4/PB5

X

UFQFPN48 PA9/PA10 PA2/PA3 PB6/PB7 X PB14/PB15
PA4/PA5/
PA6/PA7

X

LQFP64 PA9/PA10 PA2/PA3 PB6/PB7 PB10/PB11 PB14/PB15
PA4/PA5/
PA6/PA7

PB12/PB13/
PC2/PC3

UFBGA64 PA9/PA10 PA2/PA3 PB6/PB7 PB10/PB11 PB14/PB15
PA4/PA5/
PA6/PA7

PB12/PB13/
PC2/PC3

RM0401

44/771 RM0401 Rev 3

The USART peripherals operate at the internal 16 MHz oscillator (HSI) frequency.

The embedded bootloader code is located in system memory. It is programmed by ST
during production. For additional information, refer to application note AN2606.

Physical remap in STM32F410

Once the boot pins are selected, the application software can modify the memory
accessible in the code area (in this way the code can be executed through the ICode bus in
place of the System bus). This modification is performed by programming the Section 7.2.1:
SYSCFG memory remap register (SYSCFG_MEMRMP) in the SYSCFG controller.

The following memories can thus be remapped:

• Main Flash memory

• System memory

• Embedded SRAM

Table 4. Memory mapping vs. Boot mode/physical remap in STM32F410

Addresses
Boot/Remap in main

Flash memory
Boot/Remap in

embedded SRAM
Boot/Remap in

System memory

0x2000 0000 - 0x2002 7FFF SRAM (32 KB) SRAM (32KB) SRAM (32KB)

0x1FFF 0000 - 0x1FFF 77FF System memory System memory System memory

0x0802 0000 - 0x1FFE FFFF Reserved Reserved Reserved

0x0800 0000 - 0x0801 FFFF Flash memory Flash memory Flash memory

0x0400 000 - 0x07FF FFFF Reserved Reserved Reserved

0x0000 0000 - 0x0001 FFFF(1)

1. Even when aliased in the boot memory space, the related memory is still accessible at its original memory
space.

Flash (128 KB) Aliased
SRAM1 (32 KB)

Aliased
System memory
(30 KB) Aliased

RM0401 Rev 3 45/771

RM0401 Embedded Flash memory interface

68

3 Embedded Flash memory interface

3.1 Introduction

The Flash memory interface manages CPU AHB I-Code and D-Code accesses to the Flash
memory. It implements the erase and program Flash memory operations and the read and
write protection mechanisms.

The Flash memory interface accelerates code execution with a system of instruction
prefetch and cache lines.

3.2 Main features

• Flash memory read operations

• Flash memory program/erase operations

• Read / write protections

• Prefetch on I-Code

• 64 cache lines of 128 bits on I-Code

• 8 cache lines of 128 bits on D-Code

Figure 3 shows the Flash memory interface connection inside the system architecture.

Figure 3. Flash memory interface connection inside system architecture

Embedded Flash memory interface RM0401

46/771 RM0401 Rev 3

3.3 Embedded Flash memory

The Flash memory has the following main features:

• Capacity up to 128 Kbytes

• 128 bits wide data read

• Byte, half-word, word and double word write

• Sector and mass erase

• Memory organization

The Flash memory is organized as follows:

– A main memory block divided into 4 sectors of 16 Kbytes plus 1 sector of
64 Kbytes.

– System memory from which the device boots in System memory boot mode

– 512 OTP (one-time programmable) bytes for user data

The OTP area contains 16 additional bytes used to lock the corresponding OTP
data block.

– Option bytes to configure read and write protection, BOR level, watchdog
software/hardware and reset when the device is in Standby or Stop mode.

• Low-power modes (for details refer to the Power control (PWR) section of the reference
manual)

Table 5. Flash module organization

Block Name Block base addresses Size

Main memory

Sector 0 0x0800 0000 - 0x0800 3FFF 16 Kbytes

Sector 1 0x0800 4000 - 0x0800 7FFF 16 Kbytes

Sector 2 0x0800 8000 - 0x0800 BFFF 16 Kbytes

Sector 3 0x0800 C000 - 0x0800 FFFF 16 Kbytes

Sector 4 0x0801 1000 - 0x0801 FFFF 64 Kbytes

System memory 0x1FFF 0000 - 0x1FFF 77FF 30 Kbytes

OTP area 0x1FFF 7800 - 0x1FFF 7A0F 528 bytes

Option bytes 0x1FFF C000 - 0x1FFF C00F 16 bytes

RM0401 Rev 3 47/771

RM0401 Embedded Flash memory interface

68

3.4 Read interface

3.4.1 Relation between CPU clock frequency and Flash memory read time

To correctly read data from Flash memory, the number of wait states (LATENCY) must be
correctly programmed in the Flash access control register (FLASH_ACR) according to the
frequency of the CPU clock (HCLK) and the supply voltage of the device.

The prefetch buffer must be disabled when the supply voltage is below 2.1 V. The
correspondence between wait states and CPU clock frequency is given inTable 6:

• When VOS[1:0] = 0x01, the maximum value of fHCLK = 64 MHz.

• When VOS[1:0] = 0x10, the maximum value of fHCLK = 84 MHz.

• When VOS[1:0] = 0x11, the maximum value of fHCLK = 100 MHz.

After reset, the CPU clock frequency is 16 MHz and 0 wait state (WS) is configured in the
FLASH_ACR register.

It is highly recommended to use the following software sequences to tune the number of
wait states needed to access the Flash memory with the CPU frequency.

Increasing the CPU frequency

1. Program the new number of wait states to the LATENCY bits in the FLASH_ACR
register

2. Check that the new number of wait states is taken into account to access the Flash
memory by reading the FLASH_ACR register

3. Modify the CPU clock source by writing the SW bits in the RCC_CFGR register

4. If needed, modify the CPU clock prescaler by writing the HPRE bits in RCC_CFGR

5. Check that the new CPU clock source or/and the new CPU clock prescaler value is/are
taken into account by reading the clock source status (SWS bits) or/and the AHB
prescaler value (HPRE bits), respectively, in the RCC_CFGR register.

Table 6. Number of wait states according to CPU clock (HCLK) frequency

Wait states (WS)

(LATENCY)

HCLK (MHz)

Voltage range

2.7 V - 3.6 V

Voltage range

2.4 V - 2.7 V

Voltage range

2.1 V - 2.4 V

Voltage range

1.7 V - 2.1 V

0 WS (1 CPU cycle) 0 < HCLK ≤ 30 0 < HCLK ≤ 24 0 < HCLK ≤ 18 0 < HCLK ≤ 16

1 WS (2 CPU cycles) 30 < HCLK ≤ 64 24 < HCLK ≤ 48 18 < HCLK ≤ 36 16 <HCLK ≤ 32

2 WS (3 CPU cycles) 64 < HCLK ≤ 90 48 < HCLK ≤ 72 36 < HCLK ≤ 54 32 < HCLK ≤ 48

3 WS (4 CPU cycles) 90 < HCLK ≤ 100 72 < HCLK ≤ 96 54 < HCLK ≤ 72 48 < HCLK ≤ 64

4 WS (5 CPU cycles) - 96 < HCLK ≤ 100 72 < HCLK ≤ 90 64 < HCLK ≤ 80

5 WS (6 CPU cycles) - - 90 < HCLK ≤ 100 80 < HCLK ≤ 96

6 WS (7 CPU cycles) - - - 96 < HCLK ≤ 100

Embedded Flash memory interface RM0401

48/771 RM0401 Rev 3

Decreasing the CPU frequency

1. Modify the CPU clock source by writing the SW bits in the RCC_CFGR register

2. If needed, modify the CPU clock prescaler by writing the HPRE bits in RCC_CFGR

3. Check that the new CPU clock source or/and the new CPU clock prescaler value is/are
taken into account by reading the clock source status (SWS bits) or/and the AHB
prescaler value (HPRE bits), respectively, in the RCC_CFGR register

4. Program the new number of wait states to the LATENCY bits in FLASH_ACR

5. Check that the new number of wait states is used to access the Flash memory by
reading the FLASH_ACR register

Note: A change in CPU clock configuration or wait state (WS) configuration may not be effective
straight away. To make sure that the current CPU clock frequency is the one you have
configured, you can check the AHB prescaler factor and clock source status values. To
make sure that the number of WS you have programmed is effective, you can read the
FLASH_ACR register.

3.4.2 Adaptive real-time memory accelerator (ART Accelerator™)

The proprietary Adaptive real-time (ART) memory accelerator is optimized for STM32
industry-standard Arm® Cortex®-M4 with FPU processors. It balances the inherent
performance advantage of the Arm® Cortex®-M4 with FPU over Flash memory
technologies, which normally requires the processor to wait for the Flash memory at higher
operating frequencies.

To release the processor full performance, the accelerator implements an instruction
prefetch queue and branch cache which increases program execution speed from the 128-
bit Flash memory. Based on CoreMark benchmark, the performance achieved thanks to the
ART accelerator is equivalent to 0 wait state program execution from Flash memory at a
CPU frequency up to 100 MHz.

Instruction prefetch

Each Flash memory read operation provides 128 bits from either four instructions of 32 bits
or 8 instructions of 16 bits according to the program launched. So, in case of sequential
code, at least four CPU cycles are needed to execute the previous read instruction line.
Prefetch on the I-Code bus can be used to read the next sequential instruction line from the
Flash memory while the current instruction line is being requested by the CPU. Prefetch is
enabled by setting the PRFTEN bit in the FLASH_ACR register. This feature is useful if at
least one wait state is needed to access the Flash memory.

Figure 4 shows the execution of sequential 32-bit instructions with and without prefetch
when 3 WSs are needed to access the Flash memory.

RM0401 Rev 3 49/771

RM0401 Embedded Flash memory interface

68

Figure 4. Sequential 32-bit instruction execution

When the code is not sequential (branch), the instruction may not be present in the currently
used instruction line or in the prefetched instruction line. In this case (miss), the penalty in
terms of number of cycles is at least equal to the number of wait states.

Embedded Flash memory interface RM0401

50/771 RM0401 Rev 3

Instruction cache memory

To limit the time lost due to jumps, it is possible to retain 64 lines of 128 bits in an instruction
cache memory. This feature can be enabled by setting the instruction cache enable (ICEN)
bit in the FLASH_ACR register. Each time a miss occurs (requested data not present in the
currently used instruction line, in the prefetched instruction line or in the instruction cache
memory), the line read is copied into the instruction cache memory. If some data contained
in the instruction cache memory are requested by the CPU, they are provided without
inserting any delay. Once all the instruction cache memory lines have been filled, the LRU
(least recently used) policy is used to determine the line to replace in the instruction memory
cache. This feature is particularly useful in case of code containing loops.

Data management

Literal pools are fetched from Flash memory through the D-Code bus during the execution
stage of the CPU pipeline. The CPU pipeline is consequently stalled until the requested
literal pool is provided. To limit the time lost due to literal pools, accesses through the AHB
databus D-Code have priority over accesses through the AHB instruction bus I-Code.

If some literal pools are frequently used, the data cache memory can be enabled by setting
the data cache enable (DCEN) bit in the FLASH_ACR register. This feature works like the
instruction cache memory, but the retained data size is limited to 8 rows of 128 bits.

Note: Data in user configuration sector are not cacheable.

3.5 Erase and program operations

For any Flash memory program operation (erase or program), the CPU clock frequency
(HCLK) must be at least 1 MHz. The contents of the Flash memory are not guaranteed if a
device reset occurs during a Flash memory operation.

Any attempt to read the Flash memory on STM32F4xx while it is being written or erased,
causes the bus to stall. Read operations are processed correctly once the program
operation has completed. This means that code or data fetches cannot be performed while
a write/erase operation is ongoing.

3.5.1 Unlocking the Flash control register

After reset, write is not allowed in the Flash control register (FLASH_CR) to protect the
Flash memory against possible unwanted operations due, for example, to electric
disturbances. The following sequence is used to unlock this register:

1. Write KEY1 = 0x45670123 in the Flash key register (FLASH_KEYR)

2. Write KEY2 = 0xCDEF89AB in the Flash key register (FLASH_KEYR)

Any wrong sequence will return a bus error and lock up the FLASH_CR register until the
next reset.

The FLASH_CR register can be locked again by software by setting the LOCK bit in the
FLASH_CR register.

Note: The FLASH_CR register is not accessible in write mode when the BSY bit in the FLASH_SR
register is set. Any attempt to write to it with the BSY bit set will cause the AHB bus to stall
until the BSY bit is cleared.

RM0401 Rev 3 51/771

RM0401 Embedded Flash memory interface

68

3.5.2 Program/erase parallelism

The Parallelism size is configured through the PSIZE field in the FLASH_CR register. It
represents the number of bytes to be programmed each time a write operation occurs to the
Flash memory. PSIZE is limited by the supply voltage and by whether the external VPP
supply is used or not. It must therefore be correctly configured in the FLASH_CR register
before any programming/erasing operation.

A Flash memory erase operation can only be performed by sector or for the whole Flash
memory (mass erase). The erase time depends on PSIZE programmed value. For more
details on the erase time, refer to the electrical characteristics section of the device
datasheet.

Table 7 provides the correct PSIZE values.

Note: Any program or erase operation started with inconsistent program parallelism/voltage range
settings may lead to unpredicted results. Even if a subsequent read operation indicates that
the logical value was effectively written to the memory, this value may not be retained.

To use VPP, an external high-voltage supply (between 8 and 9 V) must be applied to the VPP
pad. The external supply must be able to sustain this voltage range even if the DC
consumption exceeds 10 mA. It is advised to limit the use of VPP to initial programming on
the factory line. The VPP supply must not be applied for more than an hour, otherwise the
Flash memory might be damaged.

3.5.3 Erase

The Flash memory erase operation can be performed at sector level or on the whole Flash
memory (Mass Erase). Mass Erase does not affect the OTP sector or the configuration
sector.

Sector Erase

To erase a sector, follow the procedure below:

1. Check that no Flash memory operation is ongoing by checking the BSY bit in the
FLASH_SR register

2. Set the SER bit and select the sector out of the 5 sectors in the main memory block you
wish to erase (SNB) in the FLASH_CR register

3. Set the STRT bit in the FLASH_CR register

4. Wait for the BSY bit to be cleared

Table 7. Program/erase parallelism

Voltage range 2.7 - 3.6 V
with External VPP

Voltage range
2.7 - 3.6 V

Voltage range
2.4 - 2.7 V

Voltage range
2.1 - 2.4 V

Voltage range
1.7 V - 2.1 V

Parallelism size x64 x32 x16 x8

PSIZE(1:0) 11 10 01 00

Embedded Flash memory interface RM0401

52/771 RM0401 Rev 3

Mass Erase

To perform Mass Erase, the following sequence is recommended:

1. Check that no Flash memory operation is ongoing by checking the BSY bit in the
FLASH_SR register

2. Set the MER bit in the FLASH_CR register

3. Set the STRT bit in the FLASH_CR register

4. Wait for the BSY bit to be cleared

Note: If MERx and SER bits are both set in the FLASH_CR register, mass erase is performed.

If both MERx and SER bits are reset and the STRT bit is set, an unpredictable behavior may
occur without generating any error flag. This condition should be forbidden.

3.5.4 Programming

Standard programming

The Flash memory programming sequence is as follows:

1. Check that no main Flash memory operation is ongoing by checking the BSY bit in the
FLASH_SR register.

2. Set the PG bit in the FLASH_CR register

3. Perform the data write operation(s) to the desired memory address (inside main
memory block or OTP area):

– Byte access in case of x8 parallelism

– Half-word access in case of x16 parallelism

– Word access in case of x32 parallelism

– Double word access in case of x64 parallelism

4. Wait for the BSY bit to be cleared.

Note: Successive write operations are possible without the need of an erase operation when
changing bits from ‘1’ to ‘0’. Writing ‘1’ requires a Flash memory erase operation.

If an erase and a program operation are requested simultaneously, the erase operation is
performed first.

Programming errors

It is not allowed to program data to the Flash memory that would cross the 128-bit row
boundary. In such a case, the write operation is not performed and a program alignment
error flag (PGAERR) is set in the FLASH_SR register.

The write access type (byte, half-word, word or double word) must correspond to the type of
parallelism chosen (x8, x16, x32 or x64). If not, the write operation is not performed and a
program parallelism error flag (PGPERR) is set in the FLASH_SR register.

If the standard programming sequence is not respected (for example, if there is an attempt
to write to a Flash memory address when the PG bit is not set), the operation is aborted and
a program sequence error flag (PGSERR) is set in the FLASH_SR register.

RM0401 Rev 3 53/771

RM0401 Embedded Flash memory interface

68

Programming and caches

If a Flash memory write access concerns some data in the data cache, the Flash write
access modifies the data in the Flash memory and the data in the cache.

If an erase operation in Flash memory also concerns data in the data or instruction cache,
you have to make sure that these data are rewritten before they are accessed during code
execution. If this cannot be done safely, it is recommended to flush the caches by setting the
DCRST and ICRST bits in the FLASH_CR register.

Note: The I/D cache should be flushed only when it is disabled (I/DCEN = 0).

3.5.5 Interrupts

Setting the end of operation interrupt enable bit (EOPIE) in the FLASH_CR register enables
interrupt generation when an erase or program operation ends, that is when the busy bit
(BSY) in the FLASH_SR register is cleared (operation completed, correctly or not). In this
case, the end of operation (EOP) bit in the FLASH_SR register is set.

If an error occurs during a program, an erase, or a read operation request, one of the
following error flags is set in the FLASH_SR register:

• PGAERR, PGPERR, PGSERR (Program error flags)

• WRPERR (Protection error flag)

In this case, if the error interrupt enable bit (ERRIE) is set in the FLASH_CR register, an
interrupt is generated and the operation error bit (OPERR) is set in the FLASH_SR register.

Note: If several successive errors are detected (for example, in case of DMA transfer to the Flash
memory), the error flags cannot be cleared until the end of the successive write requests.

3.6 Option bytes

3.6.1 Description of user option bytes

The option bytes are configured by the end user depending on the application requirements.
Table 9 shows the organization of these bytes inside the user configuration sector.

Table 8. Flash interrupt request

Interrupt event Event flag Enable control bit

End of operation EOP EOPIE

Write protection error WRPERR ERRIE

Programming error PGAERR, PGPERR, PGSERR ERRIE

Table 9. Option byte organization

Address [63:16] [15:0]

0x1FFF C0000 Reserved ROP & user option bytes (RDP & USER)

0x1FFF C008 Reserved Write protection nWRP bits for sectors 0 to 4

Embedded Flash memory interface RM0401

54/771 RM0401 Rev 3

Table 10. Description of the option bytes

Option bytes (word, address 0x1FFF C000)

RDP: Read protection option byte.

The read protection is used to protect the software code stored in Flash memory.

Bits 15:8

0xAA: Level 0, no protection

0xCC: Level 2, chip protection (debug and boot from RAM features disabled)

Others: Level 1, read protection of memories (debug features limited)

USER: User option byte

This byte is used to configure the following features:

– Select the watchdog event: Hardware or software

– Reset event when entering the Stop mode

– Reset event when entering the Standby mode

Bit 7
nRST_STDBY

0: Reset generated when entering the Standby mode
1: No reset generated

Bit 6
nRST_STOP

0: Reset generated when entering the Stop mode
1: No reset generated

Bit 5
WDG_SW

0: Hardware independent watchdog
1: Software independent watchdog

Bit 4 0x1: Not used

Bits 3:2

BOR_LEV: BOR reset Level

These bits contain the supply level threshold that activates/releases the reset.
They can be written to program a new BOR level value into Flash memory.
00: BOR Level 3 (VBOR3), brownout threshold level 3
01: BOR Level 2 (VBOR2), brownout threshold level 2
10: BOR Level 1 (VBOR1), brownout threshold level 1
11: BOR off, POR/PDR reset threshold level is applied

Note: For full details on BOR characteristics, refer to the “Electrical characteristics”
section of the product datasheet.

Bits 1:0 0x1: Not used

Option bytes (word, address 0x1FFF C008)

Bit 15
SPRMOD: Selection of Protection Mode of nWPRi bits

0: nWPRi bits used for sector i write protection (Default)
1: nWPRi bits used for sector i PCROP protection (Sector)

Bits 14:5 Reserved

RM0401 Rev 3 55/771

RM0401 Embedded Flash memory interface

68

3.6.2 Programming user option bytes

To run any operation on this sector, the option lock bit (OPTLOCK) in the Flash option
control register (FLASH_OPTCR) must be cleared. To be allowed to clear this bit, you have
to perform the following sequence:

1. Write OPTKEY1 = 0x0819 2A3B in the Flash option key register (FLASH_OPTKEYR)

2. Write OPTKEY2 = 0x4C5D 6E7F in the Flash option key register (FLASH_OPTKEYR)

The user option bytes can be protected against unwanted erase/program operations by
setting the OPTLOCK bit by software.

Modifying user option bytes

To modify the user option value, follow the sequence below:

1. Check that no Flash memory operation is ongoing by checking the BSY bit in the
FLASH_SR register

2. Write the desired option value in the FLASH_OPTCR register.

3. Set the option start bit (OPTSTRT) in the FLASH_OPTCR register

4. Wait for the BSY bit to be cleared.

Note: The value of an option is automatically modified by first erasing the user configuration sector
and then programming all the option bytes with the values contained in the FLASH_OPTCR
register.

3.6.3 Read protection (RDP)

The user area in the Flash memory can be protected against read operations by an
entrusted code. Three read protection levels are defined:

• Level 0: no read protection

When the read protection level is set to Level 0 by writing 0xAA into the read protection
option byte (RDP), all read/write operations (if no write protection is set) from/to the

nWRP: Flash memory write protection option bytes

Section 0 to 4 can be write protected

Bits 4:0

nWRPi

If SPRMOD is reset (default value) :

0: Write protection active on sector i.
1: Write protection not active on sector i.

If SPRMOD is set (active):

0: PCROP protection not active on sector i.
1: PCROP protection active on sector i.

Table 10. Description of the option bytes (continued)

Embedded Flash memory interface RM0401

56/771 RM0401 Rev 3

Flash memory are possible in all boot configurations (Flash user boot, debug or boot
from RAM).

• Level 1: read protection enabled

It is the default read protection level after option byte erase. The read protection Level
1 is activated by writing any value (except for 0xAA and 0xCC used to set Level 0 and
Level 2, respectively) into the RDP option byte. When the read protection Level 1 is set:

– No access (read, erase, program) to Flash memory can be performed while the
debug feature is connected or while booting from RAM or system memory
bootloader. A bus error is generated in case of read request.

– When booting from Flash memory, accesses (read, erase, program) to Flash
memory from user code are allowed.

When Level 1 is active, programming the protection option byte (RDP) to Level 0
causes the Flash memory to be mass-erased. As a result the user code area is cleared
before the read protection is removed. The mass erase only erases the user code area.
The other option bytes including write protections remain unchanged from before the
mass-erase operation. The OTP area is not affected by mass erase and remains
unchanged. Mass erase is performed only when Level 1 is active and Level 0
requested. When the protection level is increased (0->1, 1->2, 0->2) there is no mass
erase.

• Level 2: debug/chip read protection disabled

The read protection Level 2 is activated by writing 0xCC to the RDP option byte. When
the read protection Level 2 is set:

– All protections provided by Level 1 are active.

– Booting from RAM or system memory bootloader is no more allowed.

– JTAG, SWV (single-wire viewer), ETM, and boundary scan are disabled.

– User option bytes can no longer be changed.

– When booting from Flash memory, accesses (read, erase and program) to Flash
memory from user code are allowed.

Memory read protection Level 2 is an irreversible operation. When Level 2 is activated,
the level of protection cannot be decreased to Level 0 or Level 1.

Note: The JTAG port is permanently disabled when Level 2 is active (acting as a JTAG fuse). As a
consequence, boundary scan cannot be performed. STMicroelectronics is not able to
perform analysis on defective parts on which the Level 2 protection has been set.

RM0401 Rev 3 57/771

RM0401 Embedded Flash memory interface

68

 --

Figure 5 shows how to go from one RDP level to another.

Figure 5. RDP levels

3.6.4 Write protections

Up to 5 user sectors in Flash memory can be protected against unwanted write operations
due to loss of program counter contexts. When the non-write protection nWRPi bit (0 ≤ i ≤ 4)
in the FLASH_OPTCR registers is low, the corresponding sector cannot be erased or
programmed. Consequently, a mass erase cannot be performed if one of the sectors is
write-protected.

Table 11. Access versus read protection level

Memory area
Protection

Level

Debug features, Boot from RAM or
from System memory bootloader

Booting from Flash memory

Read Write Erase Read Write Erase

Main Flash Memory
Level 1 NO NO(1) YES

Level 2 NO YES

Option Bytes
Level 1 YES YES

Level 2 NO NO

OTP
Level 1 NO NA YES NA

Level 2 NO NA YES NA

1. The main Flash memory is only erased when the RDP changes from level 1 to 0. The OTP area remains unchanged.

Embedded Flash memory interface RM0401

58/771 RM0401 Rev 3

If an erase/program operation to a write-protected part of the Flash memory is attempted
(sector protected by write protection bit, OTP part locked or part of the Flash memory that
can never be written like the ICP), the write protection error flag (WRPERR) is set in the
FLASH_SR register.

Note: When the memory read protection level is selected (RDP level = 1), it is not possible to
program or erase Flash memory sector i if the CPU debug features are connected (JTAG or
single wire) or boot code is being executed from RAM, even if nWRPi = 1.

Write protection error flag

If an erase/program operation to a write protected area of the Flash memory is performed,
the Write Protection Error flag (WRPERR) is set in the FLASH_SR register.

If an erase operation is requested, the WRPERR bit is set when:

• Mass, sector erase are configured (MER or MER/MER1 and SER = 1)

• A sector erase is requested and the Sector Number SNB field is not valid

• A mass erase is requested while at least one of the user sector is write protected by
option bit (MER or MER/MER1 = 1 and nWRPi = 0 with 0 ≤ i ≤ 4 bits in the
FLASH_OPTCRx register

• A sector erase is requested on a write protected sector. (SER = 1, SNB = i and
nWRPi = 0 with 0 ≤ i ≤ 4 bits in the FLASH_OPTCRx register)

• The Flash memory is readout protected and an intrusion is detected.

If a program operation is requested, the WRPERR bit is set when:

• A write operation is performed on system memory or on the reserved part of the user
specific sector.

• A write operation is performed to the user configuration sector

• A write operation is performed on a sector write protected by option bit.

• A write operation is requested on an OTP area which is already locked

• The Flash memory is read protected and an intrusion is detected.

3.6.5 Proprietary code readout protection (PCROP)

Flash memory user sectors (0 to 4) can be protected against D-bus read accesses by using
the proprietary readout protection (PCROP).

The PCROP protection is selected as follows, through the SPRMOD option bit in the
FLASH_CR register:

• SPRMOD = 0: nWRPi control the write protection of respective user sectors

• SPRMOD = 1: nWRPi control the read and write protection (PCROP) of respective
user sectors.

When a sector is readout protected (PCROP mode activated), it can only be accessed for
code fetch through ICODE Bus on Flash interface:

• Any read access performed through the D-bus triggers a RDERR flag error.

• Any program/erase operation on a PCROPed sector triggers a WRPERR flag error.

RM0401 Rev 3 59/771

RM0401 Embedded Flash memory interface

68

Figure 6. PCROP levels

The deactivation of the SPRMOD and/or the unprotection of PCROPed user sectors can
only occur when, at the same time, the RDP level changes from 1 to 0. If this condition is not
respected, the user option byte modification is canceled and the write error WRPERR flag is
set. The modification of the users option bytes (BOR_LEV, RST_STDBY, ..) is allowed since
none of the active nWRPi bits is reset and SPRMOD is kept active.

Note: The active value of nWRPi bits is inverted when PCROP mode is active (SPRMOD =1).

Embedded Flash memory interface RM0401

60/771 RM0401 Rev 3

3.7 One-time programmable bytes

Table 12 shows the organization of the one-time programmable (OTP) part of the OTP area.

The OTP area is divided into 16 OTP data blocks of 32 bytes and one lock OTP block of 16
bytes. The OTP data and lock blocks cannot be erased. The lock block contains 16 bytes
LOCKBi (0 ≤ i ≤ 15) to lock the corresponding OTP data block (blocks 0 to 15). Each OTP
data block can be programmed until the value 0x00 is programmed in the corresponding
OTP lock byte. The lock bytes must only contain 0x00 and 0xFF values, otherwise the OTP
bytes might not be taken into account correctly.

Table 12. OTP area organization

Block [128:96] [95:64] [63:32] [31:0] Address byte 0

0
OTP0 OTP0 OTP0 OTP0 0x1FFF 7800

OTP0 OTP0 OTP0 OTP0 0x1FFF 7810

1
OTP1 OTP1 OTP1 OTP1 0x1FFF 7820

OTP1 OTP1 OTP1 OTP1 0x1FFF 7830

.

.

.

.

.

.

.

.

.

15
OTP15 OTP15 OTP15 OTP15 0x1FFF 79E0

OTP15 OTP15 OTP15 OTP15 0x1FFF 79F0

Lock block
LOCKB15 ...

LOCKB12
LOCKB11 ...

LOCKB8
LOCKB7 ...
LOCKB4

LOCKB3 ...
LOCKB0

0x1FFF 7A00

RM0401 Rev 3 61/771

RM0401 Embedded Flash memory interface

68

3.8 Flash interface registers

3.8.1 Flash access control register (FLASH_ACR)

The Flash access control register is used to enable/disable the acceleration features and
control the Flash memory access time according to CPU frequency.

Address offset: 0x00
Reset value: 0x0000 0000

Access: no wait state, word, half-word and byte access

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. DCRST ICRST DCEN ICEN PRFTEN Res. Res. Res. Res. LATENCY

rw w rw rw rw rw rw rw rw

Bits 31:13 Reserved, must be kept cleared.

Bit 12 DCRST: Data cache reset

0: Data cache is not reset
1: Data cache is reset
This bit can be written only when the D cache is disabled.

Bit 11 ICRST: Instruction cache reset

0: Instruction cache is not reset
1: Instruction cache is reset
This bit can be written only when the I cache is disabled.

Bit 10 DCEN: Data cache enable

0: Data cache is disabled
1: Data cache is enabled

Bit 9 ICEN: Instruction cache enable

0: Instruction cache is disabled
1: Instruction cache is enabled

Bit 8 PRFTEN: Prefetch enable

0: Prefetch is disabled
1: Prefetch is enabled

Bits 7:4 Reserved, must be kept cleared.

Bits 3:0 LATENCY: Latency

These bits represent the ratio of the CPU clock period to the Flash memory access time.
0000: Zero wait state
0001: One wait state
0010: Two wait states
-
-
-
1110: Fourteen wait states
1111: Fifteen wait states

Embedded Flash memory interface RM0401

62/771 RM0401 Rev 3

3.8.2 Flash key register (FLASH_KEYR)

The Flash key register is used to allow access to the Flash control register and so, to allow
program and erase operations.

Address offset: 0x04
Reset value: 0x0000 0000

Access: no wait state, word access

3.8.3 Flash option key register (FLASH_OPTKEYR)

The Flash option key register is used to allow program and erase operations in the user
configuration sector.

Address offset: 0x08
Reset value: 0x0000 0000

Access: no wait state, word access

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

KEY[31:16]

w w w w w w w w w w w w w w w w

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

KEY[15:0]

w w w w w w w w w w w w w w w w

Bits 31:0 FKEYR: FPEC key

The following values must be programmed consecutively to unlock the FLASH_CR register
and allow programming/erasing it:

a) KEY1 = 0x45670123

b) KEY2 = 0xCDEF89AB

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

OPTKEYR[31:16

w w w w w w w w w w w w w w w w

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OPTKEYR[15:0]

w w w w w w w w w w w w w w w w

Bits 31:0 OPTKEYR: Option byte key

The following values must be programmed consecutively to unlock the FLASH_OPTCR
register and allow programming it:

a) OPTKEY1 = 0x08192A3B

b) OPTKEY2 = 0x4C5D6E7F

RM0401 Rev 3 63/771

RM0401 Embedded Flash memory interface

68

3.8.4 Flash status register (FLASH_SR)

The Flash status register gives information on ongoing program and erase operations.

Address offset: 0x0C
Reset value: 0x0000 0000

Access: no wait state, word, half-word and byte access

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. BSY

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. RDERR PGSERR PGPERR PGAERR WRPERR Res. Res. OPERR EOP

rw rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1

Bits 31:17 Reserved, must be kept cleared.

Bit 16 BSY: Busy

This bit indicates that a Flash memory operation is in progress. It is set at the beginning of a
Flash memory operation and cleared when the operation finishes or an error occurs.

0: no Flash memory operation ongoing
1: Flash memory operation ongoing

Bits 15:9 Reserved, must be kept cleared.

Bit 8 RDERR: Read Protection Error (PCROP)

Set by hardware when an address to be read through the Dbus belongs to a read protected
part of the flash.
Reset by writing 1.

Bit 7 PGSERR: Programming sequence error

Set by hardware when a write access to the Flash memory is performed by the code while
the control register has not been correctly configured.
Cleared by writing 1.

Bit 6 PGPERR: Programming parallelism error

Set by hardware when the size of the access (byte, half-word, word, double word) during the
program sequence does not correspond to the parallelism configuration PSIZE (x8, x16,
x32, x64).
Cleared by writing 1.

Bit 5 PGAERR: Programming alignment error

Set by hardware when the data to program cannot be contained in the same 128-bit Flash
memory row.
Cleared by writing 1.

Bit 4 WRPERR: Write protection error

Set by hardware when an address to be erased/programmed belongs to a write-protected
part of the Flash memory.
Cleared by writing 1.

Embedded Flash memory interface RM0401

64/771 RM0401 Rev 3

3.8.5 Flash control register (FLASH_CR)

The Flash control register is used to configure and start Flash memory operations.

Address offset: 0x10

Reset value: 0x8000 0000

Access: no wait state when no Flash memory operation is ongoing, word, half-word and
byte access.

Bits 3:2 Reserved, must be kept cleared.

Bit 1 OPERR: Operation error

Set by hardware when a flash operation (programming / erase /read) request is detected and
can not be run because of parallelism, alignment, or write protection error. This bit is set only
if error interrupts are enabled (ERRIE = 1).

Bit 0 EOP: End of operation

Set by hardware when one or more Flash memory operations (program/erase) has/have
completed successfully. It is set only if the end of operation interrupts are enabled (EOPIE =
1).
Cleared by writing a 1.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

LOCK Res. Res. Res. Res. Res. ERRIE EOPIE Res. Res. Res. Res. Res. Res. Res. STRT

rs rw rw rs

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. PSIZE[1:0] Res. SNB[3:0] MER SER PG

rw rw rw rw rw rw rw rw rw

Bit 31 LOCK: Lock

Write to 1 only. When it is set, this bit indicates that the FLASH_CR register is locked. It is
cleared by hardware after detecting the unlock sequence.
In the event of an unsuccessful unlock operation, this bit remains set until the next reset.

Bits 30:26 Reserved, must be kept cleared.

Bit 25 ERRIE: Error interrupt enable

This bit enables the interrupt generation when the OPERR bit in the FLASH_SR register is
set to 1.
0: Error interrupt generation disabled
1: Error interrupt generation enabled

Bit 24 EOPIE: End of operation interrupt enable

This bit enables the interrupt generation when the EOP bit in the FLASH_SR register goes
to 1.
0: Interrupt generation disabled
1: Interrupt generation enabled

Bits 23:17 Reserved, must be kept cleared.

Bit 16 STRT: Start

This bit triggers an erase operation when set. It is set only by software and cleared when the
BSY bit is cleared.

Bits 15:10 Reserved, must be kept cleared.

RM0401 Rev 3 65/771

RM0401 Embedded Flash memory interface

68

3.8.6 Flash option control register (FLASH_OPTCR)

The FLASH_OPTCR register is used to modify the user option bytes.

Address offset: 0x14

Reset value: 0x0FFF FFED. The option bits are loaded with values from Flash memory at
reset release.

Access: no wait state when no Flash memory operation is ongoing, word, half-word and
byte access.

Bits 9:8 PSIZE: Program size

These bits select the program parallelism.
00 program x8
01 program x16
10 program x32
11 program x64

Bit 7 Reserved, must be kept cleared.

Bits 6:3 SNB: Sector number

These bits select the sector to erase.
0000 sector 0
0001 sector 1
0010 sector 2
0011 sector 3
0100 sector 4
0101: not allowed
...
1011 not allowed
1100 user specific sector
1101 user configuration sector
1110 not allowed
1111 not allowed

Bit 2 MER: Mass Erase

Erase activated for all user sectors.

Bit 1 SER: Sector Erase

Sector Erase activated.

Bit 0 PG: Programming

Flash programming activated.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

SPR
MOD

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. nWRP[4:0]

rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RDP[7:0]
nRST_
STDBY

nRST_
STOP

WDG_S
W

Res. BOR_LEV
OPTST

RT
OPTLO

CK

rw rw rw rw rw rw rw rw rw rw rw rw rw rs rs

Embedded Flash memory interface RM0401

66/771 RM0401 Rev 3

Bit 31 SPRMOD: Selection of Protection Mode of nWPRi bits

0: PCROP disabled, nWPRi bits used for Write Protection on sector i
1: PCROP enabled, nWPRi bits used for PCROP Protection on sector i

Bits 30:21 Reserved, must be kept cleared.

Bits 20:16 nWRP[4:0]: Not write protect

These bits contain the value of the write-protection option bytes of sectors after reset. They
can be written to program a new write protect value into Flash memory.
0: Write protection active on selected sector
1: Write protection not active on selected sector
These bits contain the value of the write-protection and read-protection (PCROP) option
bytes for sectors 0 to 5 after reset. They can be written to program a new write-protect or
PCROP value into Flash memory.
If SPRMOD is reset:
0: Write protection active on sector i
1: Write protection not active on sector i
If SPRMOD is set:
0: PCROP protection not active on sector i
1: PCROP protection active on sector i

Bits 15:8 RDP: Read protect

These bits contain the value of the read-protection option level after reset. They can be
written to program a new read protection value into Flash memory.
0xAA: Level 0, read protection not active
0xCC: Level 2, chip read protection active
Others: Level 1, read protection of memories active

Bits 7:5 USER: User option bytes

These bits contain the value of the user option byte after reset. They can be written to
program a new user option byte value into Flash memory.
Bit 7: nRST_STDBY
Bit 6: nRST_STOP
Bit 5: WDG_SW

Note: When changing the WDG mode from hardware to software or from software to
hardware, a system reset is required to make the change effective.

Bit 4 Reserved, must be kept cleared. Always read as “0”.

RM0401 Rev 3 67/771

RM0401 Embedded Flash memory interface

68

Bits 3:2 BOR_LEV: BOR reset Level

These bits contain the supply level threshold that activates/releases the reset. They can be
written to program a new BOR level. By default, BOR is off. When the supply voltage (VDD)
drops below the selected BOR level, a device reset is generated.
00: BOR Level 3 (VBOR3), brownout threshold level 3
01: BOR Level 2 (VBOR2), brownout threshold level 2
10: BOR Level 1 (VBOR1), brownout threshold level 1
11: BOR off, POR/PDR reset threshold level is applied

Note: For full details about BOR characteristics, refer to the “Electrical characteristics” section
in the device datasheet.

Bit 1 OPTSTRT: Option start

This bit triggers a user option operation when set. It is set only by software and cleared when
the BSY bit is cleared.

Bit 0 OPTLOCK: Option lock

Write to 1 only. When this bit is set, it indicates that the FLASH_OPTCR register is locked.
This bit is cleared by hardware after detecting the unlock sequence.
In the event of an unsuccessful unlock operation, this bit remains set until the next reset.

Embedded Flash memory interface RM0401

68/771 RM0401 Rev 3

3.8.7 Flash interface register map

Refer to Section 2.2 on page 41 for the register boundary addresses.

Table 13. Flash register map and reset values

Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x00
FLASH_ACR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

D
C

R
S

T

IC
R

S
T

D
C

E
N

IC
E

N

P
R

F
T

E
N

R
es

.

R
es

.

R
es

.

R
es

.

LATENCY

Reset value 0 0 0 0 0 0 0 0 0

0x04
FLASH_KEYR KEY[31:16] KEY[15:0]

Reset value 0

0x08

FLASH_
OPTKEYR

OPTKEYR[31:16] OPTKEYR[15:0]

Reset value 0

0x0C
FLASH_SR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

B
S

Y
R

es
.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
D

E
R

R

P
G

S
E

R
R

P
G

P
E

R
R

P
G

A
E

R
R

W
R

P
E

R
R

R
es

.

R
es

.

O
P

E
R

R

E
O

P

Reset value 0 0 0 0 0 0 0 0

0x10
FLASH_CR

L
O

C
K

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

E
R

R
IE

E
O

P
IE

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

S
T

R
T

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

P
S

IZ
E

[1
:0

]

R
es

.

SNB[3:0]

M
E

R

S
E

R

P
G

Reset value 1 0 0 0 0 0 0 0 0 0 0 0 0

0x14
FLASH_OPTCR

S
P

R
M

O
D

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

nWRP[4:0] RDP[7:0]

nR
S

T
_

S
T

D
B

Y

n
R

S
T

_
S

T
O

P

W
D

G
_

S
W

R
es

.

B
O

R
_L

E
V

O
P

T
S

T
R

T

O
P

T
L

O
C

K

Reset value 0 1 1 1 1 1 1 0 1 0 1 0 1 0 1 1 1 1 1 0 1

RM0401 Rev 3 69/771

RM0401 Power controller (PWR)

90

4 Power controller (PWR)

4.1 Power supplies

There are two main power supply schemes:

• VDD = 1.7 to 3.6 V: external power supply for I/Os with the internal regulator disabled,
provided externally through VDD pins. Requires the use of an external power supply
supervisor connected to the VDD and PDR_ON pins.

• VDD = 1.8 to 3.6 V: external power supply for I/Os and the internal regulator (when
enabled), provided externally through VDD pins.

The real-time clock (RTC), and the RTC backup registers can be powered from the VBAT
voltage when the main VDD supply is powered off.

Note: Depending on the operating power supply range, some peripheral may be used with limited
functionality and performance. For more details refer to section "General operating
conditions" in the datasheet.

Figure 7. Power supply overview

1. VDDA and VSSA must be connected to VDD and VSS, respectively.

Power controller (PWR) RM0401

70/771 RM0401 Rev 3

4.1.1 Independent A/D converter supply and reference voltage

To improve conversion accuracy, the ADC has an independent power supply which can be
separately filtered and shielded from noise on the PCB.

• The ADC voltage supply input is available on a separate VDDA pin.

• An isolated supply ground connection is provided on pin VSSA.

To ensure a better accuracy of low voltage inputs, the user can connect a separate external
reference voltage ADC input on VREF. The voltage on VREF ranges from 1.7 V to VDDA.

4.1.2 Battery backup domain

Backup domain description

To retain the content of the RTC backup registers and supply the RTC when VDD is turned
off, VBAT pin can be connected to an optional standby voltage supplied by a battery or by
another source.

To allow the RTC to operate even when the main digital supply (VDD) is turned off, the VBAT
pin powers the following blocks:

• The RTC

• The LSE oscillator

• PC13 to PC15 I/Os

The switch to the VBAT supply is controlled by the power-down reset embedded in the Reset
block.

Warning: During tRSTTEMPO (temporization at VDD startup) or after a PDR
is detected, the power switch between VBAT and VDD remains
connected to VBAT.
During the startup phase, if VDD is established in less than
tRSTTEMPO (Refer to the datasheet for the value of tRSTTEMPO)
and VDD > VBAT + 0.6 V, a current may be injected into VBAT
through an internal diode connected between VDD and the
power switch (VBAT).
If the power supply/battery connected to the VBAT pin cannot
support this current injection, it is strongly recommended to
connect an external low-drop diode between this power
supply and the VBAT pin.

If no external battery is used in the application, it is recommended to connect the VBAT pin to
VDD with a 100 nF external decoupling ceramic capacitor in parallel.

When the backup domain is supplied by VDD (analog switch connected to VDD), the
following functions are available:

• PC14 and PC15 can be used as either GPIO or LSE pins

• PC13 can be used as a GPIO or additional functions can be configured (refer to
Table 26: RTC additional functions for more details about this pin configuration)

Note: Due to the fact that the switch only sinks a limited amount of current (3 mA), the use of
PC13 to PC15 GPIOs in output mode is restricted: the speed has to be limited to 2 MHz with

RM0401 Rev 3 71/771

RM0401 Power controller (PWR)

90

a maximum load of 30 pF and these I/Os must not be used as a current source (e.g. to drive
an LED).

When the backup domain is supplied by VBAT (analog switch connected to VBAT because
VDD is not present), the following functions are available:

• PC14 and PC15 can be used as LSE pins only

• PC13 can be used as the RTC additional function pin (refer to Table 26: RTC additional
functions for more details about this pin configuration)

Backup domain access

After reset, the backup domain (RTC registers, and RTC backup register) is protected
against possible unwanted write accesses. To enable access to the backup domain,
proceed as follows:

• Access to the RTC and RTC backup registers

1. Enable the power interface clock by setting the PWREN bits in the RCC_APB1ENR
register (see Section 5.3.9: RCC APB1 peripheral clock enable register
(RCC_APB1ENR))

2. Set the DBP bit in the Section 4.4.1 to enable access to the backup domain

3. Select the RTC clock source: see Section 5.2.8: RTC/AWU clock

4. Enable the RTC clock by programming the RTCEN [15] bit in the Section 5.3.14: RCC
Backup domain control register (RCC_BDCR)

RTC and RTC backup registers

The real-time clock (RTC) is an independent BCD timer/counter. The RTC provides a time-
of-day clock/calendar, two programmable alarm interrupts, and a periodic programmable
wakeup flag with interrupt capability. The RTC contains 20 backup data registers (80 bytes)
which are reset when a tamper detection event occurs. For more details refer to Section 21:
Real-time clock (RTC).

4.1.3 Voltage regulator

An embedded linear voltage regulator supplies all the digital circuitries except for the backup
domain and the Standby circuitry. The regulator output voltage is around 1.2 V.

This voltage regulator requires one capacitor to be connected to the dedicated pin, VCAP_1.

When activated by software, the voltage regulator is always enabled after Reset. It works in
three different modes depending on the application modes.

• In Run mode, the regulator supplies full power to the 1.2 V domain (core, memories
and digital peripherals). In this mode, the regulator output voltage (around 1.2 V) can
be scaled by software to different voltage values:

Scale 1, scale 2, or scale 3 can be configured through the VOS[1:0] bits of the
PWR_CR register. After reset the VOS register is set to scale 2. When the PLL is
OFF, the voltage regulator is set to scale 3 independently of the VOS register
content. The VOS register content is only taken into account once the PLL is
activated and the HSI or HSE is selected as clock source.

The voltage scaling allows optimizing the power consumption when the device is
clocked below the maximum system frequency.

• In Stop mode, the main regulator or the low-power regulator supplies low power to the
1.2 V domain, thus preserving the content of registers and internal SRAM. The voltage

Power controller (PWR) RM0401

72/771 RM0401 Rev 3

regulator can be put either in main regulator mode (MR) or in low-power mode (LPR).
The programmed voltage scale remains the same during Stop mode:

Voltage scale 3 is automatically selected when the microcontroller enters Stop
mode (see Section 4.4.1: PWR power control register (PWR_CR)).

• In Standby mode, the regulator is powered down. The content of the registers and
SRAM are lost except for the Standby circuitry and the backup domain.

Note: For more details, refer to the voltage regulator section in the datasheet.

4.2 Power supply supervisor

4.2.1 Power-on reset (POR)/power-down reset (PDR)

The device has an integrated POR/PDR circuitry that allows proper operation starting
from 1.8 V.

To use the device below 1.8 V, the internal power supervisor must be switched off using the
PDR_ON pin (please refer to section Power supply supervisor of the datasheet). The device
remains in Reset mode when VDD/VDDA is below a specified threshold, VPOR/PDR, without
the need for an external reset circuit. For more details concerning the power on/power-down
reset threshold, refer to the electrical characteristics of the datasheet.

Figure 8. Power-on reset/power-down reset waveform

RM0401 Rev 3 73/771

RM0401 Power controller (PWR)

90

4.2.2 Brownout reset (BOR)

During power on, the Brownout reset (BOR) keeps the device under reset until the supply
voltage reaches the specified VBOR threshold.

VBOR is configured through device option bytes. By default, BOR is off. 3 programmable
VBOR threshold levels can be selected:

• BOR Level 3 (VBOR3). Brownout threshold level 3.

• BOR Level 2 (VBOR2). Brownout threshold level 2.

• BOR Level 1 (VBOR1). Brownout threshold level 1.

Note: For full details about BOR characteristics, refer to the "Electrical characteristics" section in
the device datasheet.

When the supply voltage (VDD) drops below the selected VBOR threshold, a device reset is
generated.

The BOR can be disabled by programming the device option bytes. In this case, the
power-on and power-down is then monitored by the POR/ PDR or by an external power
supervisor if the PDR is switched off through the PDR_ON pin (see Section 4.2.1: Power-on
reset (POR)/power-down reset (PDR)).

The BOR threshold hysteresis is ~100 mV (between the rising and the falling edge of the
supply voltage).

Figure 9. BOR thresholds

Power controller (PWR) RM0401

74/771 RM0401 Rev 3

4.2.3 Programmable voltage detector (PVD)

You can use the PVD to monitor the VDD power supply by comparing it to a threshold
selected by the PLS[2:0] bits in the PWR power control register (PWR_CR)

The PVD is enabled by setting the PVDE bit.

A PVDO flag is available, in the PWR power control/status register (PWR_CSR), to indicate
if VDD is higher or lower than the PVD threshold. This event is internally connected to the
EXTI line16 and can generate an interrupt if enabled through the EXTI registers. The PVD
output interrupt can be generated when VDD drops below the PVD threshold and/or when
VDD rises above the PVD threshold depending on EXTI line16 rising/falling edge
configuration. As an example the service routine could perform emergency shutdown tasks.

Figure 10. PVD thresholds

4.3 Low-power modes

By default, the microcontroller is in Run mode after a system or a power-on reset. In Run
mode the CPU is clocked by HCLK and the program code is executed. Several low-power
modes are available to save power when the CPU does not need to be kept running, for
example when waiting for an external event. It is up to the user to select the mode that gives
the best compromise between low-power consumption, short startup time and available
wakeup sources.

The devices feature four low-power modes:

• Sleep mode: Cortex®-M4 with FPU core is stopped, peripherals are kept running.

• Stop mode: all clocks are stopped.

• Standby mode: 1.2 V domain is powered off.

• Batch acquisition mode (BAM): the devices are in Sleep mode, the Flash memory is off,
needed peripheral are kept running, data transfer are still possible through DMA.

RM0401 Rev 3 75/771

RM0401 Power controller (PWR)

90

In addition, the power consumption in Run mode can be reduced by one of the following
means:

• Optimizing PLL VCO frequency (see Section 4.3.1: Optimizing PLL VCO frequency)

• Slowing down the system clocks (see Section 4.3.2: Slowing down system clocks)

• Gating the clocks to the APBx and AHBx peripherals when they are unused (see
Section 4.3.3: Peripheral clock gating)

• Configuring the Flash memory in low-power mode (Stop or Deep-power down) to
execute code from RAM (see Section 4.3.4: Flash memory in low-power mode for code
execution from RAM).

Entering low-power mode

Low-power modes are entered by the MCU by executing the WFI (Wait For Interrupt), or
WFE (Wait for Event) instructions, or when the SLEEPONEXIT bit in the Cortex®-M4 with
FPU System Control register is set on Return from ISR.

Entering low-power mode through WFI or WFE is executed only is no interrupt or no event is
pending.

Exiting low-power mode

The MCU exits from Sleep and Stop modes low-power mode depending on the way the low-
power mode was entered:
• If the WFI instruction or Return from ISR was used to enter the low-power mode, any

peripheral interrupt acknowledged by the NVIC can wake up the device.

• If the WFE instruction is used to enter the low-power mode, the MCU exits the low-
power mode as soon as an event occurs. The wakeup event can be generated either
by:

– NVIC IRQ interrupt:

When SEVONPEND = 0 in the Cortex®-M4 with FPU System Control register: by
enabling an interrupt in the peripheral control register and in the NVIC. When the
MCU resumes from WFE, the peripheral interrupt pending bit and the NVIC
peripheral IRQ channel pending bit (in the NVIC interrupt clear pending register)
have to be cleared. Only NVIC interrupts with sufficient priority will wakeup and
interrupt the MCU.

When SEVONPEND = 1 in the Cortex®-M4 with FPU System Control register: by
enabling an interrupt in the peripheral control register and optionally in the NVIC.
When the MCU resumes from WFE, the peripheral interrupt pending bit and when
enabled the NVIC peripheral IRQ channel pending bit (in the NVIC interrupt clear
pending register) have to be cleared. All NVIC interrupts will wakeup the MCU,
even the disabled ones.Only enabled NVIC interrupts with sufficient priority will
wakeup and interrupt the MCU.

– Event

This is done by configuring a EXTI line in event mode. When the CPU resumes
from WFE, it is not necessary to clear the EXTI peripheral interrupt pending bit or
the NVIC IRQ channel pending bit as the pending bits corresponding to the event
line is not set. It may be necessary to clear the interrupt flag in the peripheral.

The MCU exits from Standby low-power mode through an external reset (NRST pin), an
IWDG reset, a rising edge on one of the enabled WKUPx pins or a RTC event occurs (see
Figure 176: RTC block diagram).

Power controller (PWR) RM0401

76/771 RM0401 Rev 3

After waking up from Standby mode, program execution restarts in the same way as after a
Reset (boot pin sampling, option bytes loading, reset vector is fetched, etc.).

Only enabled NVIC interrupts with sufficient priority will wakeup and interrupt the MCU.

4.3.1 Optimizing PLL VCO frequency

When the devices operate in a mode where one or more PLL is used, the power
consumption can be optimized by avoiding to run the VCO at higher frequency than needed
(refer to the datasheet).

4.3.2 Slowing down system clocks

In Run mode the speed of the system clocks (SYSCLK, HCLK, PCLK1, PCLK2) can be
reduced by programming the prescaler registers. These prescalers can also be used to slow
down peripherals before entering Sleep mode.

For more details refer to Section 5.3.3: RCC clock configuration register (RCC_CFGR).

4.3.3 Peripheral clock gating

In Run mode, the HCLKx and PCLKx for individual peripherals and memories can be
stopped at any time to reduce power consumption.

To further reduce power consumption in Sleep mode the peripheral clocks can be disabled
prior to executing the WFI or WFE instructions.

Peripheral clock gating is controlled by the AHB1 peripheral clock enable register
(RCC_AHB1ENR), AHB2 peripheral clock enable register (RCC_AHB2ENR) (see

Table 14. Low-power mode summary

Mode name Entry Wakeup
Effect on 1.2 V
domain clocks

Effect on
VDD

domain
clocks

Voltage regulator

Sleep and
BAM(1)
(Sleep now or
Sleep-on-
exit)

WFI or Return
from ISR

Any interrupt CPU CLK OFF
no effect on other
clocks or analog

clock sources

None ON

WFE Wakeup event

Stop
SLEEPDEEP bit
+ WFI, Return

from ISR or WFE

Any EXTI line (configured
in the EXTI registers,

internal and external lines)

All 1.2 V domain
clocks OFF

HSI and
HSE

oscillator
s OFF

Main regulator or
Low-Power

regulator (depends
on PWR power
control register

(PWR_CR)

Standby

PDDS bit +
SLEEPDEEP bit
+ WFI, Return

from ISR or WFE

WKUP pin rising edge,
RTC alarm (Alarm A or
Alarm B), RTC Wakeup

event, RTC tamper
events, RTC time stamp
event, external reset in
NRST pin, IWDG reset

OFF

1. Refer to Section 4.3.6: Batch acquisition mode for specific BAM entry and exit requirements.

RM0401 Rev 3 77/771

RM0401 Power controller (PWR)

90

Section 5.3.8: RCC AHB1 peripheral clock enable register (RCC_AHB1ENR)).

Disabling the peripherals clocks in Sleep mode can be performed automatically by resetting
the corresponding bit in RCC_AHBxLPENR and RCC_APBxLPENR registers.

4.3.4 Flash memory in low-power mode for code execution from RAM

For applications where the code is executed from RAM, the Flash memory can be put in two
possible low-power mode.

• Stop mode

• Deep-power down mode

Putting the Flash memory in Deep-power down mode allows to achieve the best power
consumption. However the Flash memory wakeup time is the slowest (refer to the
Electrical characteristics section of the datasheet).

From Run mode, the Flash memory can be configured anytime by software to enter any of
these low-power mode.

From Sleep mode, setting the Flash memory low-power down mode must be done before
entering Sleep mode.

The Flash memory wakeup time has to be handled by software counter.

4.3.5 Sleep mode

Entering Sleep mode

The Sleep mode is entered according to Section : Entering low-power mode, when the
SLEEPDEEP bit in the Cortex®-M4 with FPU System Control register is cleared.

Refer to Table 15 and Table 16 for details on how to enter Sleep mode.

Exiting Sleep mode

The Sleep mode is exited according to Section : Exiting low-power mode.

Refer to Table 15 and Table 16 for more details on how to exit Sleep mode.

Table 15. Sleep-now entry and exit

Sleep-now mode Description

Mode entry

WFI (Wait for Interrupt) or WFE (Wait for Event) while:

– SLEEPDEEP = 0

– No interrupt (for WFI) or event (for WFE) is pending

Refer to the Cortex®-M4 with FPU System Control register.

On Return from ISR while:

– SLEEPDEEP = 0 and

– SLEEPONEXIT = 1

– No interrupt is pending

Refer to the Cortex®-M4 with FPU System Control register.

Power controller (PWR) RM0401

78/771 RM0401 Rev 3

4.3.6 Batch acquisition mode

Entering BAM

The BAM is entered according to Section : Entering low-power mode, when the
SLEEPDEEP bit in the Cortex®-M4 with FPU System Control register is cleared.

Refer to Table 17 and Table 18 for details on how to enter Sleep mode.

Before entering Sleep mode, the Flash memory must be configured by software to operate
in the required low- power mode. If data need to be transferred from peripheral to RAM
during BAM, the DMA must be enabled before entering Sleep mode.

Exiting BAM

The BAM is exited according to Section : Exiting low-power mode.

Refer to Table 17 and Table 18 for more details on how to exit Sleep mode.

After waking up from BAM, the Flash memory must first to be waked up if code execution
restarts from Flash memory.

This wakeup time must be managed by software running from the internal SRAM.

Mode exit

If WFI or Return from ISR was used for entry:

Interrupt: Refer to Table 39: Vector table

If WFE was used for entry and SEVONPEND = 0

Wakeup event: Refer to Section 9.2.3: Wakeup event management

f WFE was used for entry and SEVONPEND = 1

Interrupt even when disabled in NVIC: refer to Table 39: Vector table or
Wakeup event (see Section 9.2.3: Wakeup event management).

Wakeup latency None

Table 16. Sleep-on-exit entry and exit

Sleep-on-exit Description

Mode entry

WFI (Wait for Interrupt) or WFE (Wait for Event) while:

– SLEEPDEEP = 0

– No interrupt (for WFI) or event (for WFE) is pending

Refer to the Cortex®-M4 with FPU System Control register.

On Return from ISR while:

– SLEEPDEEP = 0 and

– SLEEPONEXIT = 1

– No interrupt is pending

Refer to the Cortex®-M4 with FPU System Control register.

Mode exit Interrupt: refer to Table 39: Vector table

Wakeup latency None

Table 15. Sleep-now entry and exit (continued)

Sleep-now mode Description

RM0401 Rev 3 79/771

RM0401 Power controller (PWR)

90

4.3.7 Stop mode

The Stop mode is based on the Cortex®-M4 with FPU deepsleep mode combined with
peripheral clock gating. The voltage regulator can be configured either in normal or low-
power mode. In Stop mode, all clocks in the 1.2 V domain are stopped, the PLLs, the HSI
and the HSE RC oscillators are disabled. Internal SRAM and register contents are
preserved.

Some settings in the PWR_CR register allow to further reduce the power consumption.
When the Flash memory is in power-down mode, an additional startup delay is incurred
when waking up from Stop mode (see Table 19: Stop operating modes and Section 4.4.1:
PWR power control register (PWR_CR)).

Table 17. BAM-now entry and exit

Sleep-now mode Description

Mode entry

Set the Flash memory in low-power mode:

– FISSR/FMSSR and FPDS bits of the PWR_CR register

WFI (Wait for Interrupt) or WFE (Wait for Event) while:

– SLEEPDEEP = 0 and

– SLEEPONEXIT = 0

Refer to the Cortex®-M4 with FPU System Control register.

Mode exit

If WFI was used for entry:

Interrupt: Refer to Table 39: Vector table

If WFE was used for entry

Wakeup event: Refer to Section 9.2.3: Wakeup event management

If Flash memory wakeup time is needed, FISSR/FMSSR bits of PWR_CR
register must be set

Wakeup latency

None if code executed from RAM

Low-power mode Flash memory wakeup time, before restarting code
execution from Flash memory (refer to the Flash memory wakeup time in
the Electrical characteristics section of the datasheet).

Table 18. BAM-on-exit entry and exit

Sleep-on-exit Description

Mode entry

Set the Flash memory in low-power mode:

– FISSR/FMSSR and FPDS bits of the PWR_CR register

WFI (wait for interrupt) while:

– SLEEPDEEP = 0 and

– SLEEPONEXIT = 1

Refer to the Cortex®-M4 with FPU System Control register.

Mode exit
Interrupt: refer to Table 39: Vector table

If Flash memory wakeup time is needed, FISSR/FMSSR bits of PWR_CR
register must be set

Wakeup latency

None when code executed from internal SRAM

Low-power mode Flash memory wakeup time, before restarting code
execution from Flash memory (refer to the Flash memory wakeup time in
the Electrical characteristics section of the datasheet).

Power controller (PWR) RM0401

80/771 RM0401 Rev 3

When the code is executed from internal SRAM and the Flash memory is configured in low-
power mode before entering Stop mode, the Flash memory stays in low-power mode after
waking up from Stop. In this case, only the HSI RC clock startup time and the regulator
wakeup time apply.

Entering Stop mode

The Stop mode is entered according to Section : Entering low-power mode, when the
SLEEPDEEP bit in the Cortex®-M4 with FPU System Control register is set.

Refer to Table 20 for details on how to enter the Stop mode.

To further reduce power consumption in Stop mode, the internal voltage regulator can be put
in low-power mode. This is configured by the LPDS bit of the PWR power control register
(PWR_CR).

If Flash memory programming is ongoing, the Stop mode entry is delayed until the memory
access is finished.

If an access to the APB domain is ongoing, The Stop mode entry is delayed until the APB
access is finished.

The following features can be selected by programming individual control bits before
entering Stop mode:

• Independent watchdog (IWDG): the IWDG is started by writing to its Key register or by
hardware option. Once started it cannot be stopped except by a Reset. See

Table 19. Stop operating modes

Stop mode MRLV bit LPLV bit FPDS bit LPDS bit Wakeup latency

 STOP MR 0 - 0 0 HSI RC startup time

 STOP MRFPD 0 - 1 0
HSI RC startup time +

Flash wakeup time from Deep Power
Down mode

 STOP LP 0 0 0 1
HSI RC startup time +

regulator wakeup time from LP mode

 STOP LPFPD - 0 1 1

HSI RC startup time +
Flash wakeup time from Deep Power

Down mode +
regulator wakeup time from LP mode

STOP MRLV 1 - - 0

HSI RC startup time +
Flash wakeup time from Deep Power

Down mode +
Main regulator from low voltage mode

STOP LPLV - 1 - 1

HSI RC startup time +
Flash wakeup time from Deep Power

Down mode +
regulator wakeup time from Low

Voltage LP mode

RM0401 Rev 3 81/771

RM0401 Power controller (PWR)

90

Section 20.3 in Section 20: Independent watchdog (IWDG).

• Real-time clock (RTC): this is configured by the RTCEN bit in the Section 5.3.14: RCC
Backup domain control register (RCC_BDCR)

• Internal RC oscillator (LSI RC): this is configured by the LSION bit in the
Section 5.3.15: RCC clock control & status register (RCC_CSR).

• External 32.768 kHz oscillator (LSE OSC): this is configured by the LSEON bit in the
Section 5.3.14: RCC Backup domain control register (RCC_BDCR).

The ADC can also consume power during the Stop mode, unless it is disabled before
entering it. To disable it, the ADON bit in the ADC_CR2 register must be written to 0.

Note: If the application needs to disable the external clock before entering Stop mode, the HSEON
bit must first be disabled and the system clock switched to HSI.

Otherwise, if the HSEON bit is kept enabled while the external clock (external oscillator) can
be removed before entering stop mode, the clock security system (CSS) feature must be
enabled to detect any external oscillator failure and avoid a malfunction behavior when
entering stop mode.

Exiting Stop mode

The Stop mode is exited according to Section : Exiting low-power mode.

Refer to Table 20 for more details on how to exit Stop mode.

When exiting Stop mode by issuing an interrupt or a wakeup event, the HSI RC oscillator is
selected as system clock.

When the voltage regulator operates in low-power mode, an additional startup delay is
incurred when waking up from Stop mode. By keeping the internal regulator ON during Stop
mode, the consumption is higher although the startup time is reduced.

If the code is executed from internal SRAM while the Flash memory in low-power mode, the
Stop wakeup time is reduced since the code execution restarts from SRAM which is directly
available when the clocks are stable.

Table 20. Stop mode entry and exit

Stop mode Description

Mode entry

WFI (Wait for Interrupt) or WFE (Wait for Event) while:

– SLEEPDEEP bit is set in Cortex®-M4 with FPU System Control register

– PDDS bit is cleared in Power Control register (PWR_CR)

– Select the voltage regulator mode by configuring LPDS bit in PWR_CR

– No interrupt (for WFI) or event (for WFE) is pending

On Return from ISR:

– SLEEPDEEP bit is set in Cortex®-M4 with FPU System Control register

– SLEEPONEXIT = 1

– PDDS bit is cleared in Power Control register (PWR_CR)

– No interrupt is pending

Note: To enter Stop mode, all EXTI Line pending bits (in Pending register
(EXTI_PR)), all peripheral interrupts pending bits, the RTC Alarm
(Alarm A and Alarm B), RTC wakeup, RTC tamper, and RTC time
stamp flags, must be reset. Otherwise, the Stop mode entry
procedure is ignored and program execution continues.

Power controller (PWR) RM0401

82/771 RM0401 Rev 3

4.3.8 Standby mode

The Standby mode allows to achieve the lowest power consumption. It is based on the
Cortex®-M4 with FPU deepsleep mode, with the voltage regulator disabled. The 1.2 V
domain is consequently powered off. The PLLs, the HSI oscillator and the HSE oscillator are
also switched off. SRAM and register contents are lost except for registers in the backup
domain (RTC registers and RTC backup register), and Standby circuitry (see Figure 7).

Entering Standby mode

The Standby mode is entered according to Section : Entering low-power mode, when the
SLEEPDEEP bit in the Cortex®-M4 with FPU System Control register is set.

Refer to Table 21 for more details on how to enter Standby mode.

In Standby mode, the following features can be selected by programming individual control
bits:

• Independent watchdog (IWDG): the IWDG is started by writing to its Key register or by
hardware option. Once started it cannot be stopped except by a reset. See
Section 20.3 in Section 20: Independent watchdog (IWDG).

• Real-time clock (RTC): this is configured by the RTCEN bit in the backup domain
control register (RCC_BDCR)

• Internal RC oscillator (LSI RC): this is configured by the LSION bit in the Control/status
register (RCC_CSR).

• External 32.768 kHz oscillator (LSE OSC): this is configured by the LSEON bit in the
backup domain control register (RCC_BDCR)

Exiting Standby mode

The Standby mode is exited according to Section : Exiting low-power mode. The SBF status
flag in PWR_CR (see Section 4.4.2: PWR power control/status register (PWR_CSR))
indicates that the MCU was in Standby mode. All registers are reset after wakeup from
Standby except for PWR_CR.

Refer to Table 21 for more details on how to exit Standby mode.

Mode exit

If WFI or Return from ISR was used for entry:

Any EXTI lines configured in Interrupt mode (the corresponding EXTI
Interrupt vector must be enabled in the NVIC). The interrupt source can
be external interrupts or peripherals with wakeup capability. Refer to
Table 39: Vector table.

If WFE was used for entry and SEVONPEND = 0

Any EXTI lines configured in event mode. Refer to Section 9.2.3:
Wakeup event management.

If WFE was used for entry and SEVONPEND = 1:

– Any EXTI lines configured in Interrupt mode (even if the corresponding
EXTI Interrupt vector is disabled in the NVIC). The interrupt source can
be an external interrupt or a peripheral with wakeup capability. Refer to v.

– Wakeup event: refer to Section 9.2.3: Wakeup event management.

Wakeup latency Refer to Table 19: Stop operating modes

Table 20. Stop mode entry and exit (continued)

Stop mode Description

RM0401 Rev 3 83/771

RM0401 Power controller (PWR)

90

I/O states in Standby mode

In Standby mode, all I/O pins are high impedance except for:

• Reset pad (still available)

• RTC_AF1 pin (PC13) if configured for tamper, time stamp, RTC Alarm out, or RTC
clock calibration out

• WKUP1 pin (PA0), WKUP2 pin (PC0) and WKUP3 pin (PC1) if enabled

Debug mode

By default, the debug connection is lost if the application puts the MCU in Stop or Standby
mode while the debug features are used. This is due to the fact that the Cortex®-M4 with
FPU core is no longer clocked.

However, by setting some configuration bits in the DBGMCU_CR register, the software can
be debugged even when using the low-power modes extensively. For more details, refer to
Section 26.16.1: Debug support for low-power modes.

4.3.9 Programming the RTC alternate functions to wake up the device from
the Stop and Standby modes

The MCU can be woken up from a low-power mode by an RTC alternate function.

The RTC alternate functions are the RTC alarms (Alarm A and Alarm B), RTC wakeup, RTC
tamper event detection and RTC time stamp event detection.

These RTC alternate functions can wake up the system from the Stop and Standby low-
power modes.

Table 21. Standby mode entry and exit

Standby mode Description

Mode entry

WFI (Wait for Interrupt) or WFE (Wait for Event) while:

– SLEEPDEEP is set in Cortex®-M4 with FPU System Control register

– PDDS bit is set in Power Control register (PWR_CR)

– CWUF bit is cleared in Power Control register (PWR_CR)

– the RTC flag corresponding to the chosen wakeup source (RTC Alarm A,
RTC Alarm B, RTC wakeup, Tamper or Timestamp flags) is cleared

– No interrupt (for WFI) or event (for WFE) is pending

On return from ISR while:

– SLEEPDEEP bit is set in Cortex®-M4 with FPU System Control register
and

– SLEEPONEXIT = 1 and

– PDDS bit is set in Power Control register (PWR_CR) and

– WUF bit is cleared in Power Control/Status register (PWR_SR)

– The RTC flag corresponding to the chosen wakeup source (RTC Alarm
A, RTC Alarm B, RTC wakeup, Tamper or Timestamp flags) is cleared

– No interrupt is pending

Mode exit
WKUP pin rising edge, RTC alarm (Alarm A and Alarm B), RTC wakeup,
tamper event, time stamp event, external reset in NRST pin, IWDG reset.

Wakeup latency Reset phase.

Power controller (PWR) RM0401

84/771 RM0401 Rev 3

The system can also wake up from low-power modes without depending on an external
interrupt (Auto-wakeup mode), by using the RTC alarm or the RTC wakeup events.

The RTC provides a programmable time base for waking up from the Stop or Standby mode
at regular intervals.

For this purpose, two of the three alternate RTC clock sources can be selected by
programming the RTCSEL[1:0] bits in the Section 5.3.14: RCC Backup domain control
register (RCC_BDCR):

• Low-power 32.768 kHz external crystal oscillator (LSE OSC)
This clock source provides a precise time base with a very low-power consumption
(additional consumption of less than 1 µA under typical conditions)

• Low-power internal RC oscillator (LSI RC)
This clock source has the advantage of saving the cost of the 32.768 kHz crystal. This
internal RC oscillator is designed to use minimum power.

RTC alternate functions to wake up the device from the Stop mode

• To wake up the device from the Stop mode with an RTC alarm event, it is necessary to:

a) Configure the EXTI Line 17 to be sensitive to rising edges (Interrupt or Event
modes)

b) Enable the RTC Alarm Interrupt in the RTC_CR register

c) Configure the RTC to generate the RTC alarm

• To wake up the device from the Stop mode with an RTC tamper or time stamp event, it
is necessary to:

a) Configure the EXTI Line 21 to be sensitive to rising edges (Interrupt or Event
modes)

b) Enable the RTC time stamp Interrupt in the RTC_CR register or the RTC tamper
interrupt in the RTC_TAFCR register

c) Configure the RTC to detect the tamper or time stamp event

• To wake up the device from the Stop mode with an RTC wakeup event, it is necessary
to:

a) Configure the EXTI Line 22 to be sensitive to rising edges (Interrupt or Event
modes)

b) Enable the RTC wakeup interrupt in the RTC_CR register

c) Configure the RTC to generate the RTC Wakeup event

RTC alternate functions to wake up the device from the Standby mode

• To wake up the device from the Standby mode with an RTC alarm event, it is necessary
to:

a) Enable the RTC alarm interrupt in the RTC_CR register

b) Configure the RTC to generate the RTC alarm

• To wake up the device from the Standby mode with an RTC tamper or time stamp
event, it is necessary to:

a) Enable the RTC time stamp interrupt in the RTC_CR register or the RTC tamper
interrupt in the RTC_TAFCR register

b) Configure the RTC to detect the tamper or time stamp event

RM0401 Rev 3 85/771

RM0401 Power controller (PWR)

90

• To wake up the device from the Standby mode with an RTC wakeup event, it is
necessary to:

a) Enable the RTC wakeup interrupt in the RTC_CR register

b) Configure the RTC to generate the RTC wakeup event

Safe RTC alternate function wakeup flag clearing sequence

If the selected RTC alternate function is set before the PWR wakeup flag (WUTF) is cleared,
it will not be detected on the next event as detection is made once on the rising edge.

To avoid bouncing on the pins onto which the RTC alternate functions are mapped, and exit
correctly from the Stop and Standby modes, it is recommended to follow the sequence
below before entering the Standby mode:

• When using RTC alarm to wake up the device from the low-power modes:

a) Disable the RTC alarm interrupt (ALRAIE or ALRBIE bits in the RTC_CR register)

b) Clear the RTC alarm (ALRAF/ALRBF) flag

c) Clear the PWR Wakeup (WUF) flag

d) Enable the RTC alarm interrupt

e) Re-enter the low-power mode

• When using RTC wakeup to wake up the device from the low-power modes:

a) Disable the RTC Wakeup interrupt (WUTIE bit in the RTC_CR register)

b) Clear the RTC Wakeup (WUTF) flag

c) Clear the PWR Wakeup (WUF) flag

d) Enable the RTC Wakeup interrupt

e) Re-enter the low-power mode

• When using RTC tamper to wake up the device from the low-power modes:

a) Disable the RTC tamper interrupt (TAMPIE bit in the RTC_TAFCR register)

b) Clear the Tamper (TAMP1F/TSF) flag

c) Clear the PWR Wakeup (WUF) flag

d) Enable the RTC tamper interrupt

e) Re-enter the low-power mode

• When using RTC time stamp to wake up the device from the low-power modes:

a) Disable the RTC time stamp interrupt (TSIE bit in RTC_CR)

b) Clear the RTC time stamp (TSF) flag

c) Clear the PWR Wakeup (WUF) flag

d) Enable the RTC TimeStamp interrupt

e) Re-enter the low-power mode

Power controller (PWR) RM0401

86/771 RM0401 Rev 3

4.4 Power control registers

4.4.1 PWR power control register (PWR_CR)

Address offset: 0x00

Reset value: 0x0000 8000 (reset by wakeup from Standby mode)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. FISSR FMSSR Res. Res. Res. Res.

rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

VOS ADCDC1 Res.
MRLV

DS
LPLV
DS

FPDS DBP PLS[2:0] PVDE CSBF CWUF PDDS LPDS

rw rw rw rw rw rw rw rw rw rw rw w w rw rw

Bits 31:22 Reserved, must be kept at reset value.

Bit 21 FISSR: Flash Interface Stop while System Run

0: Flash Interface clock run (Default value).
1: Flash Interface clock off.

Note: This bit could not be set while executing with the Flash itself. It should be done with
specific routine executed from RAM.

Bit 20 FMSSR: Flash Memory Sleep System Run.

0: Flash standard mode (Default value)
1: Flash forced to be in STOP or Deep-power down mode (depending of FPDS value bit) by
hardware.

Note: This bit could not be set while executing with the Flash itself. It should be done with
specific routine executed from RAM.

Bits 19:16 Reserved, must be kept at reset value.

Bits 15:14 VOS[1:0]: Regulator voltage scaling output selection

These bits control the main internal voltage regulator output voltage to achieve a trade-off
between performance and power consumption when the device does not operate at the
maximum frequency (refer to the corresponding datasheet for more details).
These bits can be modified only when the PLL is OFF. The new value programmed is active
only when the PLL is ON. When the PLL is OFF, the voltage regulator is set to scale 3
independently of the VOS register content.
00: Reserved (Scale 3 mode selected)
01: Scale 3 mode <= 64 MHz
10: Scale 2 mode (reset value) <= 84 MHz
11: Scale 1 mode <= 100 MHz

Bit 13 ADCDC1:

0: No effect.
1: Refer to AN4073 for details on how to use this bit.

Note: This bit can only be set when operating at supply voltage range 2.7 to 3.6V and when
the Prefetch is OFF.

RM0401 Rev 3 87/771

RM0401 Power controller (PWR)

90

Bit 12 Reserved, must be kept at reset value.

Bit 11 MRLVDS: Main regulator Low Voltage in Deep Sleep

0: Main regulator in Voltage scale 3 when the device is in Stop mode.
1: Main regulator in Low Voltage and Flash memory in Deep Sleep mode when the device is
in Stop mode.

Bit 10 LPLVDS: Low-power regulator Low Voltage in Deep Sleep

0: Low-power regulator on if LPDS bit is set when the device is in Stop mode.
1: Low-power regulator in Low Voltage and Flash memory in Deep Sleep mode if LPDS bit is
set when device is in Stop mode.

Bit 9 FPDS: Flash power-down in Stop mode

When set, the Flash memory enters power-down mode when the device enters Stop mode.
This allows to achieve a lower consumption in stop mode but a longer restart time.
0: Flash memory not in power-down when the device is in Stop mode
1: Flash memory in power-down when the device is in Stop mode

Bit 8 DBP: Disable backup domain write protection

In reset state, the RCC_BDCR register, the RTC registers (including the backup registers), and
the BRE bit of the PWR_CSR register, are protected against parasitic write access. This bit
must be set to enable write access to these registers.

0: Access to RTC and RTC Backup registers.
1: Access to RTC and RTC Backup registers.

Bits 7:5 PLS[2:0]: PVD level selection

These bits are written by software to select the voltage threshold detected by the Power
Voltage Detector

000: 2.2 V
001: 2.3 V
010: 2.4 V
011: 2.5 V
100: 2.6 V
101: 2.7 V
110: 2.8 V
111: 2.9 V

Note: Refer to the electrical characteristics of the datasheet for more details.

Bit 4 PVDE: Power voltage detector enable

This bit is set and cleared by software.

0: PVD disabled
1: PVD enabled

Bit 3 CSBF: Clear standby flag

This bit is always read as 0.

0: No effect.
1: Clear the SBF Standby Flag (write).

Power controller (PWR) RM0401

88/771 RM0401 Rev 3

4.4.2 PWR power control/status register (PWR_CSR)

Address offset: 0x04

Reset value: 0x0000 0000 (not reset by wakeup from Standby mode)

Additional APB cycles are needed to read this register versus a standard APB read.

Bit 2 CWUF: Clear wakeup flag

This bit is always read as 0.

0: No effect.
1: Clear the WUF Wakeup Flag after 2 System clock cycles.

Bit 1 PDDS: Power-down deepsleep

This bit is set and cleared by software. It works together with the LPDS bit.

0: Enter Stop mode when the CPU enters deepsleep. The regulator status depends on the
LPDS bit.
1: Enter Standby mode when the CPU enters deepsleep.

Bit 0 LPDS: Low-power deepsleep

This bit is set and cleared by software. It works together with the PDDS bit.

0: Voltage regulator on during Stop mode.
1: Low-power Voltage regulator on during Stop mode.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res.
VOS
RDY

Res. Res. Res. Res. BRE
EWUP

1
EWUP

2
EWUP

3
Res. Res. BRR PVDO SBF WUF

r rw rw rw rw r r r r

Bits 31:15 Reserved, must be kept at reset value.

Bit 14 VOSRDY: Regulator voltage scaling output selection ready bit

0: Not ready
1: Ready

Bits 13:10 Reserved, must be kept at reset value.

Bit 9 BRE: Backup regulator enable

When set, the Backup regulator (used to maintain the backup domain content) is enabled. If
BRE is reset, the backup regulator is switched off. Once set, the application must wait that
the Backup Regulator Ready flag (BRR) is set to indicate that the data written into the
backup registers will be maintained in the Standby and VBAT modes.
0: Backup regulator disabled
1: Backup regulator enabled

Note: This bit is not reset when the device wakes up from Standby mode, by a system reset,
or by a power reset.

RM0401 Rev 3 89/771

RM0401 Power controller (PWR)

90

Bit 8 EWUP1: Enable WKUP1 pin (PA0)

This bit is set and cleared by software.
0: WKUP1 pin is used for general purpose I/O. An event on the WKUP1 pin does not
wakeup the device from Standby mode.
1: WKUP1 pin is used for wakeup from Standby mode and forced in input pull down
configuration (rising edge on WKUP1 pin wakes up the system from Standby mode).

Note: This bit is reset by a system reset.

Bit 7 EWUP2: Enable WKUP2 pin (PC0)

This bit is set and cleared by software.
0: WKUP2 pin is used for general purpose I/O. An event on the WKUP2 pin does not
wakeup the device from Standby mode.
1: WKUP2 pin is used for wakeup from Standby mode and forced in input pull down
configuration (rising edge on WKUP2 pin wakes up the system from Standby mode).

Note: This bit is reset by a system reset.

Bit 6 EWUP3: Enable WKUP3 pin (PC1)

This bit is set and cleared by software.
0: WKUP3 pin is used for general purpose I/O. An event on the WKUP3 pin does not
wakeup the device from Standby mode.
1: WKUP3 pin is used for wakeup from Standby mode and forced in input pull down
configuration (rising edge on WKUP3 pin wakes up the system from Standby mode).

Note: This bit is reset by a system reset.

Bits 5:4 Reserved, must be kept at reset value.

Bit 3 BRR: Backup regulator ready

Set by hardware to indicate that the Backup Regulator is ready.
0: Backup Regulator not ready
1: Backup Regulator ready

Note: This bit is not reset when the device wakes up from Standby mode or by a system reset
or power reset.

Bit 2 PVDO: PVD output

This bit is set and cleared by hardware. It is valid only if PVD is enabled by the PVDE bit.
0: VDD is higher than the PVD threshold selected with the PLS[2:0] bits.
1: VDD is lower than the PVD threshold selected with the PLS[2:0] bits.

Note: The PVD is stopped by Standby mode. For this reason, this bit is equal to 0 after
Standby or reset until the PVDE bit is set.

Bit 1 SBF: Standby flag

This bit is set by hardware and cleared only by a POR/PDR (power-on reset/power-down
reset) or by setting the CSBF bit in the PWR_CR register.
0: Device has not been in Standby mode
1: Device has been in Standby mode

Bit 0 WUF: Wakeup flag

This bit is set by hardware and cleared either by a system reset or by setting the CWUF bit in
the PWR_CR register.
0: No wakeup event occurred
1: A wakeup event was received from the WKUP pin or from the RTC alarm (Alarm A or
Alarm B), RTC Tamper event, RTC TimeStamp event or RTC Wakeup).

Note: An additional wakeup event is detected if the WKUP pin is enabled (by setting the
EWUP bit) when the WKUP pin level is already high.

Power controller (PWR) RM0401

90/771 RM0401 Rev 3

4.5 PWR register map

The following table summarizes the PWR registers.

Refer to Section 2.2 on page 41 for the register boundary addresses.

Table 22. PWR - register map and reset values

Offset Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

0x000
PWR_CR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

F
IS

S
R

F
M

S
S

R

R
es

.

R
es

.

R
es

.

R
es

.

V
O

S
[1

:0
]

A
D

C
D

C
1

R
es

.

M
R

LV
D

S

L
P

LV
D

S

F
P

D
S

D
B

P PLS[2:0]

P
V

D
E

C
S

B
F

C
W

U
F

P
D

D
S

L
P

D
S

Reset value 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0x004
PWR_CSR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

V
O

S
R

D
Y

R
es

.

R
es

.

R
es

.

R
es

.

B
R

E

E
W

U
P

1

E
W

U
P

2

E
W

U
P

3

R
es

.

R
es

.

B
R

R

P
V

D
O

S
B

F

W
U

F

Reset value 0 0 0 0 0 0 0 0 0

RM0401 Rev 3 91/771

RM0401 Reset and clock control (RCC)

134

5 Reset and clock control (RCC)

5.1 Reset

There are three types of reset, defined as system Reset, power Reset and backup domain
Reset.

5.1.1 System reset

A system reset sets all registers to their reset values except the reset flags in the clock
controller CSR register and the registers in the Backup domain.

A system reset is generated when one of the following events occurs:

1. A low level on the NRST pin (external reset)

2. Window watchdog end of count condition (WWDG reset)

3. Independent watchdog end of count condition (IWDG reset)

4. A software reset (SW reset) (see Software reset)

5. Low-power management reset (see Low-power management reset)

Software reset

The reset source can be identified by checking the reset flags in the RCC clock control &
status register (RCC_CSR).

The SYSRESETREQ bit in Cortex®-M4 with FPU Application Interrupt and Reset Control
Register must be set to force a software reset on the device. Refer to the Cortex®-M4 with
FPU technical reference manual for more details.

Reset and clock control (RCC) RM0401

92/771 RM0401 Rev 3

Low-power management reset

There are two ways of generating a low-power management reset:

1. Reset generated when entering the Standby mode:

This type of reset is enabled by resetting the nRST_STDBY bit in the user option bytes.
In this case, whenever a Standby mode entry sequence is successfully executed, the
device is reset instead of entering the Standby mode.

2. Reset when entering the Stop mode:

This type of reset is enabled by resetting the nRST_STOP bit in the user option bytes.
In this case, whenever a Stop mode entry sequence is successfully executed, the
device is reset instead of entering the Stop mode.

For further information on the user option bytes, refer to the STM32F410 Flash
programming manual available from your ST sales office.

5.1.2 Power reset

A power reset is generated when one of the following events occurs:

1. Power-on/power-down reset (POR/PDR reset) or brownout (BOR) reset

2. When exiting the Standby mode

A power reset sets all registers to their reset values except the Backup domain.

These sources act on the NRST pin and it is always kept low during the delay phase. The
RESET service routine vector is fixed at address 0x0000_0004 in the memory map.

The system reset signal provided to the device is output on the NRST pin. The pulse
generator guarantees a minimum reset pulse duration of 20 µs for each internal reset
source. In case of an external reset, the reset pulse is generated while the NRST pin is
asserted low.

Figure 11. Simplified diagram of the reset circuit

RM0401 Rev 3 93/771

RM0401 Reset and clock control (RCC)

134

5.1.3 Backup domain reset

The backup domain reset sets all RTC registers and the RCC_BDCR register to their reset
values.

A backup domain reset is generated when one of the following events occurs:

1. Software reset, triggered by setting the BDRST bit in the RCC Backup domain control
register (RCC_BDCR).

2. VDD or VBAT power on, if both supplies have previously been powered off.

5.2 Clocks

Three different clock sources can be used to drive the system clock (SYSCLK):

• HSI oscillator clock

• HSE oscillator clock

• PLL (PLL) clock

The devices have the two following secondary clock sources:

• 32 kHz low-speed internal RC (LSI RC) which drives the independent watchdog and,
optionally, the RTC used for Auto-wakeup from the Stop/Standby mode.

• 32.768 kHz low-speed external crystal (LSE crystal) which optionally drives the RTC
clock (RTCCLK)

Reset and clock control (RCC) RM0401

94/771 RM0401 Rev 3

Each clock source can be switched on or off independently when it is not used, to optimize
power consumption.

Figure 12. Clock tree

1. For full details about the internal and external clock source characteristics, refer to the Electrical
characteristics section in the device datasheet.

RM0401 Rev 3 95/771

RM0401 Reset and clock control (RCC)

134

The clock controller provides a high degree of flexibility to the application in the choice of the
external crystal or the oscillator to run the core and peripherals at the highest frequency
and, guarantee the appropriate frequency for peripherals that need a specific clock like
RNG, I2S and low-power timer.

Several prescalers are used to configure the AHB frequency, the high-speed APB (APB2)
and the low-speed APB (APB1) domains. The maximum frequency of the AHB domain is
100 MHz. The maximum allowed frequency of the high-speed APB2 domain is 100 MHz.
The maximum allowed frequency of the low-speed APB1 domain is 50 MHz

All peripheral clocks are derived from the system clock (SYSCLK) except for:

• The low-power timer clock which is derived either from the low-speed internal or low-
speed external oscillator (LSI/LSE), from the high-speed internal (HSI) or from the
system clock.

• The RNG and I2S clocks which come from a specific PLL output.

To achieve high-quality audio performance, the I2S clock can be derived either from the
PLL or from an external clock mapped on the I2S_CKIN pin. For more information
about I2S clock frequency and precision, refer to Section 25.6.4: Clock generator.

The RCC feeds the external clock of the Cortex System Timer (SysTick) with the AHB clock
(HCLK) divided by 8. The SysTick can work either with this clock or with the Cortex clock
(HCLK), configurable in the SysTick control and status register.

The timer clock frequencies are automatically set by hardware. There are two cases:

1. If the APB prescaler is 1, the timer clock frequencies are set to the same frequency as
that of the APB domain to which the timers are connected.

2. Otherwise, they are set to twice (×2) the frequency of the APB domain to which the
timers are connected.

The timer clock frequencies are automatically set by hardware. There are two cases
depending on the value of TIMPRE bit in RCC_DCKCFGR register:

• If TIMPRE bit is reset:

If the APB prescaler is configured to a division factor of 1, the timer clock frequencies
(TIMxCLK) are set to HCLK. Otherwise, the timer clock frequencies are twice the
frequency of the APB domain to which the timers are connected: TIMxCLK = 2xPCLKx.

• If TIMPRE bit is set:

If the APB prescaler is configured to a division factor of 1 or 2, the timer clock
frequencies (TIMxCLK) are set to HCLK. Otherwise, the timer clock frequencies is four
times the frequency of the APB domain to which the timers are connected: TIMxCLK =
4xPCLKx.

FCLK acts as Cortex®-M4 with FPU free-running clock. For more details, refer to the
Cortex®-M4 with FPU technical reference manual.

Reset and clock control (RCC) RM0401

96/771 RM0401 Rev 3

5.2.1 HSE clock

The high speed external clock signal (HSE) can be generated from two possible clock
sources:

• HSE external crystal/ceramic resonator

• HSE external user clock

The resonator and the load capacitors have to be placed as close as possible to the
oscillator pins in order to minimize output distortion and startup stabilization time. The
loading capacitance values must be adjusted according to the selected oscillator.

External source (HSE bypass)

In this mode, an external clock source must be provided. You select this mode by setting the
HSEBYP and HSEON bits in the RCC clock control register (RCC_CR). The external clock
signal (square, sinus or triangle) with ~50% duty cycle has to drive the OSC_IN pin while the
OSC_OUT pin should be left HI-Z. See Figure 13.

External crystal/ceramic resonator (HSE crystal)

The HSE has the advantage of producing a very accurate rate on the main clock.

The associated hardware configuration is shown in Figure 13. Refer to the electrical
characteristics section of the datasheet for more details.

The HSERDY flag in the RCC clock control register (RCC_CR) indicates if the high-speed
external oscillator is stable or not. At startup, the clock is not released until this bit is set by
hardware. An interrupt can be generated if enabled in the RCC clock interrupt register
(RCC_CIR).

The HSE Crystal can be switched on and off using the HSEON bit in the RCC clock control
register (RCC_CR).

Figure 13. HSE/ LSE clock sources

Hardware configuration

External clock

Crystal/ceramic
resonators

OSC_OUT

External
source

(HI-Z)

OSC_IN OSC_OUT

Load
capacitors

CL2CL1

RM0401 Rev 3 97/771

RM0401 Reset and clock control (RCC)

134

5.2.2 HSI clock

The HSI clock signal is generated from an internal 16 MHz RC oscillator and can be used
directly as a system clock, or used as PLL input.

The HSI RC oscillator has the advantage of providing a clock source at low cost (no external
components). It also has a faster startup time than the HSE crystal oscillator however, even
with calibration the frequency is less accurate than an external crystal oscillator or ceramic
resonator.

Calibration

RC oscillator frequencies can vary from one chip to another due to manufacturing process
variations, this is why each device is factory calibrated by ST for 1% accuracy at TA= 25 °C.

After reset, the factory calibration value is loaded in the HSICAL[7:0] bits in the RCC clock
control register (RCC_CR).

If the application is subject to voltage or temperature variations this may affect the RC
oscillator speed. You can trim the HSI frequency in the application using the HSITRIM[4:0]
bits in the RCC clock control register (RCC_CR).

The HSIRDY flag in the RCC clock control register (RCC_CR) indicates if the HSI RC is
stable or not. At startup, the HSI RC output clock is not released until this bit is set by
hardware.

The HSI RC can be switched on and off using the HSION bit in the RCC clock control
register (RCC_CR).

The HSI signal can also be used as a backup source (Auxiliary clock) if the HSE crystal
oscillator fails. Refer to Section 5.2.7: Clock security system (CSS) on page 98.

5.2.3 PLL configuration

The STM32F410 devices feature one PLL. The PLL (PLL) is clocked by the HSE or HSI
oscillator and features three different output clocks:

• The first output is used to generate the high speed system clock (up to 100 MHz)

• The second output is used to generate the RNG clock.

• The third output is used to generate an accurate clock to achieve high-quality audio
performance on the I2S interface.

Since the PLL configuration parameters cannot be changed once the PLL is enabled, it is
recommended to configure the PLL before enabling it (selection of the HSI or HSE oscillator
as PLL clock source, and configuration of division factors M, P, Q, R and multiplication factor
N).

The PLL is disabled by hardware when entering Stop and Standby modes, or when an HSE
failure occurs when HSE or PLL (clocked by HSE) are used as system clock. The PLL can
be configured through RCC PLL configuration register (RCC_PLLCFGR).

5.2.4 LSE clock

The LSE clock is generated using a 32.768kHz low speed external crystal or ceramic
resonator. It has the advantage providing a low-power but highly accurate clock source to
the real-time clock peripheral (RTC) for clock/calendar or other timing functions.

Reset and clock control (RCC) RM0401

98/771 RM0401 Rev 3

The LSE oscillator is switched on and off using the LSEON bit in RCC Backup domain
control register (RCC_BDCR).

The LSERDY flag in the RCC Backup domain control register (RCC_BDCR) indicates if the
LSE crystal is stable or not. At startup, the LSE crystal output clock signal is not released
until this bit is set by hardware. An interrupt can be generated if enabled in the RCC clock
interrupt register (RCC_CIR).

External source (LSE bypass)

In this mode, an external clock source must be provided. It must have a frequency up to
1 MHz. You select this mode by setting the LSEBYP and LSEON bits in the RCC Backup
domain control register (RCC_BDCR). The external clock signal (square, sinus or triangle)
with ~50% duty cycle has to drive the OSC32_IN pin while the OSC32_OUT pin should be
left HI-Z. See Figure 13.

5.2.5 LSI clock

The LSI RC acts as an low-power clock source that can be kept running in Stop and
Standby mode for the independent watchdog (IWDG) and Auto-wakeup unit (AWU). The
clock frequency is around 32 kHz. For more details, refer to the electrical characteristics
section of the datasheets.

The LSI RC can be switched on and off using the LSION bit in the RCC clock control &
status register (RCC_CSR).

The LSIRDY flag in the RCC clock control & status register (RCC_CSR) indicates if the low-
speed internal oscillator is stable or not. At startup, the clock is not released until this bit is
set by hardware. An interrupt can be generated if enabled in the RCC clock interrupt register
(RCC_CIR).

5.2.6 System clock (SYSCLK) selection

After a system reset, the HSI oscillator is selected as the system clock. When a clock source
is used directly or through PLL as the system clock, it is not possible to stop it.

A switch from one clock source to another occurs only if the target clock source is ready
(clock stable after startup delay or PLL locked). If a clock source that is not yet ready is
selected, the switch occurs when the clock source is ready. Status bits in the RCC clock
control register (RCC_CR) indicate which clock(s) is (are) ready and which clock is currently
used as the system clock.

5.2.7 Clock security system (CSS)

The clock security system can be activated by software. In this case, the clock detector is
enabled after the HSE oscillator startup delay, and disabled when this oscillator is stopped.

If a failure is detected on the HSE clock, this oscillator is automatically disabled, a clock
failure event is sent to the break inputs of advanced-control timer TIM1, and an interrupt is
generated to inform the software about the failure (clock security system interrupt CSSI),
allowing the MCU to perform rescue operations. The CSSI is linked to the Cortex®-M4 with
FPU NMI (non-maskable interrupt) exception vector.

Note: When the CSS is enabled, if the HSE clock happens to fail, the CSS generates an interrupt,
which causes the automatic generation of an NMI. The NMI is executed indefinitely unless
the CSS interrupt pending bit is cleared. As a consequence, the application has to clear the

RM0401 Rev 3 99/771

RM0401 Reset and clock control (RCC)

134

CSS interrupt in the NMI ISR by setting the CSSC bit in the Clock interrupt register
(RCC_CIR).

If the HSE oscillator is used directly or indirectly as the system clock (indirectly meaning that
it is directly used as PLL input clock, and that PLL clock is the system clock) and a failure is
detected, then the system clock switches to the HSI oscillator and the HSE oscillator is
disabled.

If the HSE oscillator clock was the clock source of PLL used as the system clock when the
failure occurred, PLL is also disabled.

5.2.8 RTC/AWU clock

Once the RTCCLK clock source has been selected, the only possible way of modifying the
selection is to reset the power domain.

The RTCCLK clock source can be either the HSE 1 MHz (HSE divided by a programmable
prescaler), the LSE or the LSI clock. This is selected by programming the RTCSEL[1:0] bits
in the RCC Backup domain control register (RCC_BDCR) and the RTCPRE[4:0] bits in RCC
clock configuration register (RCC_CFGR). This selection cannot be modified without
resetting the Backup domain.

If the LSE is selected as the RTC clock, the RTC will work normally if the backup or the
system supply disappears. If the LSI is selected as the AWU clock, the AWU state is not
guaranteed if the system supply disappears. If the HSE oscillator divided by a value
between 2 and 31 is used as the RTC clock, the RTC state is not guaranteed if the backup
or the system supply disappears.

The LSE clock is in the Backup domain, whereas the HSE and LSI clocks are not. As a
consequence:

• If LSE is selected as the RTC clock:

– The RTC continues to work even if the VDD supply is switched off, provided the
VBAT supply is maintained.

• If LSI is selected as the Auto-wakeup unit (AWU) clock:

– The AWU state is not guaranteed if the VDD supply is powered off. Refer to
Section 5.2.5: LSI clock on page 98 for more details on LSI calibration.

• If the HSE clock is used as the RTC clock:

– The RTC state is not guaranteed if the VDD supply is powered off or if the internal
voltage regulator is powered off (removing power from the 1.2 V domain).

Note: To read the RTC calendar register when the APB1 clock frequency is less than seven times
the RTC clock frequency (fAPB1 < 7xfRTCLCK), the software must read the calendar time and
date registers twice. The data are correct if the second read access to RTC_TR gives the
same result than the first one. Otherwise a third read access must be performed.

5.2.9 Watchdog clock

If the independent watchdog (IWDG) is started by either hardware option or software
access, the LSI oscillator is forced ON and cannot be disabled. After the LSI oscillator
temporization, the clock is provided to the IWDG.

Reset and clock control (RCC) RM0401

100/771 RM0401 Rev 3

5.2.10 Clock-out capability

Two microcontroller clock output (MCO) pins are available:

• MCO1

You can output four different clock sources onto the MCO1 pin (PA8) using the
configurable prescaler (from 1 to 5):

– HSI clock

– LSE clock

– HSE clock

– PLL clock

The desired clock source is selected using the MCO1PRE[2:0] and MCO1[1:0] bits in
the RCC clock configuration register (RCC_CFGR).

• MCO2

You can output four different clock sources onto the MCO2 pin (PC9) using the
configurable prescaler (from 1 to 5):

– System clock (SYSCLK)

– I2S clock (I2S gated clock)

– HSE clock

– PLL clock

The desired clock source is selected using the MCO2PRE[2:0] and MCO2 bits in the
RCC clock configuration register (RCC_CFGR).

For the different MCO pins, the corresponding GPIO port has to be programmed in alternate
function mode.

The selected clock to output onto MCO must not exceed 100 MHz (the maximum I/O
speed).

5.2.11 Internal/external clock measurement using TIM5/TIM11

It is possible to indirectly measure the frequencies of all on-board clock source generators
by means of the input capture of TIM5 channel4 and TIM11 channel1 as shown in Figure 14
and Figure 15.

Internal/external clock measurement using TIM5 channel4

TIM5 has an input multiplexer which allows choosing whether the input capture is triggered
by the I/O or by an internal clock. This selection is performed through the TI4_RMP [1:0] bits
in the TIM5_OR register.

The primary purpose of having the LSE connected to the channel4 input capture is to be
able to precisely measure the HSI (this requires to have the HSI used as the system clock
source). The number of HSI clock counts between consecutive edges of the LSE signal
provides a measurement of the internal clock period. Taking advantage of the high precision
of LSE crystals (typically a few tens of ppm) we can determine the internal clock frequency
with the same resolution, and trim the source to compensate for manufacturing-process
and/or temperature- and voltage-related frequency deviations.

The HSI oscillator has dedicated, user-accessible calibration bits for this purpose.

RM0401 Rev 3 101/771

RM0401 Reset and clock control (RCC)

134

The basic concept consists in providing a relative measurement (e.g. HSI/LSE ratio): the
precision is therefore tightly linked to the ratio between the two clock sources. The greater
the ratio, the better the measurement.

It is also possible to measure the LSI frequency: this is useful for applications that do not
have a crystal. The ultralow-power LSI oscillator has a large manufacturing process
deviation: by measuring it versus the HSI clock source, it is possible to determine its
frequency with the precision of the HSI. The measured value can be used to have more
accurate RTC time base timeouts (when LSI is used as the RTC clock source) and/or an
IWDG timeout with an acceptable accuracy.

Use the following procedure to measure the LSI frequency:

1. Enable the TIM5 timer and configure channel4 in Input capture mode.

2. Set the TI4_RMP bits in the TIM5_OR register to 0x01 to connect the LSI clock
internally to TIM5 channel4 input capture for calibration purposes.

3. Measure the LSI clock frequency using the TIM5 capture/compare 4 event or interrupt.

4. Use the measured LSI frequency to update the prescaler of the RTC depending on the
desired time base and/or to compute the IWDG timeout.

Figure 14. Frequency measurement with TIM5 in Input capture mode

Internal/external clock measurement using TIM11 channel1

TIM11 has an input multiplexer which allows choosing whether the input capture is triggered
by the I/O or by an internal clock. This selection is performed through TI1_RMP [1:0] bits in
the TIM11_OR register. The HSE_RTC clock (HSE divided by a programmable prescaler) is
connected to channel 1 input capture to have a rough indication of the external crystal
frequency. This requires that the HSI is the system clock source. This can be useful for
instance to ensure compliance with the IEC 60730/IEC 61335 standards which require to be
able to determine harmonic or subharmonic frequencies (–50/+100% deviations).

Figure 15. Frequency measurement with TIM11 in Input capture mode

Reset and clock control (RCC) RM0401

102/771 RM0401 Rev 3

5.3 RCC registers

Refer to Section 1.2: List of abbreviations for registers for a list of abbreviations used in
register descriptions.

5.3.1 RCC clock control register (RCC_CR)

Address offset: 0x00

Reset value: 0x0000 XX81 where X is undefined.

Access: no wait state, word, half-word and byte access

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. PLLRDY PLLON Res. Res. Res. Res.
CSS
ON

HSE
BYP

HSE
RDY

HSE ON

r rw rw rw r rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

HSICAL[7:0] HSITRIM[4:0] Res.
HSI
RDY

HSION

r r r r r r r r rw rw rw rw rw r rw

Bits 31:26 Reserved, must be kept at reset value.

Bit 25 PLLRDY: Main PLL (PLL) clock ready flag

Set by hardware to indicate that PLL is locked.
0: PLL unlocked
1: PLL locked

Bit 24 PLLON: Main PLL (PLL) enable

Set and cleared by software to enable PLL.
Cleared by hardware when entering Stop or Standby mode. This bit cannot be reset if PLL
clock is used as the system clock.
0: PLL OFF
1: PLL ON

Bits 23:20 Reserved, must be kept at reset value.

Bit 19 CSSON: Clock security system enable

Set and cleared by software to enable the clock security system. When CSSON is set, the
clock detector is enabled by hardware when the HSE oscillator is ready, and disabled by
hardware if an oscillator failure is detected.
0: Clock security system OFF (Clock detector OFF)
1: Clock security system ON (Clock detector ON if HSE oscillator is stable, OFF if not)

Bit 18 HSEBYP: HSE clock bypass

Set and cleared by software to bypass the oscillator with an external clock. The external
clock must be enabled with the HSEON bit, to be used by the device.
The HSEBYP bit can be written only if the HSE oscillator is disabled.
0: HSE oscillator not bypassed
1: HSE oscillator bypassed with an external clock

Bit 17 HSERDY: HSE clock ready flag

Set by hardware to indicate that the HSE oscillator is stable. After the HSEON bit is cleared,
HSERDY goes low after 6 HSE oscillator clock cycles.
0: HSE oscillator not ready
1: HSE oscillator ready

RM0401 Rev 3 103/771

RM0401 Reset and clock control (RCC)

134

Bit 16 HSEON: HSE clock enable

Set and cleared by software.
Cleared by hardware to stop the HSE oscillator when entering Stop or Standby mode. This
bit cannot be reset if the HSE oscillator is used directly or indirectly as the system clock.
0: HSE oscillator OFF
1: HSE oscillator ON

Bits 15:8 HSICAL[7:0]: Internal high-speed clock calibration

These bits are initialized automatically at startup.

Bits 7:3 HSITRIM[4:0]: Internal high-speed clock trimming

These bits provide an additional user-programmable trimming value that is added to the
HSICAL[7:0] bits. It can be programmed to adjust to variations in voltage and temperature
that influence the frequency of the internal HSI RC.

Bit 2 Reserved, must be kept at reset value.

Bit 1 HSIRDY: Internal high-speed clock ready flag

Set by hardware to indicate that the HSI oscillator is stable. After the HSION bit is cleared,
HSIRDY goes low after 6 HSI clock cycles.
0: HSI oscillator not ready
1: HSI oscillator ready

Bit 0 HSION: Internal high-speed clock enable

Set and cleared by software.
Set by hardware to force the HSI oscillator ON when leaving the Stop or Standby mode or in
case of a failure of the HSE oscillator used directly or indirectly as the system clock. This bit
cannot be cleared if the HSI is used directly or indirectly as the system clock.
0: HSI oscillator OFF
1: HSI oscillator ON

Reset and clock control (RCC) RM0401

104/771 RM0401 Rev 3

5.3.2 RCC PLL configuration register (RCC_PLLCFGR)

Address offset: 0x04

Reset value: 0x7F00 3010

Access: no wait state, word, half-word and byte access.

This register is used to configure the PLL clock outputs according to the formulas:

• f(VCO clock) = f(PLL clock input) × (PLLN / PLLM)

• f(PLL general clock output) = f(VCO clock) / PLLP

• f(I2S, System) = f(VCO clock) / PLLR

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. PLLR3 PLLR2 PLLR1 PLLQ3 PLLQ2 PLLQ1 PLLQ0 Reserv
ed

PLLSRC Res. Res. Res. Res. PLLP1 PLLP0

rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. PLLN PLLM5 PLLM4 PLLM3 PLLM2 PLLM1 PLLM0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 31 Reserved, must be kept at reset value.

Bits 30:28 PLLR: PLL division factor for I2S and System clocks

Set and cleared by software to control the clock frequency. These bits should be written only
if PLL is disabled.
clock frequency = VCO frequency / PLLR with 2 ≤ PLLR ≤ 7
000: PLL = 0, wrong configuration
001: PLL = 1, wrong configuration
010: PLL = 2
...
111: PLL = 7

Bits 27:24 PLLQ: Main PLL (PLL) division factor for random number generator clocks

Set and cleared by software to control the frequency of the random number generator clock.
These bits should be written only if PLL is disabled.
0000: PLLQ = 0, wrong configuration
0001: PLLQ = 1, wrong configuration
0010: PLLQ = 2
0011: PLLQ = 3
0100: PLLQ = 4
...
1111: PLLQ = 15

Bit 23 Reserved, must be kept at reset value.

Bit 22 PLLSRC: Main PLL(PLL) entry clock source

Set and cleared by software to select PLL clock source. This bit can be written only when
the PLL is disabled.
0: HSI clock selected as PLL clock entry
1: HSE oscillator clock selected as PLL clock entry

Bits 21:18 Reserved, must be kept at reset value.

RM0401 Rev 3 105/771

RM0401 Reset and clock control (RCC)

134

Bits 17:16 PLLP: Main PLL (PLL) division factor for main system clock

Set and cleared by software to control the frequency of the general PLL output clock. These
bits can be written only if PLL is disabled.

Caution: The software has to set these bits correctly not to exceed 100 MHz on this domain.
PLL output clock frequency = VCO frequency / PLLP with PLLP = 2, 4, 6, or 8
00: PLLP = 2
01: PLLP = 4
10: PLLP = 6
11: PLLP = 8

Bit 15 Reserved, must be kept at reset value.

Bits 14:6 PLLN: Main PLL (PLL) multiplication factor for VCO

Set and cleared by software to control the multiplication factor of the VCO. These bits can
be written only when PLL is disabled. Only half-word and word accesses are allowed to
write these bits.

Caution: The software has to set these bits correctly to ensure that the VCO output
frequency is between 100 and 432 MHz. (check also Section 5.3.17: RCC
Dedicated Clocks Configuration Register (RCC_DCKCFGR))

VCO output frequency = VCO input frequency × PLLN with 50 ≤ PLLN ≤ 432
000000000: PLLN = 0, wrong configuration
000000001: PLLN = 1, wrong configuration
...
000110010: PLLN = 50
...
001100011: PLLN = 99
001100100: PLLN = 100
...
110110000: PLLN = 432
110110001: PLLN = 433, wrong configuration
...
111111111: PLLN = 511, wrong configuration

Note: Multiplication factors possible for VCO input frequency higher than 1 MHz but care
must be taken to fulfill the minimum VCO output frequency as specified above.

Bits 5:0 PLLM: Division factor for the main PLL (PLL) input clock

Set and cleared by software to divide the PLL input clock before the VCO. These bits can be
written only when the PLL is disabled.

Caution: The software has to set these bits correctly to ensure that the VCO input frequency
ranges from 1 to 2 MHz. It is recommended to select a frequency of 2 MHz to limit
PLL jitter.

VCO input frequency = PLL input clock frequency / PLLM with 2 ≤ PLLM ≤ 63
000000: PLLM = 0, wrong configuration
000001: PLLM = 1, wrong configuration
000010: PLLM = 2
000011: PLLM = 3
000100: PLLM = 4
...
111110: PLLM = 62
111111: PLLM = 63

Reset and clock control (RCC) RM0401

106/771 RM0401 Rev 3

5.3.3 RCC clock configuration register (RCC_CFGR)

Address offset: 0x08

Reset value: 0x0000 0000

Access: 0 ≤ wait state ≤ 2, word, half-word and byte access

1 or 2 wait states inserted only if the access occurs during a clock source switch.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

MCO2 MCO2 PRE[2:0] MCO1 PRE[2:0] Res. MCO1 RTCPRE[4:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PPRE2[2:0] PPRE1[2:0]
MCO2

EN
MCO1

EN
HPRE[3:0] SWS1 SWS0 SW1 SW0

rw rw rw rw rw rw rw rw rw rw rw rw r r rw rw

Bits 31:30 MCO2[1:0]: Microcontroller clock output 2

Set and cleared by software. Clock source selection may generate glitches on MCO2. It is
highly recommended to configure these bits only after reset before enabling the external
oscillators and the PLLs.
00: System clock (SYSCLK) selected
01: Main PLL clock (I2S)
10: HSE oscillator clock selected
11: PLL clock selected

Bits 29:27 MCO2PRE: MCO2 prescaler

Set and cleared by software to configure the prescaler of the MCO2. Modification of this
prescaler may generate glitches on MCO2. It is highly recommended to change this
prescaler only after reset before enabling the external oscillators and the PLLs.
0xx: no division
100: division by 2
101: division by 3
110: division by 4
111: division by 5

Bits 26:24 MCO1PRE: MCO1 prescaler

Set and cleared by software to configure the prescaler of the MCO1. Modification of this
prescaler may generate glitches on MCO1. It is highly recommended to change this
prescaler only after reset before enabling the external oscillators and the PLL.
0xx: no division
100: division by 2
101: division by 3
110: division by 4
111: division by 5

Bit 23 Reserved, must be kept at reset value.

RM0401 Rev 3 107/771

RM0401 Reset and clock control (RCC)

134

Bits 22:21 MCO1: Microcontroller clock output 1

Set and cleared by software. Clock source selection may generate glitches on MCO1. It is
highly recommended to configure these bits only after reset before enabling the external
oscillators and PLL.
00: HSI clock selected
01: LSE oscillator selected
10: HSE oscillator clock selected
11: PLL clock selected

Bits 20:16 RTCPRE: HSE division factor for RTC clock

Set and cleared by software to divide the HSE clock input clock to generate a 1 MHz clock for
RTC.

Caution: The software has to set these bits correctly to ensure that the clock supplied to the
RTC is 1 MHz. These bits must be configured if needed before selecting the RTC
clock source.

00000: no clock
00001: no clock
00010: HSE/2
00011: HSE/3
00100: HSE/4
...
11110: HSE/30
11111: HSE/31

Bits 15:13 PPRE2: APB high-speed prescaler (APB2)

Set and cleared by software to control APB high-speed clock division factor.

Caution: The software has to set these bits correctly not to exceed 100 MHz on this domain.
The clocks are divided with the new prescaler factor from 1 to 16 AHB cycles after
PPRE2 write.

0xx: AHB clock not divided
100: AHB clock divided by 2
101: AHB clock divided by 4
110: AHB clock divided by 8
111: AHB clock divided by 16

Bits 12:10 PPRE1: APB Low speed prescaler (APB1)

Set and cleared by software to control APB low-speed clock division factor.

Caution: The software has to set these bits correctly not to exceed 50 MHz on this domain.
The clocks are divided with the new prescaler factor from 1 to 16 AHB cycles after
PPRE1 write.

0xx: AHB clock not divided
100: AHB clock divided by 2
101: AHB clock divided by 4
110: AHB clock divided by 8
111: AHB clock divided by 16

Bit 9 MCO2EN: MCO2 output enable

0: MCO2 output disabled
1: MCO2 output enabled

Bit 8 MCO1EN: MCO1 output enable

0: MCO1 output disabled
1: MCO1 output enabled

Reset and clock control (RCC) RM0401

108/771 RM0401 Rev 3

Bits 7:4 HPRE: AHB prescaler

Set and cleared by software to control AHB clock division factor.

Caution: The clocks are divided with the new prescaler factor from 1 to 16 AHB cycles after
HPRE write.

Caution: The AHB clock frequency must be at least 25 MHz when the Ethernet is used.
0xxx: system clock not divided
1000: system clock divided by 2
1001: system clock divided by 4
1010: system clock divided by 8
1011: system clock divided by 16
1100: system clock divided by 64
1101: system clock divided by 128
1110: system clock divided by 256
1111: system clock divided by 512

Bits 3:2 SWS: System clock switch status

Set and cleared by hardware to indicate which clock source is used as the system clock.
00: HSI oscillator used as the system clock
01: HSE oscillator used as the system clock
10: PLL used as the system clock
11: not applicable

Bits 1:0 SW: System clock switch

Set and cleared by software to select the system clock source.
Set by hardware to force the HSI selection when leaving the Stop or Standby mode or in case
of failure of the HSE oscillator used directly or indirectly as the system clock.
00: HSI oscillator selected as system clock
01: HSE oscillator selected as system clock
10: PLL selected as system clock
11: not allowed

RM0401 Rev 3 109/771

RM0401 Reset and clock control (RCC)

134

5.3.4 RCC clock interrupt register (RCC_CIR)

Address offset: 0x0C

Reset value: 0x0000 0000

Access: no wait state, word, half-word and byte access

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Reserved
CSSC Res. Res.

PLL
RDYC

HSE
RDYC

HSI
RDYC

LSE
RDYC

LSI
RDYC

w w w w w w

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res.
PLL

RDYIE
HSE

RDYIE
HSI

RDYIE
LSE

RDYIE
LSI

RDYIE
CSSF Res. Res.

PLL
RDYF

HSE
RDYF

HSI
RDYF

LSE
RDYF

LSI
RDYF

rw rw rw rw rw r r r r r r

Bits 31:24 Reserved, must be kept at reset value.

Bit 23 CSSC: Clock security system interrupt clear

This bit is set by software to clear the CSSF flag.
0: No effect
1: Clear CSSF flag

Bits 22:21 Reserved, must be kept at reset value.

Bit 20 PLLRDYC: Main PLL(PLL) ready interrupt clear

This bit is set by software to clear the PLLRDYF flag.
0: No effect
1: PLLRDYF cleared

Bit 19 HSERDYC: HSE ready interrupt clear

This bit is set by software to clear the HSERDYF flag.
0: No effect
1: HSERDYF cleared

Bit 18 HSIRDYC: HSI ready interrupt clear

This bit is set software to clear the HSIRDYF flag.
0: No effect
1: HSIRDYF cleared

Bit 17 LSERDYC: LSE ready interrupt clear

This bit is set by software to clear the LSERDYF flag.
0: No effect
1: LSERDYF cleared

Bit 16 LSIRDYC: LSI ready interrupt clear

This bit is set by software to clear the LSIRDYF flag.
0: No effect
1: LSIRDYF cleared

Bits 15:13 Reserved, must be kept at reset value.

Reset and clock control (RCC) RM0401

110/771 RM0401 Rev 3

Bit 12 PLLRDYIE: Main PLL (PLL) ready interrupt enable

Set and cleared by software to enable/disable interrupt caused by PLL lock.
0: PLL lock interrupt disabled
1: PLL lock interrupt enabled

Bit 11 HSERDYIE: HSE ready interrupt enable

Set and cleared by software to enable/disable interrupt caused by the HSE oscillator
stabilization.
0: HSE ready interrupt disabled
1: HSE ready interrupt enabled

Bit 10 HSIRDYIE: HSI ready interrupt enable

Set and cleared by software to enable/disable interrupt caused by the HSI oscillator
stabilization.
0: HSI ready interrupt disabled
1: HSI ready interrupt enabled

Bit 9 LSERDYIE: LSE ready interrupt enable

Set and cleared by software to enable/disable interrupt caused by the LSE oscillator
stabilization.
0: LSE ready interrupt disabled
1: LSE ready interrupt enabled

Bit 8 LSIRDYIE: LSI ready interrupt enable

Set and cleared by software to enable/disable interrupt caused by LSI oscillator
stabilization.
0: LSI ready interrupt disabled
1: LSI ready interrupt enabled

Bit 7 CSSF: Clock security system interrupt flag

Set by hardware when a failure is detected in the HSE oscillator.
Cleared by software setting the CSSC bit.
0: No clock security interrupt caused by HSE clock failure
1: Clock security interrupt caused by HSE clock failure

Bits 6:5 Reserved, must be kept at reset value.

Bit 4 PLLRDYF: Main PLL (PLL) ready interrupt flag

Set by hardware when PLL locks and PLLRDYDIE is set.
Cleared by software setting the PLLRDYC bit.
0: No clock ready interrupt caused by PLL lock
1: Clock ready interrupt caused by PLL lock

Bit 3 HSERDYF: HSE ready interrupt flag

Set by hardware when External High Speed clock becomes stable and HSERDYDIE is set.
Cleared by software setting the HSERDYC bit.
0: No clock ready interrupt caused by the HSE oscillator
1: Clock ready interrupt caused by the HSE oscillator

Bit 2 HSIRDYF: HSI ready interrupt flag

Set by hardware when the Internal High Speed clock becomes stable and HSIRDYDIE is
set.
Cleared by software setting the HSIRDYC bit.
0: No clock ready interrupt caused by the HSI oscillator
1: Clock ready interrupt caused by the HSI oscillator

RM0401 Rev 3 111/771

RM0401 Reset and clock control (RCC)

134

5.3.5 RCC AHB1 peripheral reset register (RCC_AHB1RSTR)

Address offset: 0x10

Reset value: 0x0000 0000

Access: no wait state, word, half-word and byte access.

Bit 1 LSERDYF: LSE ready interrupt flag

Set by hardware when the External Low Speed clock becomes stable and LSERDYDIE is
set.
Cleared by software setting the LSERDYC bit.
0: No clock ready interrupt caused by the LSE oscillator
1: Clock ready interrupt caused by the LSE oscillator

Bit 0 LSIRDYF: LSI ready interrupt flag

Set by hardware when the internal low speed clock becomes stable and LSIRDYDIE is set.
Cleared by software setting the LSIRDYC bit.
0: No clock ready interrupt caused by the LSI oscillator
1: Clock ready interrupt caused by the LSI oscillator

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RNG
RST

Res. Res. Res. Res. Res. Res. Res. Res.
DMA2
RST

DMA1
RST

Res. Res. Res. Res. Res.

rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. CRCRST Res. Res. Res. Res.
GPIOH

RST
Res. Res. Res. Res.

GPIOC
RST

GPIOB
RST

GPIOA
RST

rw rw rw rw rw

Bit 31 RNGRST: RNG reset

Set and cleared by software.
0: does not reset RNG
1: resets RNG

Bits 30:23 Reserved, must be kept at reset value.

Bit 22 DMA2RST: DMA2 reset

Set and cleared by software.
0: does not reset DMA2
1: resets DMA2

Bit 21 DMA1RST: DMA1 reset

Set and cleared by software.
0: does not reset DMA1
1: resets DMA1

Bits 20:13 Reserved, must be kept at reset value.

Bit 12 CRCRST: CRC reset

Set and cleared by software.
0: does not reset CRC
1: resets CRC

Bits 11:8 Reserved, must be kept at reset value.

Reset and clock control (RCC) RM0401

112/771 RM0401 Rev 3

5.3.6 RCC APB1 peripheral reset register for (RCC_APB1RSTR)

Address offset: 0x20

Reset value: 0x0000 0000

Access: no wait state, word, half-word and byte access.

Bit 7 GPIOHRST: IO port H reset

Set and cleared by software.

0: does not reset IO port H
1: resets IO port H

Bits 6:3 Reserved, must be kept at reset value.

Bit 2 GPIOCRST: IO port C reset

Set and cleared by software.
0: does not reset IO port C
1: resets IO port C

Bit 1 GPIOBRST: IO port B reset

Set and cleared by software.
0: does not reset IO port B
1:resets IO port B

Bit 0 GPIOARST: IO port A reset

Set and cleared by software.
0: does not reset IO port A
1: resets IO port A

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res.
DAC
RST

PWR
RST

Res. Res. Res.
I2C4
RST

Res.
I2C2
RST

I2C1
RST

Res. Res. Res.
USART2

RST
Res.

rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Res.

Res.
SPI2
RST

Res. Res.
WWDG

RST
Res.

LPTIM1
RST

Res. Res. Res. Res.
TIM6
RST

TIM5
RST

Res. Res. Res.

rw rw rw rw rw

Bits 31:30 Reserved, must be kept at reset value.

Bit 29 DACRST: DAC reset

Set and cleared by software.
0: does not reset the DAC interface
1: resets the DAC interface

Bit 28 PWRRST: Power interface reset

Set and cleared by software.
0: does not reset the power interface
1: resets the power interface

Bits 27:25 Reserved, must be kept at reset value.

RM0401 Rev 3 113/771

RM0401 Reset and clock control (RCC)

134

Bit 24 I2C4RST: I2C4 reset

Set and cleared by software.
0: does not reset I2C4
1: resets I2C4

Bit 23 Reserved, must be kept at reset value.

Bit 22 I2C2RST: I2C2 reset

Set and cleared by software.
0: does not reset I2C2
1: resets I2C2

Bit 21 I2C1RST: I2C1 reset

Set and cleared by software.
0: does not reset I2C1
1: resets I2C1

Bits 20:18 Reserved, must be kept at reset value.

Bit 17 USART2RST: USART2 reset

Set and cleared by software.
0: does not reset USART2
1: resets USART2

Bits 16:15 Reserved, must be kept at reset value.

Bit 14 SPI2RST: SPI2 reset

Set and cleared by software.
0: does not reset SPI2
1: resets SPI2

Bits 13:12 Reserved, must be kept at reset value.

Bit 11 WWDGRST: Window watchdog reset

Set and cleared by software.
0: does not reset the window watchdog
1: resets the window watchdog

Bit 10 Reserved, must be kept at reset value.

Bit 9 LPTIM1RST: LPTIM1 reset

Set and cleared by software.
0: does not reset LPTIM1
1: resets LPTIM1

Bits 8:5 Reserved, must be kept at reset value.

Bit 4 TIM6RST: TIM6 reset

Set and cleared by software.
0: does not reset TIM6
1: resets TIM6

Bit 3 TIM5RST: TIM5 reset

Set and cleared by software.
0: does not reset TIM5
1: resets TIM5

Bits 2:0 Reserved, must be kept at reset value.

Reset and clock control (RCC) RM0401

114/771 RM0401 Rev 3

5.3.7 RCC APB2 peripheral reset register (RCC_APB2RSTR)

Address offset: 0x24

Reset value: 0x0000 0000

Access: no wait state, word, half-word and byte access.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.
SPI5
RST

Res.
TIM11
RST

Res.
TIM9
RST

rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res.
SYSCFG

RST
Res.

SPI1
RST

Res. Res. Res.
ADC1
RST

Res. Res.
USART6

RST
USART1

RST
Res. Res. Res.

TIM1
RST

rw rw rw rw rw rw

Bits 31:21 Reserved, must be kept at reset value.

Bit 20 SPI5RST: SPI5RST

This bit is set and cleared by software.
0: does not reset SPI5
1: resets SPI5

Bit 19 Reserved, must be kept at reset value.

Bit 18 TIM11RST: TIM11 reset

Set and cleared by software.
0: does not reset TIM11
1: resets TIM11

Bit 17 Reserved, must be kept at reset value.

Bit 16 TIM9RST: TIM9 reset

Set and cleared by software.
0: does not reset TIM9
1: resets TIM9

Bit 15 Reserved, must be kept at reset value.

Bit 14 SYSCFGRST: System configuration controller reset

Set and cleared by software.
0: does not reset the System configuration controller
1: resets the System configuration controller

Bit 13 Reserved, must be kept at reset value.

Bit 12 SPI1RST: SPI1 reset

Set and cleared by software.
0: does not reset SPI1
1: resets SPI1

Bit 11 Reserved, must be kept at reset value.

Bits 10:9 Reserved, must be kept at reset value.

Bit 8 ADC1RST: ADC interface reset

Set and cleared by software.
0: does not reset the ADC interface
1: resets the ADC interface

RM0401 Rev 3 115/771

RM0401 Reset and clock control (RCC)

134

Bits 7:6 Reserved, must be kept at reset value.

Bit 5 USART6RST: USART6 reset

Set and cleared by software.
0: does not reset USART6
1: resets USART6

Bit 4 USART1RST: USART1 reset

Set and cleared by software.
0: does not reset USART1
1: resets USART1

Bits 3:1 Reserved, must be kept at reset value.

Bit 0 TIM1RST: TIM1 reset

Set and cleared by software.
0: does not reset TIM1
1: resets TIM1

Reset and clock control (RCC) RM0401

116/771 RM0401 Rev 3

5.3.8 RCC AHB1 peripheral clock enable register (RCC_AHB1ENR)

Address offset: 0x30

Reset value: 0x0000 0000

Access: no wait state, word, half-word and byte access.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RNGEN Res. Res. Res. Res. Res. Res. Res. Res. DMA2EN DMA1EN Res. Res. Res. Res. Res.

rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. CRCEN Res. Res. Res. Res.
GPIOH

EN
Res. Res. Res. Res.

GPIOC
EN

GPIOB
EN

GPIOA
EN

rw rw rw rw rw

Bit 31 RNGEN: RNG clock enable

Set and cleared by software.
0: RNG clock disabled
1: RNG clock enabled

Bits 30:23 Reserved, must be kept at reset value.

Bit 22 DMA2EN: DMA2 clock enable

Set and cleared by software.
0: DMA2 clock disabled
1: DMA2 clock enabled

Bit 21 DMA1EN: DMA1 clock enable

Set and cleared by software.
0: DMA1 clock disabled
1: DMA1 clock enabled

Bits 20:13 Reserved, must be kept at reset value.

Bit 12 CRCEN: CRC clock enable

Set and cleared by software.
0: CRC clock disabled
1: CRC clock enabled

Bits 11:8 Reserved, must be kept at reset value.

Bit 7 GPIOHEN: IO port H clock enable

Set and reset by software.
0: IO port H clock disabled
1: IO port H clock enabled

Bits 6:3 Reserved, must be kept at reset value.

Bit 2 GPIOCEN: IO port C clock enable

Set and cleared by software.
0: IO port C clock disabled
1: IO port C clock enabled

Bit 1 GPIOBEN: IO port B clock enable

Set and cleared by software.
0: IO port B clock disabled
1: IO port B clock enabled

RM0401 Rev 3 117/771

RM0401 Reset and clock control (RCC)

134

5.3.9 RCC APB1 peripheral clock enable register (RCC_APB1ENR)

Address offset: 0x40

Reset value: 0x0000 0000

Access: no wait state, word, half-word and byte access.

Bit 0 GPIOAEN: IO port A clock enable

Set and cleared by software.
0: IO port A clock disabled
1: IO port A clock enabled

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res.
DAC
EN

PWR
EN

Res. Res. Res.
I2C4
EN

Res.
I2C2
EN

I2C1
EN

Res. Res. Res.
USART2

EN
Res.

rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SPI3
EN

SPI2
EN

Res. Res.
WWDG

EN
RTCAPB

EN
LPTIM1

EN
Res. Res. Res. Res.

TIM6
EN

TIM5
EN

Res. Res. Res.

rw rw rw rw rw rw rw

Bits 31:30 Reserved, must be kept at reset value.

Bit 29 DACEB: DAC interface clock enable

Set and cleared by software.
0: DAC interface clock disabled
1: DAC interface clock enable

Bit 28 PWREN: Power interface clock enable

Set and cleared by software.
0: Power interface clock disabled
1: Power interface clock enable

Bits 27:25 Reserved, must be kept at reset value.

Bit 24 I2C4EN: I2C4 clock enable

Set and cleared by software.
0: I2C4 clock disabled
1: I2C4 clock enabled

Bit 23 Reserved, must be kept at reset value.

Bit 22 I2C2EN: I2C2 clock enable

Set and cleared by software.
0: I2C2 clock disabled
1: I2C2 clock enabled

Bit 21 I2C1EN: I2C1 clock enable

Set and cleared by software.
0: I2C1 clock disabled
1: I2C1 clock enabled

Bits 20:18 Reserved, must be kept at reset value.

Reset and clock control (RCC) RM0401

118/771 RM0401 Rev 3

Bit 17 USART2EN: USART2 clock enable

Set and cleared by software.
0: USART2 clock disabled
1: USART2 clock enabled

Bits 16:15 Reserved, must be kept at reset value.

Bit 14 SPI2EN: SPI2 clock enable

Set and cleared by software.
0: SPI2 clock disabled
1: SPI2 clock enabled

Bits 13:12 Reserved, must be kept at reset value.

Bit 11 WWDGEN: Window watchdog clock enable

Set and cleared by software.
0: Window watchdog clock disabled
1: Window watchdog clock enabled

Bit 10 RTCAPBEN: RTC APB clock enable

Set and cleared by software.
0: RTC clock disabled
1: RTC clock enabled

Bit 9 LPTIM1EN: LPTIM1 clock enable

Set and cleared by software.
0: LPTIM1 clock disabled
1: LPTIM1 clock enabled

Bits 8:3 Reserved, must be kept at reset value.

Bit 4 TIM6EN: TIM6 clock enable

Set and cleared by software.
0: TIM6 clock disabled
1: TIM5 clock enabled

Bit 3 TIM5EN: TIM5 clock enable

Set and cleared by software.
0: TIM5 clock disabled
1: TIM5 clock enabled

Bits 2:0 Reserved, must be kept at reset value.

RM0401 Rev 3 119/771

RM0401 Reset and clock control (RCC)

134

5.3.10 RCC APB2 peripheral clock enable register
(RCC_APB2ENR)

Address offset: 0x44

Reset value: 0x0000 0000

Access: no wait state, word, half-word and byte access.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. SPI5EN Res.
TIM11

EN
Res.

TIM9
EN

rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EXTIEN
SYSCF
G EN

Res.
SPI1
EN

Res. Res. Res.
ADC1

EN
Res. Res.

USART6
EN

USART1
EN

Res. Res. Res.
TIM1
EN

rw rw rw rw rw rw rw

Bits 31:21 Reserved, must be kept at reset value.

Bit 20 SPI5EN:SPI5 clock enable

This bit is set and cleared by software
0: SPI5 clock disabled
1: SPI5 clock enabled

Bit 19 Reserved, must be kept at reset value.

Bit 18 TIM11EN: TIM11 clock enable

Set and cleared by software.
0: TIM11 clock disabled
1: TIM11 clock enabled

Bit 17 Reserved, must be kept at reset value.

Bit 16 TIM9EN: TIM9 clock enable

Set and cleared by software.
0: TIM9 clock disabled
1: TIM9 clock enabled

Bit 16 EXTIEN: System controller and external interrupt clock enable

Set and cleared by software.
0: EXTI clock disabled
1: EXTI clock enabled

Bit 14 SYSCFGEN: System configuration controller clock enable

Set and cleared by software.
0: System configuration controller clock disabled
1: System configuration controller clock enabled

Bit 13 Reserved, must be kept at reset value.

Bit 12 SPI1EN: SPI1 clock enable

Set and cleared by software.
0: SPI1 clock disabled
1: SPI1 clock enabled

Bits 11:9 Reserved, must be kept at reset value.

Reset and clock control (RCC) RM0401

120/771 RM0401 Rev 3

Bit 8 ADC1EN: ADC1 clock enable

Set and cleared by software.
0: ADC1 clock disabled
1: ADC1 clock disabled

Bits 7:6 Reserved, must be kept at reset value.

Bit 5 USART6EN: USART6 clock enable

Set and cleared by software.
0: USART6 clock disabled
1: USART6 clock enabled

Bit 4 USART1EN: USART1 clock enable

Set and cleared by software.
0: USART1 clock disabled
1: USART1 clock enabled

Bits 3:1 Reserved, must be kept at reset value.

Bit 0 TIM1EN: TIM1 clock enable

Set and cleared by software.
0: TIM1 clock disabled
1: TIM1 clock enabled

RM0401 Rev 3 121/771

RM0401 Reset and clock control (RCC)

134

5.3.11 RCC AHB1 peripheral clock enable in low power mode register
(RCC_AHB1LPENR)

Address offset: 0x50

Reset value: 0x0061 900F

Access: no wait state, word, half-word and byte access.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RNG
LPEN

Res. Res. Res. Res. Res. Res. Res. Res.
DMA2
LPEN

DMA1
LPEN

Res. Res. Res. Res.
SRAM1
LPEN

rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

FLITF
LPEN

Res. Res.
CRC
LPEN

Res. Res. Res. Res.
GPIOH
LPEN

Res. Res. Res. Res.
GPIOC
LPEN

GPIOB
LPEN

GPIOA
LPEN

rw rw rw rw rw rw

Bit 31 RNGPEN: RNG clock enable during Sleep mode

Set and cleared by software.
0: RNG clock disabled during Sleep mode
1: RNG clock enabled during Sleep mode

Bits 30:23 Reserved, must be kept at reset value.

Bit 22 DMA2LPEN: DMA2 clock enable during Sleep mode

Set and cleared by software.
0: DMA2 clock disabled during Sleep mode
1: DMA2 clock enabled during Sleep mode

Bit 21 DMA1LPEN: DMA1 clock enable during Sleep mode

Set and cleared by software.
0: DMA1 clock disabled during Sleep mode
1: DMA1 clock enabled during Sleep mode

Bits 20:17 Reserved, must be kept at reset value.

Bit 16 SRAM1LPEN: SRAM1interface clock enable during Sleep mode

Set and cleared by software.
0: SRAM1 interface clock disabled during Sleep mode
1: SRAM1 interface clock enabled during Sleep mode

Bit 15 FLITFLPEN: Flash interface clock enable during Sleep mode

Set and cleared by software.
0: Flash interface clock disabled during Sleep mode
1: Flash interface clock enabled during Sleep mode

Bits 14:13 Reserved, must be kept at reset value.

Bit 12 CRCLPEN: CRC clock enable during Sleep mode

Set and cleared by software.
0: CRC clock disabled during Sleep mode
1: CRC clock enabled during Sleep mode

Bits 11:8 Reserved, must be kept at reset value.

Reset and clock control (RCC) RM0401

122/771 RM0401 Rev 3

Bit 7 GPIOHLPEN: IO port H clock enable during sleep mode

Set and reset by software.

0: IO port H clock disabled during sleep mode

1: IO port H clock enabled during sleep mode

Bits 6:3 Reserved, must be kept at reset value.

Bit 2 GPIOCLPEN: IO port C clock enable during Sleep mode

Set and cleared by software.
0: IO port C clock disabled during Sleep mode
1: IO port C clock enabled during Sleep mode

Bit 1 GPIOBLPEN: IO port B clock enable during Sleep mode

Set and cleared by software.
0: IO port B clock disabled during Sleep mode
1: IO port B clock enabled during Sleep mode

Bit 0 GPIOALPEN: IO port A clock enable during sleep mode

Set and cleared by software.
0: IO port A clock disabled during Sleep mode
1: IO port A clock enabled during Sleep mode

RM0401 Rev 3 123/771

RM0401 Reset and clock control (RCC)

134

5.3.12 RCC APB1 peripheral clock enable in low power mode register
(RCC_APB1LPENR)

Address offset: 0x60

Reset value: 0x10E2 C80F

Access: no wait state, word, half-word and byte access.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res.
DAC
LPEN

PWR
LPEN

Res. Res. Res.
I2C4
LPEN

Res.
I2C2
LPEN

I2C1
LPEN

Res. Res. Res.
USART2

LPEN
Res.

rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res.
SPI2
LPEN

Res. Res.
WWDG
LPEN

RTCAPB
LPEN

LPTIM1
LPEN

Res. Res. Res. Res.
TIM6
LPEN

TIM5
LPEN

Res. Res. Res.

rw rw rw rw rw rw

Bits 31:30 Reserved, must be kept at reset value.

Bit 29 DACLPEN: DAC interface clock enable during Sleep mode

Set and cleared by software.
0: DAC interface clock disabled during Sleep mode
1: DAC interface clock enabled during Sleep mode

Bit 28 PWRLPEN: Power interface clock enable during Sleep mode

Set and cleared by software.
0: Power interface clock disabled during Sleep mode
1: Power interface clock enabled during Sleep mode

Bits 27:25 Reserved, must be kept at reset value.

Bit 24 I2C4LPEN: I2C4 clock enable during Sleep mode

Set and cleared by software.
0: I2C4 clock disabled during Sleep mode
1: I2C4 clock enabled during Sleep mode

Bit 23 Reserved, must be kept at reset value.

Bit 22 I2C2LPEN: I2C2 clock enable during Sleep mode

Set and cleared by software.
0: I2C2 clock disabled during Sleep mode
1: I2C2 clock enabled during Sleep mode

Bit 21 I2C1LPEN: I2C1 clock enable during Sleep mode

Set and cleared by software.
0: I2C1 clock disabled during Sleep mode
1: I2C1 clock enabled during Sleep mode

Bits 20:18 Reserved, must be kept at reset value.

Bit 17 USART2LPEN: USART2 clock enable during Sleep mode

Set and cleared by software.
0: USART2 clock disabled during Sleep mode
1: USART2 clock enabled during Sleep mode

Bits 16:15 Reserved, must be kept at reset value.

Reset and clock control (RCC) RM0401

124/771 RM0401 Rev 3

Bit 14 SPI2LPEN: SPI2 clock enable during Sleep mode

Set and cleared by software.
0: SPI2 clock disabled during Sleep mode
1: SPI2 clock enabled during Sleep mode

Bits 13:12 Reserved, must be kept at reset value.

Bit 11 WWDGLPEN: Window watchdog clock enable during Sleep mode

Set and cleared by software.
0: Window watchdog clock disabled during sleep mode
1: Window watchdog clock enabled during sleep mode

Bit 10 RTCAPBLPEN: RTC APB clock enable during Sleep mode

Set and cleared by software.
0: RTC watchdog clock disabled during sleep mode
1: RTC watchdog clock enabled during sleep mode

Bit 9 LPTIM1LPEN: LPTIM1 clock enable during Sleep mode

Set and cleared by software.
0: LPTIM1 clock disabled during sleep mode
1: LPTIM1 clock enabled during sleep mode

Bits 8:5 Reserved, must be kept at reset value.

Bit 4 TIM6LPEN: TIM6 clock enable during Sleep mode

Set and cleared by software.
0: TIM6 clock disabled during Sleep mode
1: TIM6 clock enabled during Sleep mode

Bit 3 TIM5LPEN: TIM5 clock enable during Sleep mode

Set and cleared by software.
0: TIM5 clock disabled during Sleep mode
1: TIM5 clock enabled during Sleep mode

Bits 2:0 Reserved, must be kept at reset value.

RM0401 Rev 3 125/771

RM0401 Reset and clock control (RCC)

134

5.3.13 RCC APB2 peripheral clock enabled in low power mode register
(RCC_APB2LPENR)

Address offset: 0x64

Reset value: 0x0007 7930

Access: no wait state, word, half-word and byte access.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.
SPI5
LPEN

Res.
TIM11
LPEN

Res.
TIM9
LPEN

rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EXTI
LPEN

SYSC
FG

LPEN
Res.

SPI1
LPEN

Res. Res. Res.
ADC1
LPEN

Res. Res.
USART6

LPEN
USART1

LPEN
Res. Res. Res.

TIM1
LPEN

rw rw rw rw rw rw rw

Bits 31:21 Reserved, must be kept at reset value.

Bit 20 SPI5LPEN: SPI5 clock enable during Sleep mode

This bit is set and cleared by software
0: SPI5 clock disabled during Sleep mode
1: SPI5 clock enabled during Sleep mode

Bit 19 Reserved, must be kept at reset value.

Bit 18 TIM11LPEN: TIM11 clock enable during Sleep mode

Set and cleared by software.
0: TIM11 clock disabled during Sleep mode
1: TIM11 clock enabled during Sleep mode

Bit 17 Reserved, must be kept at reset value.

Bit 16 TIM9LPEN: TIM9 clock enable during sleep mode

Set and cleared by software.
0: TIM9 clock disabled during Sleep mode
1: TIM9 clock enabled during Sleep mode

Bit 15 EXTILPEN: System controller and external interrupt clock enable during sleep mode

Set and cleared by software.
0: EXTI clock disabled during Sleep mode
1: EXTI clock enabled during Sleep mode

Bit 14 SYSCFGLPEN: System configuration controller clock enable during Sleep mode

Set and cleared by software.
0: System configuration controller clock disabled during Sleep mode
1: System configuration controller clock enabled during Sleep mode

Bit 13 Reserved, must be kept at reset value.

Bit 12 SPI1LPEN: SPI1 clock enable during Sleep mode

Set and cleared by software.
0: SPI1 clock disabled during Sleep mode
1: SPI1 clock enabled during Sleep mode

Bits 11:9 Reserved, must be kept at reset value.

Reset and clock control (RCC) RM0401

126/771 RM0401 Rev 3

Bit 8 ADC1LPEN: ADC1 clock enable during Sleep mode

Set and cleared by software.
0: ADC1 clock disabled during Sleep mode
1: ADC1 clock disabled during Sleep mode

Bits 7:6 Reserved, must be kept at reset value.

Bit 5 USART6LPEN: USART6 clock enable during Sleep mode

Set and cleared by software.
0: USART6 clock disabled during Sleep mode
1: USART6 clock enabled during Sleep mode

Bit 4 USART1LPEN: USART1 clock enable during Sleep mode

Set and cleared by software.
0: USART1 clock disabled during Sleep mode
1: USART1 clock enabled during Sleep mode

Bits 3:1 Reserved, must be kept at reset value.

Bit 0 TIM1LPEN: TIM1 clock enable during Sleep mode

Set and cleared by software.
0: TIM1 clock disabled during Sleep mode
1: TIM1 clock enabled during Sleep mode

RM0401 Rev 3 127/771

RM0401 Reset and clock control (RCC)

134

5.3.14 RCC Backup domain control register (RCC_BDCR)

Address offset: 0x70

Reset value: 0x0000 0000, reset by Backup domain reset.
Access: 0 ≤ wait state ≤ 3, word, half-word and byte access
Wait states are inserted in case of successive accesses to this register.

The LSEON, LSEBYP, RTCSEL and RTCEN bits in the Section 5.3.14: RCC Backup
domain control register (RCC_BDCR) are in the Backup domain. As a result, after Reset,
these bits are write-protected and the DBP bit in the Section 4.4.1: PWR power control
register (PWR_CR) has to be set before these can be modified. Refer to Section 5.1.2:
Power reset for further information. These bits are only reset after a Backup domain Reset
(see Section 5.1.3: Backup domain reset). Any internal or external Reset will not have any
effect on these bits.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. BDRST

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RTCEN Res. Res. Res. Res. Res. RTCSEL[1:0] Res. Res. Res. Res. LSEMO
D

LSEBYP LSERDY LSEON

rw rw rw rw r rw

Bits 31:17 Reserved, must be kept at reset value.

Bit 16 BDRST: Backup domain software reset

Set and cleared by software.
0: Reset not activated
1: Resets the entire Backup domain

Bit 15 RTCEN: RTC clock enable

Set and cleared by software.
0: RTC clock disabled
1: RTC clock enabled

Bits 14:10 Reserved, must be kept at reset value.

Bits 9:8 RTCSEL[1:0]: RTC clock source selection

Set by software to select the clock source for the RTC. Once the RTC clock source has been
selected, it cannot be changed anymore unless the Backup domain is reset. The BDRST bit
can be used to reset them.
00: No clock
01: LSE oscillator clock used as the RTC clock
10: LSI oscillator clock used as the RTC clock
11: HSE oscillator clock divided by a programmable prescaler (selection through the
RTCPRE[4:0] bits in the RCC clock configuration register (RCC_CFGR)) used as the RTC
clock

Bits 7:4 Reserved, must be kept at reset value.

Bit 3 LSEMOD: External low-speed oscillator bypass

Set and reset by software to select crystal mode for low speed oscillator. Two power modes
are available.
0: LSE oscillator “low power” mode selection
1: LSE oscillator “high drive” mode selection

Reset and clock control (RCC) RM0401

128/771 RM0401 Rev 3

5.3.15 RCC clock control & status register (RCC_CSR)

Address offset: 0x74

Reset value: 0x0E00 0000, reset by system reset, except reset flags by power reset only.

Access: 0 ≤ wait state ≤ 3, word, half-word and byte access

Wait states are inserted in case of successive accesses to this register.

Bit 2 LSEBYP: External low-speed oscillator bypass

Set and cleared by software to bypass oscillator in debug mode. This bit can be written only
when the LSE clock is disabled.
0: LSE oscillator not bypassed
1: LSE oscillator bypassed

Bit 1 LSERDY: External low-speed oscillator ready

Set and cleared by hardware to indicate when the external 32 kHz oscillator is stable. After
the LSEON bit is cleared, LSERDY goes low after 6 external low-speed oscillator clock
cycles.
0: LSE clock not ready
1: LSE clock ready

Bit 0 LSEON: External low-speed oscillator enable

Set and cleared by software.
0: LSE clock OFF
1: LSE clock ON

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

LPWR
RSTF

WWDG
RSTF

IWDG
RSTF

SFT
RSTF

POR
RSTF

PIN
RSTF

BORRS
TF

RMVF Res. Res. Res. Res. Res. Res. Res. Res.

r r r r r r r rt_w

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. LSIRDY LSION

r rw

Bit 31 LPWRRSTF: Low-power reset flag

Set by hardware when a Low-power management reset occurs.
Cleared by writing to the RMVF bit.
0: No Low-power management reset occurred
1: Low-power management reset occurred
For further information on Low-power management reset, refer to Low-power management
reset.

Bit 30 WWDGRSTF: Window watchdog reset flag

Set by hardware when a window watchdog reset occurs.
Cleared by writing to the RMVF bit.
0: No window watchdog reset occurred
1: Window watchdog reset occurred

Bit 29 IWDGRSTF: Independent watchdog reset flag

Set by hardware when an independent watchdog reset from VDD domain occurs.
Cleared by writing to the RMVF bit.
0: No watchdog reset occurred
1: Watchdog reset occurred

RM0401 Rev 3 129/771

RM0401 Reset and clock control (RCC)

134

Bit 28 SFTRSTF: Software reset flag

Set by hardware when a software reset occurs.
Cleared by writing to the RMVF bit.
0: No software reset occurred
1: Software reset occurred

Bit 27 PORRSTF: POR/PDR reset flag

Set by hardware when a POR/PDR reset occurs.
Cleared by writing to the RMVF bit.
0: No POR/PDR reset occurred
1: POR/PDR reset occurred

Bit 26 PINRSTF: PIN reset flag

Set by hardware when a reset from the NRST pin occurs.
Cleared by writing to the RMVF bit.
0: No reset from NRST pin occurred
1: Reset from NRST pin occurred

Bit 25 BORRSTF: BOR reset flag

Cleared by software by writing the RMVF bit.
Set by hardware when a POR/PDR or BOR reset occurs.
0: No POR/PDR or BOR reset occurred
1: POR/PDR or BOR reset occurred

Bit 24 RMVF: Remove reset flag

Set by software to clear the reset flags.
0: No effect
1: Clear the reset flags

Bits 23:2 Reserved, must be kept at reset value.

Bit 1 LSIRDY: Internal low-speed oscillator ready

Set and cleared by hardware to indicate when the internal RC 40 kHz oscillator is stable.
After the LSION bit is cleared, LSIRDY goes low after 3 LSI clock cycles.
0: LSI RC oscillator not ready
1: LSI RC oscillator ready

Bit 0 LSION: Internal low-speed oscillator enable

Set and cleared by software.
0: LSI RC oscillator OFF
1: LSI RC oscillator ON

Reset and clock control (RCC) RM0401

130/771 RM0401 Rev 3

5.3.16 RCC spread spectrum clock generation register (RCC_SSCGR)

Address offset: 0x80

Reset value: 0x0000 0000

Access: no wait state, word, half-word and byte access.

The spread spectrum clock generation is available only for the main PLL.

The RCC_SSCGR register must be written either before the main PLL is enabled or after
the main PLL disabled.

Note: For full details about PLL spread spectrum clock generation (SSCG) characteristics, refer to
the “Electrical characteristics” section in your device datasheet.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

SSCG
EN

SPR
EAD
SEL

Res. Res. INCSTEP

rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

INCSTEP MODPER

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 31 SSCGEN: Spread spectrum modulation enable

Set and cleared by software.
0: Spread spectrum modulation DISABLE. (To write after clearing CR[24]=PLLON bit)
1: Spread spectrum modulation ENABLE. (To write before setting CR[24]=PLLON bit)

Bit 30 SPREADSEL: Spread Select

Set and cleared by software.
To write before to set CR[24]=PLLON bit.
0: Center spread
1: Down spread

Bits 29:28 Reserved, must be kept at reset value.

Bits 27:13 INCSTEP: Incrementation step

Set and cleared by software. To write before setting CR[24]=PLLON bit.
Configuration input for modulation profile amplitude.

Bits 12:0 MODPER: Modulation period

Set and cleared by software. To write before setting CR[24]=PLLON bit.
Configuration input for modulation profile period.

RM0401 Rev 3 131/771

RM0401 Reset and clock control (RCC)

134

5.3.17 RCC Dedicated Clocks Configuration Register (RCC_DCKCFGR)

Address offset: 0x8C

Reset value: 0x0000 0000

Access: no wait state, word, half-word and byte access.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. I2SSCR TIMPRE Res. Res. Res. Res. Res. Res. Res. Res.

rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

Bits 31:27 Reserved, must be kept at reset value.

Bits 26:25 I2SSRC: I2S APB clock source selection

Set and reset by software to configure the frequency of the I2S clock. These bits must be
written when the PLL is disabled.
00: I2S clock frequency = fPPLCLK_R
01: I2S clock frequency = Alternate function input frequency
1x: I2S clock frequency = HSI/HSE depending on PLLRC (bit 22 of RCC_PLLCFGR
register)

Bit 24 TIMPRE: Timers clocks prescalers selection

Set and reset by software to control the clock frequency of all the timers connected to APB1
and APB2 domain.
0: If the APB prescaler (PPRE1, PPRE2 in the RCC_CFGR register) is configured to a
division factor of 1, TIMxCLK = HCKL. Otherwise, the timer clock frequencies are set to
twice to the frequency of the APB domain to which the timers are connected:
TIMxCLK = 2xPCLKx.
1:If the APB prescaler (PPRE1, PPRE2 in the RCC_CFGR register) is configured to a
division factor of 1 or 2, TIMxCLK = HCKL. Otherwise, the timer clock frequencies are set to
four times to the frequency of the APB domain to which the timers are connected:
TIMxCLK = 4xPCLKx.

Bits 23: 0 Reserved, must be kept at reset value.

Reset and clock control (RCC) RM0401

132/771 RM0401 Rev 3

5.3.18 RCC dedicated Clocks Configuration Register 2 (RCC_DCKCFGR2)

Address offset: 0x94

Reset value: 0x0000 0000

Access: no wait state, word, half-word and byte access.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

LPTIM1SEL Res. Res. Res. Res. Res. Res. I2C4SEL Res. Res. Res. Res. Res. Res.

rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

Bits 31:30 LPTIMSEL: LPTIM1 kernel clock source selection

Set and reset by software to select the LPTIM1 clock source.
00: LPTIM1 clock = APB clock
01: LPTIM1 clock = HSI clock
10: LPTIM1 clock = LSI clock
11: LPTIM1 clock = LSE clock

Bits 29:24 Reserved, must be kept at reset value.

Bits 23:22 I2C4SEL: I2C4 kernel clock source selection

Set and reset by software to select the I2C4 clock source.
00 and 11: I2C4 clock = APB clock
01: I2C4 clock = system clock
10: I2C4 clock = HSI clock

Bits 21: 0 Reserved, must be kept at reset value.

RM0401 Rev 3 133/771

RM0401 Reset and clock control (RCC)

134

5.3.19 RCC register map

Table 23 gives the register map and reset values

Table 23. RCC register map and reset values

Addr.
offset

Register
name 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x00 RCC_CR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

P
L

L
 R

D
Y

P
L

L
 O

N

R
es

.

R
es

.

R
es

.

R
es

.

C
S

S
O

N

H
S

E
B

Y
P

H
S

E
R

D
Y

H
S

E
O

N

H
S

IC
A

L
7

H
S

IC
A

L
6

H
S

IC
A

L
5

H
S

IC
A

L
4

H
S

IC
A

L
3

H
S

IC
A

L
2

H
S

IC
A

L
1

H
S

IC
A

L
0

H
S

IT
R

IM
 4

H
S

IT
R

IM
 3

H
S

IT
R

IM
 2

H
S

IT
R

IM
 1

H
S

IT
R

IM
 0

R
es

.

H
S

IR
D

Y

H
S

IO
N

0x04
RCC_

PLLCFGR

P
L

LR
3

P
L

LR
2

P
L

LR
1

P
L

L
Q

 3

P
L

L
Q

 2

P
L

L
Q

 1

P
L

L
Q

 0

R
es

.

P
L

L
S

R
C

R
es

.

R
es

.

R
es

.

R
es

.

P
L

LP
 1

P
L

LP
 0

R
es

.

P
LL

N
 8

P
LL

N
 7

P
LL

N
 6

P
LL

N
 5

P
LL

N
 4

P
LL

N
 3

P
LL

N
 2

P
LL

N
 1

P
LL

N
 0

P
L

L
M

 5

P
L

L
M

 4

P
L

L
M

 3

P
L

L
M

 2

P
L

L
M

 1

P
L

L
M

 0

0x08 RCC_CFGR

M
C

O
2

 1

M
C

O
2

 0

M
C

O
2

P
R

E
2

M
C

O
2

P
R

E
1

M
C

O
2

P
R

E
0

M
C

O
1

P
R

E
2

M
C

O
1

P
R

E
1

M
C

O
1

P
R

E
0

R
es

.

M
C

O
1

 1

M
C

O
1

 0

R
T

C
P

R
E

 4

R
T

C
P

R
E

 3

R
T

C
P

R
E

 2

R
T

C
P

R
E

 1

R
T

C
P

R
E

 0

P
P

R
E

2
 2

P
P

R
E

2
 1

 P
P

R
E

2
 0

 P
P

R
E

1
 2

P
P

R
E

1
 1

P
P

R
E

1
 0

M
C

O
2

E
N

M
C

O
1

E
N

H
P

R
E

 3

H
P

R
E

 2

H
P

R
E

 1

H
P

R
E

 0

S
W

S
 1

S
W

S
 0

S
W

 1

S
W

 0

0x0C RCC_CIR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

C
S

S
C

R
es

.

R
es

.

P
L

L
R

D
Y

C

H
S

E
R

D
Y

C

H
S

IR
D

Y
C

L
S

E
R

D
Y

C

LS
IR

D
Y

C

R
es

.

R
es

.

R
es

.

P
LL

R
D

Y
IE

H
S

E
R

D
Y

IE

H
S

IR
D

Y
IE

L
S

E
R

D
Y

IE

L
S

IR
D

Y
IE

C
S

S
F

R
es

.

R
es

.

P
LL

R
D

Y
F

H
S

E
R

D
Y

F

H
S

IR
D

Y
F

LS
E

R
D

Y
F

L
S

IR
D

Y
F

0x10
RCC_

AHB1RSTR

R
N

G
R

S
T

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

D
M

A
2

R
S

T

D
M

A
1

R
S

T

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

C
R

C
R

S
T

R
es

.

R
es

.

R
es

.

R
es

.

G
P

IO
H

R
S

T

R
es

.

R
es

.

R
es

.

R
es

.

G
P

IO
C

R
S

T

G
P

IO
B

R
S

T

G
P

IO
A

R
S

T

0x14 to
0x1C

Reserved

0x20
RCC_

APB1RSTR R
es

.

R
es

.

D
A

C
R

S
T

P
W

R
R

S
T

R
es

.

R
es

.

R
es

.

I2
C

4
R

S
T.

R
es

.

I2
C

2
R

S
T

I2
C

1
R

S
T

R
es

.

R
es

.

R
es

.

U
S

A
R

T
2R

S
T

R
es

.

R
es

.

S
P

I2
R

S
T

R
es

.

R
es

.

W
W

D
G

R
S

T

R
es

.

LP
T

IM
1R

S
T

R
es

.

R
es

.

R
es

.

R
es

.

T
IM

6R
S

T

T
IM

5R
S

T

R
es

.

R
es

.

R
es

.

0x24
RCC_

APB2RSTR R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

S
P

I5
R

S
T

R
es

.

T
IM

11
R

S
T

R
es

.

T
IM

9R
S

T

R
es

.

S
Y

S
C

F
G

R
S

T

R
es

.

S
P

I1
R

S
T

R
es

.

R
es

.

R
es

.

A
D

C
1

R
S

T

R
es

.

U
S

A
R

T
6

R
S

T

U
S

A
R

T
1

R
S

T

R
es

.

R
es

.

R
es

.

T
IM

1R
S

T
0x28 to
0x2C

Reserved

0x30
RCC_

AHB1ENR

R
N

G
E

N

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

D
M

A
2

E
N

D
M

A
1

E
N

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

C
R

C
E

N

R
es

.

R
es

.

R
es

.

R
es

.

G
P

IO
H

E
N

R
es

.

R
es

.

R
es

.

R
es

.

G
P

IO
C

E
N

G
P

IO
B

E
N

G
P

IO
A

E
N

0x34 to
0x3C

Reserved

0x40
RCC_

APB1ENR R
es

.

R
es

.

D
A

C
E

N

P
W

R
E

N

R
es

.

R
es

.

R
es

.

I2
C

4
E

N

R
es

.

I2
C

2
E

N

I2
C

1
E

N

R
es

.

R
es

.

R
es

.

U
S

A
R

T
2

E
N

R
es

.

R
es

.

S
P

I2
E

N

R
es

.

R
es

.

W
W

D
G

E
N

R
T

C
A

P
B

E
N

.

L
P

T
IM

1
E

N

R
es

.

R
es

.

R
es

.

R
es

.

T
IM

6
E

N

T
IM

5
E

N

R
es

.

R
es

.

R
es

.

0x44
RCC_

APB2ENR R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

S
P

I5
E

N

R
es

.

T
IM

11
E

N

R
es

.

T
IM

9E
N

E
X

T
IE

N

S
Y

S
C

F
G

E
N

R
es

.

S
P

I1
E

N

R
es

.

R
es

.

R
es

.

A
D

C
1

E
N

R
es

.

R
es

.

U
S

A
R

T
6E

N

U
S

A
R

T
1E

N

R
es

.

R
es

.

R
es

.

T
IM

1E
N

0x48 to
0x4C

Reserved

Reset and clock control (RCC) RM0401

134/771 RM0401 Rev 3

Refer to Section 2.2: Memory organization for the register boundary addresses.

0x50
RCC_AHB1L

PENR

R
N

G
LP

E
M

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

D
M

A
2

LP
E

N

D
M

A
1

LP
E

N

R
es

.

R
es

.

R
es

.

R
es

.

S
R

A
M

1L
P

E
N

F
LI

T
F

LP
E

N

R
es

.

R
es

.

C
R

C
L

P
E

N

R
es

.

R
es

.

R
es

.

R
es

.

G
P

IO
H

L
P

E
N

R
es

.

R
es

.

R
es

.

R
es

.

G
P

IO
C

L
P

E
N

G
P

IO
B

L
P

E
N

G
P

IO
A

L
P

E
N

0x54 to
0x5C

Reserved

0x60
RCC_APB1L

PENR R
es

.

R
es

.

D
A

C
L

P
E

M
.

P
W

R
LP

E
N

R
es

.

R
es

.

R
es

.

I2
C

4
LP

E
N

.

R
es

.

I2
C

2
L

P
E

N

I2
C

1
L

P
E

N

R
es

.

R
es

.

R
es

.

U
S

A
R

T
2L

P
E

N

R
es

.

R
es

.

S
P

I2
L

P
E

N

R
es

.

R
es

.

W
W

D
G

L
P

E
N

R
T

C
A

P
B

L
P

E
N

L
P

T
IM

1
L

P
E

M

R
es

.

R
es

.

R
es

.

R
es

.

T
IM

6
L

P
E

N
.

T
IM

5L
P

E
N

R
es

.

R
es

.

R
es

.

0x64
RCC_APB2L

PENR R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

S
P

I5
L

P
E

N

R
es

.

T
IM

11
L

P
E

N

R
es

.

T
IM

9
LP

E
N

.

E
X

T
IL

P
E

N
.

S
Y

S
C

F
G

LP
E

N

R
es

.

S
P

I1
L

P
E

N
.

R
es

.

R
es

.

R
es

.

A
D

C
1L

P
E

N

R
es

.

R
es

.

U
S

A
R

T
6

L
P

E
N

U
S

A
R

T
1

L
P

E
N

R
es

.

R
es

.

R
es

.

T
IM

1
LP

E
N

0x68 to
0x6C

Reserved

0x70 RCC_BDCR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

B
D

R
S

T

R
T

C
E

N

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
T

C
S

E
L

 1

R
T

C
S

E
L

 0

R
es

.

R
es

.

R
es

.

R
es

.

L
S

E
M

O
D

LS
E

B
Y

P

L
S

E
R

D
Y

LS
E

O
N

0x74 RCC_CSR

L
P

W
R

R
S

T
F

W
W

D
G

R
S

T
F

W
D

G
R

S
T

F

S
F

T
R

S
T

F

P
O

R
R

S
T

F

P
A

D
R

S
T

F

B
O

R
R

S
T

F

R
M

V
F

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

L
S

IR
D

Y

LS
IO

N

0x78 to
0x7C

Reserved

0x80 RCC_SSCGR

S
S

C
G

E
N

S
P

R
E

A
D

S
E

L

R
es

.

R
es

.

INCSTEP MODPER

0x84 to
0x88

Reserved

0x8C
RCC_

DCKCFGR R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

I2
S

S
C

R

T
IM

P
R

E

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

0x90 Reserved

0x94
RCC_

DCKCFGR2

L
P

T
IM

1
S

E
L

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

I2
C

4
S

E
L

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

Table 23. RCC register map and reset values (continued)

Addr.
offset

Register
name 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RM0401 Rev 3 135/771

RM0401 General-purpose I/Os (GPIO)

154

6 General-purpose I/Os (GPIO)

6.1 GPIO introduction

Each general-purpose I/O port has four 32-bit configuration registers (GPIOx_MODER,
GPIOx_OTYPER, GPIOx_OSPEEDR and GPIOx_PUPDR), two 32-bit data registers
(GPIOx_IDR and GPIOx_ODR), a 32-bit set/reset register (GPIOx_BSRR), a 32-bit locking
register (GPIOx_LCKR) and two 32-bit alternate function selection register (GPIOx_AFRH
and GPIOx_AFRL).

6.2 GPIO main features

• Up to 16 I/Os under control

• Output states: push-pull or open drain + pull-up/down

• Output data from output data register (GPIOx_ODR) or peripheral (alternate function
output)

• Speed selection for each I/O

• Input states: floating, pull-up/down, analog

• Input data to input data register (GPIOx_IDR) or peripheral (alternate function input)

• Bit set and reset register (GPIOx_BSRR) for bitwise write access to GPIOx_ODR

• Locking mechanism (GPIOx_LCKR) provided to freeze the I/O configuration

• Analog function

• Alternate function input/output selection registers (at most 16 AFs per I/O)

• Fast toggle capable of changing every two clock cycles

• Highly flexible pin multiplexing allows the use of I/O pins as GPIOs or as one of several
peripheral functions

6.3 GPIO functional description

Subject to the specific hardware characteristics of each I/O port listed in the datasheet, each
port bit of the general-purpose I/O (GPIO) ports can be individually configured by software in
several modes:

• Input floating

• Input pull-up

• Input-pull-down

• Analog

• Output open-drain with pull-up or pull-down capability

• Output push-pull with pull-up or pull-down capability

• Alternate function push-pull with pull-up or pull-down capability

• Alternate function open-drain with pull-up or pull-down capability

Each I/O port bit is freely programmable, however the I/O port registers have to be
accessed as 32-bit words, half-words or bytes. The purpose of the GPIOx_BSRR register is
to allow atomic read/modify accesses to any of the GPIO registers. In this way, there is no
risk of an IRQ occurring between the read and the modify access.

General-purpose I/Os (GPIO) RM0401

136/771 RM0401 Rev 3

Figure 16 shows the basic structure of a 5 V tolerant I/O port bit. Table 27 gives the possible
port bit configurations.

Figure 16. Basic structure of a five-volt tolerant I/O port bit

1. VDD_FT is a potential specific to five-volt tolerant I/Os and different from VDD.

Table 24. Port bit configuration table(1)

MODER(i)
[1:0]

OTYPER(i)
OSPEEDR(i)

[B:A]
PUPDR(i)

[1:0]
I/O configuration

01

0

SPEED

[B:A]

0 0 GP output PP

0 0 1 GP output PP + PU

0 1 0 GP output PP + PD

0 1 1 Reserved

1 0 0 GP output OD

1 0 1 GP output OD + PU

1 1 0 GP output OD + PD

1 1 1 Reserved (GP output OD)

RM0401 Rev 3 137/771

RM0401 General-purpose I/Os (GPIO)

154

6.3.1 General-purpose I/O (GPIO)

During and just after reset, the alternate functions are not active and the I/O ports are
configured in input floating mode.

The debug pins are in AF pull-up/pull-down after reset:

• PA15: JTDI in pull-up

• PA14: JTCK/SWCLK in pull-down

• PA13: JTMS/SWDAT in pull-up

• PB4: NJTRST in pull-up

• PB3: JTDO in floating state

When the pin is configured as output, the value written to the output data register
(GPIOx_ODR) is output on the I/O pin. It is possible to use the output driver in push-pull
mode or open-drain mode (only the N-MOS is activated when 0 is output).

The input data register (GPIOx_IDR) captures the data present on the I/O pin at every AHB1
clock cycle.

All GPIO pins have weak internal pull-up and pull-down resistors, which can be activated or
not depending on the value in the GPIOx_PUPDR register.

10

0

SPEED

[B:A]

0 0 AF PP

0 0 1 AF PP + PU

0 1 0 AF PP + PD

0 1 1 Reserved

1 0 0 AF OD

1 0 1 AF OD + PU

1 1 0 AF OD + PD

1 1 1 Reserved

00

x x x 0 0 Input Floating

x x x 0 1 Input PU

x x x 1 0 Input PD

x x x 1 1 Reserved (input floating)

11

x x x 0 0 Input/output Analog

x x x 0 1

Reservedx x x 1 0

x x x 1 1

1. GP = general-purpose, PP = push-pull, PU = pull-up, PD = pull-down, OD = open-drain, AF = alternate
function.

Table 24. Port bit configuration table(1) (continued)

MODER(i)
[1:0]

OTYPER(i)
OSPEEDR(i)

[B:A]
PUPDR(i)

[1:0]
I/O configuration

General-purpose I/Os (GPIO) RM0401

138/771 RM0401 Rev 3

6.3.2 I/O pin multiplexer and mapping

The microcontroller I/O pins are connected to onboard peripherals/modules through a
multiplexer that allows only one peripherals alternate function (AF) connected to an I/O pin
at a time. In this way, there can be no conflict between peripherals sharing the same I/O pin.

Each I/O pin has a multiplexer with sixteen alternate function inputs (AF0 to AF15) that can
be configured through the GPIOx_AFRL (for pin 0 to 7) and GPIOx_AFRH (for pin 8 to 15)
registers:

• After reset all I/Os are connected to the system’s alternate function 0 (AF0)

• The peripherals’ alternate functions are mapped from AF1 to AF13

• Cortex®-M4 with FPU EVENTOUT is mapped on AF15

This structure is shown in Figure 17 below.

In addition to this flexible I/O multiplexing architecture, each peripheral has alternate
functions mapped onto different I/O pins to optimize the number of peripherals available in
smaller packages.

To use an I/O in a given configuration, proceed as follows:

• System function

Connect the I/O to AF0 and configure it depending on the function used:

– JTAG/SWD, after each device reset these pins are assigned as dedicated pins
immediately usable by the debugger host (not controlled by the GPIO controller)

– RTC_REFIN: this pin should be configured in Input floating mode

– MCO1 and MCO2: these pins have to be configured in alternate function mode.

Note: You can disable some or all of the JTAG/SWD pins and so release the associated pins for
GPIO usage.

For more details please refer to Section 5.2.10: Clock-out capability.

RM0401 Rev 3 139/771

RM0401 General-purpose I/Os (GPIO)

154

• GPIO

Configure the desired I/O as output or input in the GPIOx_MODER register.

• Peripheral alternate function

For the ADC configure the desired I/O as analog in the GPIOx_MODER register.

For other peripherals:

– Configure the desired I/O as an alternate function in the GPIOx_MODER register

– Select the type, pull-up/pull-down and output speed via the GPIOx_OTYPER,
GPIOx_PUPDR and GPIOx_OSPEEDER registers, respectively

– Connect the I/O to the desired AFx in the GPIOx_AFRL or GPIOx_AFRH register

• EVENTOUT

Configure the I/O pin used to output the Cortex®-M4 with FPU EVENTOUT signal by
connecting it to AF15

Please refer to the “Alternate function mapping” table in the datasheets for the detailed
mapping of the system and peripherals’ alternate function I/O pins.

Table 25. Flexible SWJ-DP pin assignment

Available debug ports

SWJ I/O pin assigned

PA13 /
JTMS/
SWDIO

PA14 /
JTCK/

SWCLK

PA15 /
JTDI

PB3 /
JTDO

PB4/
NJTRST

Full SWJ (JTAG-DP + SW-DP) - Reset state X X X X X

Full SWJ (JTAG-DP + SW-DP) but without
NJTRST

X X X X

JTAG-DP Disabled and SW-DP Enabled X X

JTAG-DP Disabled and SW-DP Disabled Released

General-purpose I/Os (GPIO) RM0401

140/771 RM0401 Rev 3

Figure 17. Selecting an alternate function

1. Configured in FS.

6.3.3 I/O port control registers

Each of the GPIOs has four 32-bit memory-mapped control registers (GPIOx_MODER,
GPIOx_OTYPER, GPIOx_OSPEEDR, GPIOx_PUPDR) to configure up to 16 I/Os.

The GPIOx_MODER register is used to select the I/O direction (input, output, AF, analog).
The GPIOx_OTYPER and GPIOx_OSPEEDR registers are used to select the output type
(push-pull or open-drain) and speed (the I/O speed pins are directly connected to the
corresponding GPIOx_OSPEEDR register bits whatever the I/O direction). The
GPIOx_PUPDR register is used to select the pull-up/pull-down whatever the I/O direction.

RM0401 Rev 3 141/771

RM0401 General-purpose I/Os (GPIO)

154

6.3.4 I/O port data registers

Each GPIO has two 16-bit memory-mapped data registers: input and output data registers
(GPIOx_IDR and GPIOx_ODR). GPIOx_ODR stores the data to be output, it is read/write
accessible. The data input through the I/O are stored into the input data register
(GPIOx_IDR), a read-only register.

See Section 6.4.5: GPIO port input data register (GPIOx_IDR) (x = A..C and H) and
Section 6.4.6: GPIO port output data register (GPIOx_ODR) (x = A..C and H) for the register
descriptions.

6.3.5 I/O data bitwise handling

The bit set reset register (GPIOx_BSRR) is a 32-bit register which allows the application to
set and reset each individual bit in the output data register (GPIOx_ODR). The bit set reset
register has twice the size of GPIOx_ODR.

To each bit in GPIOx_ODR, correspond two control bits in GPIOx_BSRR: BSRR(i) and
BSRR(i+SIZE). When written to 1, bit BSRR(i) sets the corresponding ODR(i) bit. When
written to 1, bit BSRR(i+SIZE) resets the ODR(i) corresponding bit.

Writing any bit to 0 in GPIOx_BSRR does not have any effect on the corresponding bit in
GPIOx_ODR. If there is an attempt to both set and reset a bit in GPIOx_BSRR, the set
action takes priority.

Using the GPIOx_BSRR register to change the values of individual bits in GPIOx_ODR is a
“one-shot” effect that does not lock the GPIOx_ODR bits. The GPIOx_ODR bits can always
be accessed directly. The GPIOx_BSRR register provides a way of performing atomic
bitwise handling.

There is no need for the software to disable interrupts when programming the GPIOx_ODR
at bit level: it is possible to modify one or more bits in a single atomic AHB1 write access.

6.3.6 GPIO locking mechanism

It is possible to freeze the GPIO control registers by applying a specific write sequence to
the GPIOx_LCKR register. The frozen registers are GPIOx_MODER, GPIOx_OTYPER,
GPIOx_OSPEEDR, GPIOx_PUPDR, GPIOx_AFRL and GPIOx_AFRH.

To write the GPIOx_LCKR register, a specific write / read sequence has to be applied. When
the right LOCK sequence is applied to bit 16 in this register, the value of LCKR[15:0] is used
to lock the configuration of the I/Os (during the write sequence the LCKR[15:0] value must
be the same). When the LOCK sequence has been applied to a port bit, the value of the port
bit can no longer be modified until the next MCU or peripheral reset. Each GPIOx_LCKR bit
freezes the corresponding bit in the control registers (GPIOx_MODER, GPIOx_OTYPER,
GPIOx_OSPEEDR, GPIOx_PUPDR, GPIOx_AFRL and GPIOx_AFRH).

The LOCK sequence (refer to Section 6.4.8: GPIO port configuration lock register
(GPIOx_LCKR) (x = A..C and H)) can only be performed using a word (32-bit long) access
to the GPIOx_LCKR register due to the fact that GPIOx_LCKR bit 16 has to be set at the
same time as the [15:0] bits.

For more details please refer to LCKR register description in Section 6.4.8: GPIO port
configuration lock register (GPIOx_LCKR) (x = A..C and H).

General-purpose I/Os (GPIO) RM0401

142/771 RM0401 Rev 3

6.3.7 I/O alternate function input/output

Two registers are provided to select one out of the sixteen alternate function inputs/outputs
available for each I/O. With these registers, you can connect an alternate function to some
other pin as required by your application.
This means that a number of possible peripheral functions are multiplexed on each GPIO
using the GPIOx_AFRL and GPIOx_AFRH alternate function registers. The application can
thus select any one of the possible functions for each I/O. The AF selection signal being
common to the alternate function input and alternate function output, a single channel is
selected for the alternate function input/output of one I/O.

To know which functions are multiplexed on each GPIO pin, refer to the datasheets.

Note: The application is allowed to select one of the possible peripheral functions for each I/O at a
time.

6.3.8 External interrupt/wakeup lines

All ports have external interrupt capability. To use external interrupt lines, the port must be
configured in input mode, refer to Section 12.2: External interrupt/event controller (EXTI)
and Section 12.2.3: Wakeup event management.

6.3.9 Input configuration

When the I/O port is programmed as Input:

• the output buffer is disabled

• the Schmitt trigger input is activated

• the pull-up and pull-down resistors are activated depending on the value in the
GPIOx_PUPDR register

• The data present on the I/O pin are sampled into the input data register every AHB1
clock cycle

• A read access to the input data register provides the I/O State

Figure 18 shows the input configuration of the I/O port bit.

Figure 18. Input floating/pull up/pull down configurations

RM0401 Rev 3 143/771

RM0401 General-purpose I/Os (GPIO)

154

6.3.10 Output configuration

When the I/O port is programmed as output:

• The output buffer is enabled:

– Open drain mode: A “0” in the Output register activates the N-MOS whereas a “1”
in the Output register leaves the port in Hi-Z (the P-MOS is never activated)

– Push-pull mode: A “0” in the Output register activates the N-MOS whereas a “1” in
the Output register activates the P-MOS

• The Schmitt trigger input is activated

• The weak pull-up and pull-down resistors are activated or not depending on the value
in the GPIOx_PUPDR register

• The data present on the I/O pin are sampled into the input data register every AHB1
clock cycle

• A read access to the input data register gets the I/O state

• A read access to the output data register gets the last written value

Figure 19 shows the output configuration of the I/O port bit.

Figure 19. Output configuration

6.3.11 Alternate function configuration

When the I/O port is programmed as alternate function:

• The output buffer can be configured as open-drain or push-pull

• The output buffer is driven by the signal coming from the peripheral (transmitter enable
and data)

• The Schmitt trigger input is activated

• The weak pull-up and pull-down resistors are activated or not depending on the value
in the GPIOx_PUPDR register

• The data present on the I/O pin are sampled into the input data register every AHB1
clock cycle

• A read access to the input data register gets the I/O state

Figure 20 shows the Alternate function configuration of the I/O port bit.

General-purpose I/Os (GPIO) RM0401

144/771 RM0401 Rev 3

Figure 20. Alternate function configuration

6.3.12 Analog configuration

When the I/O port is programmed as analog configuration:

• The output buffer is disabled

• The Schmitt trigger input is deactivated, providing zero consumption for every analog
value of the I/O pin. The output of the Schmitt trigger is forced to a constant value (0).

• The weak pull-up and pull-down resistors are disabled

• Read access to the input data register gets the value “0”

Note: In the analog configuration, the I/O pins cannot be 5 Volt tolerant.

Figure 21 shows the high-impedance, analog-input configuration of the I/O port bit.

Figure 21. High impedance-analog configuration

RM0401 Rev 3 145/771

RM0401 General-purpose I/Os (GPIO)

154

6.3.13 Using the OSC32_IN/OSC32_OUT pins as GPIO PC14/PC15
port pins

The LSE oscillator pins OSC32_IN and OSC32_OUT can be used as general-purpose
PC14 and PC15 I/Os, respectively, when the LSE oscillator is off. The PC14 and PC15 I/Os
are only configured as LSE oscillator pins OSC32_IN and OSC32_OUT when the LSE
oscillator is ON. This is done by setting the LSEON bit in the RCC_BDCR register. The LSE
has priority over the GPIO function.

Note: The PC14/PC15 GPIO functionality is lost when the 1.2 V domain is powered off (by the
device entering the standby mode) or when the backup domain is supplied by VBAT (VDD no
more supplied). In this case the I/Os are set in analog input mode.

6.3.14 Using the OSC_IN/OSC_OUT pins as GPIO PH0/PH1 port pins

The HSE oscillator pins OSC_IN/OSC_OUT can be used as general-purpose PH0/PH1
I/Os, respectively, when the HSE oscillator is OFF. (after reset, the HSE oscillator is off). The
PH0/PH1 I/Os are only configured as OSC_IN/OSC_OUT HSE oscillator pins when the
HSE oscillator is ON. This is done by setting the HSEON bit in the RCC_CR register. The
HSE has priority over the GPIO function.

6.3.15 Selection of RTC additional functions

The devices feature one GPIO pin, RTC_AF1 (PC13), that can be used for the detection to
a tamper event, a time stamp event, an RTC_ALARM or an RTC_CALIB:

• RTC_ALARM output: this output can be RTC Alarm A, RTC Alarm B or RTC Wakeup
depending on the value of OSEL[1:0] bits in the RTC_CR register

• RTC_CALIB output: this feature is enabled by setting the COE[23] in the RTC_CR
register

• RTC_TAMP1: tamper event detection

• RTC_TS: time stamp event detection

The selection of the corresponding pin is performed through the RTC_TAFCR register as
follows:

• TAMP1INSEL is used to select which pin is used as the RTC_TAMP1 tamper input

• TSINSEL is used to select which pin is used as the RTC_TS time stamp input

• ALARMOUTTYPE is used to select whether the RTC_ALARM is output in push-pull or
open-drain mode

The output mechanism follows the priority order listed in Table 26.

Table 26. RTC additional functions(1)

Pin
configuration
and function

RTC_ALARM
enabled

RTC_CALIB
enabled

Tamper
enabled

Time
stamp

enabled

TAMP1INSEL
TAMPER1

pin selection

TSINSEL
TIMESTAMP

pin
selection

ALARMOUTTYPE
RTC_ALARM
configuration

Alarm out
output OD

1 Don’t care
Don’t
care

Don’t
care

Don’t care Don’t care 0

Alarm out
output PP

1 Don’t care
Don’t
care

Don’t
care

Don’t care Don’t care 1

General-purpose I/Os (GPIO) RM0401

146/771 RM0401 Rev 3

Calibration
out output PP

0 1
Don’t
care

Don’t
care

Don’t care Don’t care Don’t care

TAMPER1
input floating

0 0 1 0 0 Don’t care Don’t care

TIMESTAMP
and
TAMPER1
input floating

0 0 1 1 0 0 Don’t care

TIMESTAMP
input floating

0 0 0 1 Don’t care 0 Don’t care

Standard
GPIO

0 0 0 0 Don’t care Don’t care Don’t care

1. OD: open drain; PP: push-pull.

Table 26. RTC additional functions(1) (continued)

Pin
configuration
and function

RTC_ALARM
enabled

RTC_CALIB
enabled

Tamper
enabled

Time
stamp

enabled

TAMP1INSEL
TAMPER1

pin selection

TSINSEL
TIMESTAMP

pin
selection

ALARMOUTTYPE
RTC_ALARM
configuration

RM0401 Rev 3 147/771

RM0401 General-purpose I/Os (GPIO)

154

6.4 GPIO registers

This section gives a detailed description of the GPIO registers.
For a summary of register bits, register address offsets and reset values, refer to Table 27.

The GPIO registers can be accessed by byte (8 bits), half-words (16 bits) or words (32 bits).

6.4.1 GPIO port mode register (GPIOx_MODER) (x = A..C and H)

Address offset: 0x00

Reset values:

• 0x0C00 0000 for port A

• 0x0000 0280 for port B

• 0x0000 0000 for other ports

6.4.2 GPIO port output type register (GPIOx_OTYPER)
(x = A..C and H)

Address offset: 0x04

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

MODER15[1:0] MODER14[1:0] MODER13[1:0] MODER12[1:0] MODER11[1:0] MODER10[1:0] MODER9[1:0] MODER8[1:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MODER7[1:0] MODER6[1:0] MODER5[1:0] MODER4[1:0] MODER3[1:0] MODER2[1:0] MODER1[1:0] MODER0[1:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 2y:2y+1 MODERy[1:0]: Port x configuration bits (y = 0..15)

These bits are written by software to configure the I/O direction mode.
00: Input (reset state)
01: General purpose output mode
10: Alternate function mode
11: Analog mode

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OT15 OT14 OT13 OT12 OT11 OT10 OT9 OT8 OT7 OT6 OT5 OT4 OT3 OT2 OT1 OT0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 OTy: Port x configuration bits (y = 0..15)

These bits are written by software to configure the output type of the I/O port.
0: Output push-pull (reset state)
1: Output open-drain

General-purpose I/Os (GPIO) RM0401

148/771 RM0401 Rev 3

6.4.3 GPIO port output speed register (GPIOx_OSPEEDR)
(x = A..C and H)

Address offset: 0x08

Reset values:

• 0x0C00 0000 for port A

• 0x0000 00C0 for port B

• 0x0000 0000 for other ports

6.4.4 GPIO port pull-up/pull-down register (GPIOx_PUPDR)
(x = A..C and H)

Address offset: 0x0C

Reset values:

• 0x6400 0000 for port A

• 0x0000 0100 for port B

• 0x0000 0000 for other ports

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

OSPEEDR15
[1:0]

OSPEEDR14
[1:0]

OSPEEDR13
[1:0]

OSPEEDR12
[1:0]

OSPEEDR11
[1:0]

OSPEEDR10
[1:0]

OSPEEDR9
[1:0]

OSPEEDR8
[1:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OSPEEDR7[1:0] OSPEEDR6[1:0] OSPEEDR5[1:0] OSPEEDR4[1:0] OSPEEDR3[1:0] OSPEEDR2[1:0]
OSPEEDR1

[1:0]
OSPEEDR0

1:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 2y:2y+1 OSPEEDRy[1:0]: Port x configuration bits (y = 0..15)

These bits are written by software to configure the I/O output speed.
00: Low speed
01: Medium speed
10: High speed
11: Very high speed

Note: Refer to the product datasheets for the values of OSPEEDRy bits versus VDD
range and external load.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

PUPDR15[1:0] PUPDR14[1:0] PUPDR13[1:0] PUPDR12[1:0] PUPDR11[1:0] PUPDR10[1:0] PUPDR9[1:0] PUPDR8[1:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PUPDR7[1:0] PUPDR6[1:0] PUPDR5[1:0] PUPDR4[1:0] PUPDR3[1:0] PUPDR2[1:0] PUPDR1[1:0] PUPDR0[1:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 2y:2y+1 PUPDRy[1:0]: Port x configuration bits (y = 0..15)

These bits are written by software to configure the I/O pull-up or pull-down
00: No pull-up, pull-down
01: Pull-up
10: Pull-down
11: Reserved

RM0401 Rev 3 149/771

RM0401 General-purpose I/Os (GPIO)

154

6.4.5 GPIO port input data register (GPIOx_IDR) (x = A..C and H)

Address offset: 0x10

Reset value: 0x0000 XXXX (where X means undefined)

6.4.6 GPIO port output data register (GPIOx_ODR) (x = A..C and H)

Address offset: 0x14

Reset value: 0x0000 0000

6.4.7 GPIO port bit set/reset register (GPIOx_BSRR) (x = A..C and H)

Address offset: 0x18

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

IDR15 IDR14 IDR13 IDR12 IDR11 IDR10 IDR9 IDR8 IDR7 IDR6 IDR5 IDR4 IDR3 IDR2 IDR1 IDR0

r r r r r r r r r r r r r r r r

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 IDRy: Port input data (y = 0..15)

These bits are read-only and can be accessed in word mode only. They contain the input
value of the corresponding I/O port.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ODR15 ODR14 ODR13 ODR12 ODR11 ODR10 ODR9 ODR8 ODR7 ODR6 ODR5 ODR4 ODR3 ODR2 ODR1 ODR0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 ODRy: Port output data (y = 0..15)

These bits can be read and written by software.

Note: For atomic bit set/reset, the ODR bits can be individually set and reset by writing to the
GPIOx_BSRR register (x = A..C and H).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

BR15 BR14 BR13 BR12 BR11 BR10 BR9 BR8 BR7 BR6 BR5 BR4 BR3 BR2 BR1 BR0

w w w w w w w w w w w w w w w w

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BS15 BS14 BS13 BS12 BS11 BS10 BS9 BS8 BS7 BS6 BS5 BS4 BS3 BS2 BS1 BS0

w w w w w w w w w w w w w w w w

General-purpose I/Os (GPIO) RM0401

150/771 RM0401 Rev 3

6.4.8 GPIO port configuration lock register (GPIOx_LCKR)
(x = A..C and H)

This register is used to lock the configuration of the port bits when a correct write sequence
is applied to bit 16 (LCKK). The value of bits [15:0] is used to lock the configuration of the
GPIO. During the write sequence, the value of LCKR[15:0] must not change. When the
LOCK sequence has been applied on a port bit, the value of this port bit can no longer be
modified until the next MCU or peripheral reset.

Note: A specific write sequence is used to write to the GPIOx_LCKR register. Only word access
(32-bit long) is allowed during this write sequence.

Each lock bit freezes a specific configuration register (control and alternate function
registers).

Address offset: 0x1C

Reset value: 0x0000 0000

Access: 32-bit word only, read/write register

Bits 31:16 BRy: Port x reset bit y (y = 0..15)

These bits are write-only and can be accessed in word, half-word or byte mode. A read to
these bits returns the value 0x0000.
0: No action on the corresponding ODRx bit
1: Resets the corresponding ODRx bit

Note: If both BSx and BRx are set, BSx has priority.

Bits 15:0 BSy: Port x set bit y (y= 0..15)

These bits are write-only and can be accessed in word, half-word or byte mode. A read to
these bits returns the value 0x0000.
0: No action on the corresponding ODRx bit
1: Sets the corresponding ODRx bit

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. LCKK

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

LCK15 LCK14 LCK13 LCK12 LCK11 LCK10 LCK9 LCK8 LCK7 LCK6 LCK5 LCK4 LCK3 LCK2 LCK1 LCK0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

RM0401 Rev 3 151/771

RM0401 General-purpose I/Os (GPIO)

154

6.4.9 GPIO alternate function low register (GPIOx_AFRL) (x = A..C and H)

Address offset: 0x20

Reset value: 0x0000 0000

Bits 31:17 Reserved, must be kept at reset value.

Bit 16 LCKK[16]: Lock key

This bit can be read any time. It can only be modified using the lock key write sequence.
0: Port configuration lock key not active
1: Port configuration lock key active. The GPIOx_LCKR register is locked until an MCU reset
or a peripheral reset occurs.

LOCK key write sequence:
WR LCKR[16] = ‘1’ + LCKR[15:0]
WR LCKR[16] = ‘0’ + LCKR[15:0]
WR LCKR[16] = ‘1’ + LCKR[15:0]
RD LCKR
RD LCKR[16] = ‘1’ (this read operation is optional but it confirms that the lock is active)

Note: During the LOCK key write sequence, the value of LCK[15:0] must not change.

Any error in the lock sequence aborts the lock.

After the first lock sequence on any bit of the port, any read access on the LCKK bit will
return ‘1’ until the next CPU reset.

Bits 15:0 LCKy: Port x lock bit y (y= 0..15)

These bits are read/write but can only be written when the LCKK bit is ‘0.
0: Port configuration not locked
1: Port configuration locked

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

AFRL7[3:0] AFRL6[3:0] AFRL5[3:0] AFRL4[3:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AFRL3[3:0] AFRL2[3:0] AFRL1[3:0] AFRL0[3:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:0 AFRLy: Alternate function selection for port x bit y (y = 0..7)

These bits are written by software to configure alternate function I/Os

AFRLy selection:
0000: AF0
0001: AF1
0010: AF2
0011: AF3
0100: AF4
0101: AF5
0110: AF6
0111: AF7

1000: AF8
1001: AF9
1010: AF10
1011: AF11
1100: AF12
1101: AF13
1110: AF14
1111: AF15

General-purpose I/Os (GPIO) RM0401

152/771 RM0401 Rev 3

6.4.10 GPIO alternate function high register (GPIOx_AFRH)
(x = A..C and H)

Address offset: 0x24

Reset value: 0x0000 0000

6.4.11 GPIO register map

The following table gives the GPIO register map and the reset values.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

AFRH15[3:0] AFRH14[3:0] AFRH13[3:0] AFRH12[3:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

AFRH11[3:0] AFRH10[3:0] AFRH9[3:0] AFRH8[3:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:0 AFRHy: Alternate function selection for port x bit y (y = 8..15)

These bits are written by software to configure alternate function I/Os

AFRHy selection:
0000: AF0
0001: AF1
0010: AF2
0011: AF3
0100: AF4
0101: AF5
0110: AF6
0111: AF7

1000: AF8
1001: AF9
1010: AF10
1011: AF11
1100: AF12
1101: AF13
1110: AF14
1111: AF15

Table 27. GPIO register map and reset values

Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0x00

GPIOA_
MODER

M
O

D
E

R
1

5[
1

:0
]

M
O

D
E

R
1

4[
1

:0
]

M
O

D
E

R
1

3[
1

:0
]

M
O

D
E

R
1

2[
1

:0
]

M
O

D
E

R
11

[1
:0

]

M
O

D
E

R
1

0[
1

:0
]

M
O

D
E

R
9

[1
:0

]

M
O

D
E

R
8

[1
:0

]

M
O

D
E

R
7

[1
:0

]

M
O

D
E

R
6

[1
:0

]

M
O

D
E

R
5

[1
:0

]

M
O

D
E

R
4

[1
:0

]

M
O

D
E

R
3

[1
:0

]

M
O

D
E

R
2

[1
:0

]

M
O

D
E

R
1

[1
:0

]

M
O

D
E

R
0

[1
:0

]

Reset value 0

0x00
GPIOB_
MODER

M
O

D
E

R
15

[1
:0

]

M
O

D
E

R
14

[1
:0

]

M
O

D
E

R
13

[1
:0

]

M
O

D
E

R
12

[1
:0

]

M
O

D
E

R
11

[1
:0

]

M
O

D
E

R
10

[1
:0

]

M
O

D
E

R
9

[1
:0

]

M
O

D
E

R
8

[1
:0

]

M
O

D
E

R
7

[1
:0

]

M
O

D
E

R
6

[1
:0

]

M
O

D
E

R
5

[1
:0

]

M
O

D
E

R
4

[1
:0

]

M
O

D
E

R
3

[1
:0

]

M
O

D
E

R
2

[1
:0

]

M
O

D
E

R
1

[1
:0

]

M
O

D
E

R
0

[1
:0

]

Reset value 0 1 0 1 0 0 0 0 0 0 0

0x00

GPIOx_MODER
(where x = C

and H)

M
O

D
E

R
1

5
[1

:0
]

M
O

D
E

R
1

4
[1

:0
]

M
O

D
E

R
1

3
[1

:0
]

M
O

D
E

R
1

2
[1

:0
]

M
O

D
E

R
11

[1
:0

]

M
O

D
E

R
1

0
[1

:0
]

M
O

D
E

R
9[

1:
0

]

M
O

D
E

R
8[

1:
0

]

M
O

D
E

R
7[

1:
0

]

M
O

D
E

R
6[

1:
0

]

M
O

D
E

R
5[

1:
0

]

M
O

D
E

R
4[

1:
0

]

M
O

D
E

R
3[

1:
0

]

M
O

D
E

R
2[

1:
0

]

M
O

D
E

R
1[

1:
0

]

M
O

D
E

R
0[

1:
0

]

Reset value 0

RM0401 Rev 3 153/771

RM0401 General-purpose I/Os (GPIO)

154

0x04

GPIOx_
OTYPER

(where x = A..C
and H)

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

O
T

1
5

O
T

1
4

O
T

1
3

O
T

1
2

O
T

11

O
T

1
0

O
T

9

O
T

8

O
T

7

O
T

6

O
T

5

O
T

4

O
T

3

O
T

2

O
T

1

O
T

0

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x08

GPIOx_
OSPEEDER

(where x = A..C
and H)

O
S

P
E

E
D

R
1

5[
1:

0
]

O
S

P
E

E
D

R
1

4[
1:

0
]

O
S

P
E

E
D

R
1

3[
1:

0
]

O
S

P
E

E
D

R
1

2[
1:

0
]

O
S

P
E

E
D

R
11

[1
:0

]

O
S

P
E

E
D

R
1

0[
1:

0
]

O
S

P
E

E
D

R
9

[1
:0

]

O
S

P
E

E
D

R
8

[1
:0

]

O
S

P
E

E
D

R
7

[1
:0

]

O
S

P
E

E
D

R
6

[1
:0

]

O
S

P
E

E
D

R
5

[1
:0

]

O
S

P
E

E
D

R
4

[1
:0

]

O
S

P
E

E
D

R
3

[1
:0

]

O
S

P
E

E
D

R
2

[1
:0

]

O
S

P
E

E
D

R
1

[1
:0

]

O
S

P
E

E
D

R
0

[1
:0

]

Reset value 0

0x08
GPIOA_

OSPEEDER

O
S

P
E

E
D

R
1

5
[1

:0
]

O
S

P
E

E
D

R
1

4
[1

:0
]

O
S

P
E

E
D

R
1

3
[1

:0
]

O
S

P
E

E
D

R
1

2
[1

:0
]

O
S

P
E

E
D

R
11

[1
:0

]

O
S

P
E

E
D

R
1

0
[1

:0
]

O
S

P
E

E
D

R
9

[1
:0

]

O
S

P
E

E
D

R
8

[1
:0

]

O
S

P
E

E
D

R
7

[1
:0

]

O
S

P
E

E
D

R
6

[1
:0

]

O
S

P
E

E
D

R
5

[1
:0

]

O
S

P
E

E
D

R
4

[1
:0

]

O
S

P
E

E
D

R
3

[1
:0

]

O
S

P
E

E
D

R
2

[1
:0

]

O
S

P
E

E
D

R
1

[1
:0

]

O
S

P
E

E
D

R
0

[1
:0

]

Reset value 0 0 0 0 1 1 0

0x08
GPIOB_

OSPEEDER

O
S

P
E

E
D

R
1

5
[1

:0
]

O
S

P
E

E
D

R
1

4
[1

:0
]

O
S

P
E

E
D

R
1

3
[1

:0
]

O
S

P
E

E
D

R
1

2
[1

:0
]

O
S

P
E

E
D

R
11

[1
:0

]

O
S

P
E

E
D

R
1

0
[1

:0
]

O
S

P
E

E
D

R
9

[1
:0

]

O
S

P
E

E
D

R
8

[1
:0

]

O
S

P
E

E
D

R
7

[1
:0

]

O
S

P
E

E
D

R
6

[1
:0

]

O
S

P
E

E
D

R
5

[1
:0

]

O
S

P
E

E
D

R
4

[1
:0

]

O
S

P
E

E
D

R
3

[1
:0

]

O
S

P
E

E
D

R
2

[1
:0

]

O
S

P
E

E
D

R
1

[1
:0

]

O
S

P
E

E
D

R
0

[1
:0

]

Reset value 0 1 1 0 0 0 0 0 0

0x0C
GPIOA_PUPDR

P
U

P
D

R
1

5
[1

:0
]

P
U

P
D

R
1

4
[1

:0
]

P
U

P
D

R
1

3
[1

:0
]

P
U

P
D

R
1

2
[1

:0
]

P
U

P
D

R
11

[1
:0

]

P
U

P
D

R
1

0
[1

:0
]

P
U

P
D

R
9

[1
:0

]

P
U

P
D

R
8

[1
:0

]

P
U

P
D

R
7

[1
:0

]

P
U

P
D

R
6

[1
:0

]

P
U

P
D

R
5

[1
:0

]

P
U

P
D

R
4

[1
:0

]

P
U

P
D

R
3

[1
:0

]

P
U

P
D

R
2

[1
:0

]

P
U

P
D

R
1

[1
:0

]

P
U

P
D

R
0

[1
:0

]

Reset value 0 1 1 0 0 1 0

0x0C
GPIOB_PUPDR

P
U

P
D

R
1

5
[1

:0
]

P
U

P
D

R
1

4
[1

:0
]

P
U

P
D

R
1

3
[1

:0
]

P
U

P
D

R
1

2
[1

:0
]

P
U

P
D

R
11

[1
:0

]

P
U

P
D

R
1

0
[1

:0
]

P
U

P
D

R
9

[1
:0

]

P
U

P
D

R
8

[1
:0

]

P
U

P
D

R
7

[1
:0

]

P
U

P
D

R
6

[1
:0

]

P
U

P
D

R
5

[1
:0

]

P
U

P
D

R
4

[1
:0

]

P
U

P
D

R
3

[1
:0

]

P
U

P
D

R
2

[1
:0

]

P
U

P
D

R
1

[1
:0

]

P
U

P
D

R
0

[1
:0

]
Reset value 0 1 0 0 0 0 0 0 0 0

0x0C

GPIOx_PUPDR
(where x = A..C

and H)

P
U

P
D

R
1

5
[1

:0
]

P
U

P
D

R
1

4
[1

:0
]

P
U

P
D

R
1

3
[1

:0
]

P
U

P
D

R
1

2
[1

:0
]

P
U

P
D

R
11

[1
:0

]

P
U

P
D

R
1

0
[1

:0
]

P
U

P
D

R
9

[1
:0

]

P
U

P
D

R
8

[1
:0

]

P
U

P
D

R
7

[1
:0

]

P
U

P
D

R
6

[1
:0

]

P
U

P
D

R
5

[1
:0

]

P
U

P
D

R
4

[1
:0

]

P
U

P
D

R
3

[1
:0

]

P
U

P
D

R
2

[1
:0

]

P
U

P
D

R
1

[1
:0

]

P
U

P
D

R
0

[1
:0

]

Reset value 0

0x10

GPIOx_IDR
(where x =A..C

and H) R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

ID
R

1
5

ID
R

1
4

ID
R

1
3

ID
R

1
2

ID
R

11

ID
R

1
0

ID
R

9

ID
R

8

ID
R

7

ID
R

6

ID
R

5

ID
R

4

ID
R

3

ID
R

2

ID
R

1

ID
R

0

Reset value x x x x x x x x x x x x x x x x

0x14

GPIOx_ODR
(where x =A..C

and H) R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

O
D

R
1

5

O
D

R
1

4

O
D

R
1

3

O
D

R
1

2

O
D

R
11

O
D

R
1

0

O
D

R
9

O
D

R
8

O
D

R
7

O
D

R
6

O
D

R
5

O
D

R
4

O
D

R
3

O
D

R
2

O
D

R
1

O
D

R
0

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x18

GPIOx_BSRR
(where x =A..C

and H) B
R

1
5

B
R

1
4

B
R

1
3

B
R

1
2

B
R

11

B
R

1
0

B
R

9

B
R

8

B
R

7

B
R

6

B
R

5

B
R

4

B
R

3

B
R

2

B
R

1

B
R

0

B
S

1
5

B
S

1
4

B
S

1
3

B
S

1
2

B
S

11

B
S

1
0

B
S

9

B
S

8

B
S

7

B
S

6

B
S

5

B
S

4

B
S

3

B
S

2

B
S

1

B
S

0

Reset value 0

Table 27. GPIO register map and reset values (continued)

Offset Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

General-purpose I/Os (GPIO) RM0401

154/771 RM0401 Rev 3

Refer to Section 2.2 on page 41 for the register boundary addresses.

0x1C

GPIOx_LCKR
(where x =A..C

and H) R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

L
C

K
K

L
C

K
15

L
C

K
14

L
C

K
13

L
C

K
12

L
C

K
11

L
C

K
10

LC
K

9

LC
K

8

LC
K

7

LC
K

6

LC
K

5

LC
K

4

LC
K

3

LC
K

2

LC
K

1

LC
K

0

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x20

GPIOx_AFRL
(where x =A..C

and H)
AFRL7[3:0] AFRL6[3:0] AFRL5[3:0] AFRL4[3:0] AFRL3[3:0] AFRL2[3:0] AFRL1[3:0] AFRL0[3:0]

Reset value 0

0x24

GPIOx_AFRH
(where x =A..C

and H)
AFRH15[3:0] AFRH14[3:0] AFRH13[3:0] AFRH12[3:0] AFRH11[3:0] AFRH10[3:0] AFRH9[3:0] AFRH8[3:0]

Reset value 0

Table 27. GPIO register map and reset values (continued)

Offset Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

RM0401 Rev 3 155/771

RM0401 System configuration controller (SYSCFG)

161

7 System configuration controller (SYSCFG)

The system configuration controller is mainly used to remap the memory accessible in the
code area and manage the external interrupt line connection to the GPIOs.

7.1 I/O compensation cell

By default the I/O compensation cell is not used. However when the I/O output buffer speed
is configured in 50 MHz or 100 MHz mode, it is recommended to use the compensation cell
for slew rate control on I/O tf(IO)out)/tr(IO)out commutation to reduce the I/O noise on power
supply.

When the compensation cell is enabled, a READY flag is set to indicate that the
compensation cell is ready and can be used. The I/O compensation cell can be used only
when the supply voltage ranges from 2.4 to 3.6 V.

7.2 SYSCFG registers

7.2.1 SYSCFG memory remap register (SYSCFG_MEMRMP)

This register is used for specific configurations on memory remap:

• Two bits are used to configure the type of memory accessible at address 0x0000 0000.
These bits are used to select the physical remap by software and so, bypass the BOOT
pins.

• After reset these bits take the value selected by the BOOT pins. When booting from
main Flash memory with BOOT0 pin set to 0, this register takes the value 0x00.

In remap mode, the CPU can access the external memory via ICode bus instead of System
bus which boosts up the performance.

Address offset: 0x00

Reset value: 0x0000 000X (X is the memory mode selected by the BOOT pins)

)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. MEM_MODE

rw rw

System configuration controller (SYSCFG) RM0401

156/771 RM0401 Rev 3

7.2.2 SYSCFG peripheral mode configuration register (SYSCFG_PMC)

Address offset: 0x04

Reset value: 0x0000 0000

Bits 31:2 Reserved, must be kept at reset value.

Bits 1:0 MEM_MODE: Memory mapping selection

Set and cleared by software. This bit controls the memory internal mapping at
address 0x0000 0000. After reset these bits take the value selected by the Boot
pins.
00: Main Flash memory mapped at 0x0000 0000
01: System Flash memory mapped at 0x0000 0000
10: reserved
11: Embedded SRAM mapped at 0x0000 0000

Note: Refer to Figure 2: Memory map for details about the memory mapping at
address 0x0000 0000.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.
ADC1D

C2

rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

Bits 31:17 Reserved, must be kept at reset value.

Bit 16 ADC1DC2:

0: No effect.
1: Refer to AN4073 on how to use this bit

Note: These bits can be set only if the following conditions are met:

- ADC clock higher or equal to 30 MHz.

- Only one ADC1DC2 bit must be selected if ADC conversions do not start
at the same time and the sampling times differ.

- These bits must not be set when the ADCDC1 bit is set in PWR_CR
register.

Bits 15:0 Reserved, must be kept at reset value.

RM0401 Rev 3 157/771

RM0401 System configuration controller (SYSCFG)

161

7.2.3 SYSCFG external interrupt configuration register 1
(SYSCFG_EXTICR1)

Address offset: 0x08

Reset value: 0x0000 0000

7.2.4 SYSCFG external interrupt configuration register 2
(SYSCFG_EXTICR2)

Address offset: 0x0C

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EXTI3[3:0] EXTI2[3:0] EXTI1[3:0] EXTI0[3:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 EXTIx[3:0]: EXTI x configuration (x = 0 to 3)

These bits are written by software to select the source input for the EXTIx
external interrupt.
0000: PA[x] pin
0001: PB[x] pin
0010: PC[x] pin
0111: PH[x] pin
Other configurations: reserved

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EXTI7[3:0] EXTI6[3:0] EXTI5[3:0] EXTI4[3:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 EXTIx[3:0]: EXTI x configuration (x = 4 to 7)

These bits are written by software to select the source input for the EXTIx
external interrupt.
0000: PA[x] pin
0001: PB[x] pin
0010: PC[x] pin
0111: PH[x] pin
Other configurations: reserved

System configuration controller (SYSCFG) RM0401

158/771 RM0401 Rev 3

7.2.5 SYSCFG external interrupt configuration register 3
(SYSCFG_EXTICR3)

Address offset: 0x10

Reset value: 0x0000 0000

7.2.6 SYSCFG external interrupt configuration register 4
(SYSCFG_EXTICR4)

Address offset: 0x14

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EXTI11[3:0] EXTI10[3:0] EXTI9[3:0] EXTI8[3:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 EXTIx[3:0]: EXTI x configuration (x = 8 to 11)

These bits are written by software to select the source input for the EXTIx external
interrupt.
0000: PA[x] pin
0001: PB[x] pin
0010: PC[x] pin
0101: Reserved
0110: Reserved
0111: PH[x] pin
Other configurations: reserved

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

EXTI15[3:0] EXTI14[3:0] EXTI13[3:0] EXTI12[3:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 EXTIx[3:0]: EXTI x configuration (x = 12 to 15)

These bits are written by software to select the source input for the EXTIx external
interrupt.
0000: PA[x] pin
0001: PB[x] pin
0010: PC[x] pin
0101: Reserved
0110: Reserved
0111: PH[x] pin

RM0401 Rev 3 159/771

RM0401 System configuration controller (SYSCFG)

161

7.2.7 SYSCFG configuration register 2 (SYSCFG_CFGR2)

Address offset: 0x1C

Reset value: 0x0000 0000

7.2.8 Compensation cell control register (SYSCFG_CMPCR)

Address offset: 0x20

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. PVDL Res. CLL

rw rw

Bits 31:3 Reserved, must be kept at reset value.

Bit 8 PVDL: PVD lock

This bit is set by software. It can be cleared only by a system reset. It enables and
locks the PVD connection to TIM1 Break input. It also locks (write protection) the
PVDE and PVDS[2:0] bits of PWR_CR register.
0: PVD interrupt not connected to TIM1 Break input. PVDE and PVDS[2:0] can be
read and modified
1: PVD interrupt connected to TIM1 Break input. PVDE and PVDS[2:0] are read-only

Bit 1 Reserved, must be kept at reset value.

Bit 0 CLL: core lockup lock

This bit is set and cleared by software. It enables and locks the LOCKUP (Hardfault)
output of the Cortex-M4 core with TIM1 Break input.
0: Cortex-M4 LOCKUP output not connected to TIM1 Break input
1: Cortex-M4 LOCKUP output connected to TIM1 Break input

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. READY Res. Res. Res. Res. Res. Res. Res. CMP_PD

r rw

System configuration controller (SYSCFG) RM0401

160/771 RM0401 Rev 3

7.2.9 Compensation cell control register (SYSCFG_CFGR)

Address offset: 0x2C

Reset value: 0x0000 0000

Bits 31:9 Reserved, must be kept at reset value.

Bit 8 READY: Compensation cell ready flag

0: I/O compensation cell not ready
1: O compensation cell ready

Bits 7:2 Reserved, must be kept at reset value.

Bit 0 CMP_PD: Compensation cell power-down

0: I/O compensation cell power-down mode
1: I/O compensation cell enabled

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.
FMPI2C4

_SDA
FMPI2C4_

SCL

rw rw

Bits 31:2 Reserved, must be kept at reset value.

Bit 1 FMPI2C4_SDA

Set and cleared by software. When this bit is set, it forces FM+ drive capability on
FMPI2C4_SDA pin selected through GPIO port mode register and GPIO alternate
function selection bits.

Bit 0 FMPI2C4_SCL

Set and cleared by software. When this bit is set, it forces FM+ drive capability on
FMPI2C4_SCL pin selected through GPIO port mode register and GPIO alternate
function selection bits.

RM0401 Rev 3 161/771

RM0401 System configuration controller (SYSCFG)

161

7.2.10 SYSCFG register map

The following table gives the SYSCFG register map and the reset values.

Refer to Section 2.2 on page 41 for the register boundary addresses.

Table 28. SYSCFG register map and reset values

Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x00
SYSCFG_
MEMRMP R

es
.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

M
E

M
_

M
O

D
E

Reset value x x

0x04
SYSCFG_PMC

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

A
D

C
1

D
C

2

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

Reset value 0

0x08
SYSCFG_EXTICR1

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

EXTI3[3:0] EXTI2[3:0] EXTI1[3:0] EXTI0[3:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x0C
SYSCFG_EXTICR2

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

EXTI7[3:0] EXTI6[3:0] EXTI5[3:0] EXTI4[3:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x10
SYSCFG_EXTICR3

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

EXTI11[3:0] EXTI10[3:0] EXTI9[3:0] EXTI8[3:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x14
SYSCFG_EXTICR4

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

EXTI15[3:0] EXTI14[3:0] EXTI13[3:0] EXTI12[3:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x1C
SYSCFG_CFGR2

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

P
V

D
L

R
es

.

C
L

L

Reset value 0 0

0x20
SYSCFG_CMPCR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
E

A
D

Y

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

C
M

P
_

P
D

Reset value 0 0

0x24
SYSCFG_CFGR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

F
M

P
I2

C
4_

S
D

A

F
M

P
I2

C
4

_
S

C
L

Reset value 0 0

Direct memory access controller (DMA) RM0401

162/771 RM0401 Rev 3

8 Direct memory access controller (DMA)

8.1 DMA introduction

Direct memory access (DMA) is used in order to provide high-speed data transfer between
peripherals and memory and between memory and memory. Data can be quickly moved by
DMA without any CPU action. This keeps CPU resources free for other operations.

The DMA controller combines a powerful dual AHB master bus architecture with
independent FIFO to optimize the bandwidth of the system, based on a complex bus matrix
architecture.

The two DMA controllers (DMA1 and DMA2) have 16 streams in total (8 for each controller),
each dedicated to managing memory access requests from one or more peripherals.

Each stream can have up to 8 channels (requests) in total.

Each DMA controller has an arbiter for handling the priority between DMA requests.

8.2 DMA main features

The main DMA features are:

• Dual AHB master bus architecture, one dedicated to memory accesses and one
dedicated to peripheral accesses

• AHB slave programming interface supporting only 32-bit accesses

• 8 streams for each DMA controller, up to 8 channels (requests) per stream

• Four-word depth 32 first-in, first-out memory buffers (FIFOs) per stream, that can be
used in FIFO mode or direct mode:

– FIFO mode: with threshold level software selectable between 1/4, 1/2 or 3/4 of the
FIFO size

– Direct mode: each DMA request immediately initiates a transfer from/to the
memory. When it is configured in direct mode (FIFO disabled), to transfer data in
memory-to-peripheral mode, the DMA preloads only one data from the memory to
the internal FIFO to ensure an immediate data transfer as soon as a DMA request
is triggered by a peripheral.

• Each stream can be configured to be:

– a regular channel that supports peripheral-to-memory, memory-to-peripheral and
memory-to-memory transfers

– a double buffer channel that also supports double buffering on the memory side

• Priorities between DMA stream requests are software-programmable (4 levels
consisting of very high, high, medium, low) or hardware in case of equality (for
example, request 0 has priority over request 1)

• Each stream also supports software trigger for memory-to-memory transfers (only
available for the DMA2 controller)

• Each stream request can be selected among up to 8 possible channel requests. This
selection is software-configurable and allows several peripherals to initiate DMA
requests

• The number of data items to be transferred can be managed either by the DMA
controller or by the peripheral:

RM0401 Rev 3 163/771

RM0401 Direct memory access controller (DMA)

197

– DMA flow controller: the number of data items to be transferred is software-
programmable from 1 to 65535

– Peripheral flow controller: the number of data items to be transferred is unknown
and controlled by the source or the destination peripheral that signals the end of
the transfer by hardware

• Independent source and destination transfer width (byte, half-word, word): when the
data widths of the source and destination are not equal, the DMA automatically
packs/unpacks the necessary transfers to optimize the bandwidth. This feature is only
available in FIFO mode

• Incrementing or non-incrementing addressing for source and destination

• Supports incremental burst transfers of 4, 8 or 16 beats. The size of the burst is
software-configurable, usually equal to half the FIFO size of the peripheral

• Each stream supports circular buffer management

• 5 event flags (DMA half transfer, DMA transfer complete, DMA transfer error, DMA
FIFO error, direct mode error) logically ORed together in a single interrupt request for
each stream

Direct memory access controller (DMA) RM0401

164/771 RM0401 Rev 3

8.3 DMA functional description

8.3.1 DMA block diagram

Figure 22 shows the block diagram of a DMA.

Figure 22. DMA block diagram

8.3.2 DMA overview

The DMA controller performs direct memory transfer: as an AHB master, it can take the
control of the AHB bus matrix to initiate AHB transactions.

It carries out the following transactions:

• peripheral-to-memory

• memory-to-peripheral

• memory-to-memory

The DMA controller provides two AHB master ports: the AHB memory port, intended to be
connected to memories and the AHB peripheral port, intended to be connected to
peripherals. However, to allow memory-to-memory transfers, the AHB peripheral port must
also have access to the memories.

The AHB slave port is used to program the DMA controller (it supports only 32-bit
accesses).

See Figure 23 for the implementation of the system of two DMA controllers.

RM0401 Rev 3 165/771

RM0401 Direct memory access controller (DMA)

197

Figure 23. System implementation of the two DMA controllers

1. The DMA1 controller AHB peripheral port is not connected to the bus matrix like in the case of the DMA2 controller, thus
only DMA2 streams are able to perform memory-to-memory transfers.

8.3.3 DMA transactions

A DMA transaction consists of a sequence of a given number of data transfers. The number
of data items to be transferred and their width (8-bit, 16-bit or 32-bit) are software-
programmable.

Each DMA transfer consists of three operations:

• a loading from the peripheral data register or a location in memory, addressed through
the DMA_SxPAR or DMA_SxM0AR register

• a storage of the data loaded to the peripheral data register or a location in memory
addressed through the DMA_SxPAR or DMA_SxM0AR register

• a post-decrement of the DMA_SxNDTR register, containing the number of transactions
that still have to be performed

After an event, the peripheral sends a request signal to the DMA controller. The DMA
controller serves the request depending on the channel priorities. As soon as the DMA

Direct memory access controller (DMA) RM0401

166/771 RM0401 Rev 3

controller accesses the peripheral, an Acknowledge signal is sent to the peripheral by the
DMA controller. The peripheral releases its request as soon as it gets the Acknowledge
signal from the DMA controller. Once the request has been deasserted by the peripheral,
the DMA controller releases the Acknowledge signal. If there are more requests, the
peripheral can initiate the next transaction.

8.3.4 Channel selection

Each stream is associated with a DMA request that can be selected out of 8 possible
channel requests. The selection is controlled by the CHSEL[2:0] bits in the DMA_SxCR
register.

Figure 24. Channel selection

The 8 requests from the peripherals (such as TIM, ADC, SPI, I2C) are independently
connected to each channel and their connection depends on the product implementation.

Table 29 and Table 30 give examples of DMA request mappings.

Table 29. DMA1 request mapping

Peripheral
requests

Stream 0 Stream 1 Stream 2 Stream 3 Stream 4 Stream 5 Stream 6 Stream 7

Channel 0 - I2C1_TX - SPI2_RX SPI2_TX - - -

Channel 1 I2C1_RX - - I2C4_RX - I2C1_RX I2C1_TX I2C1_TX

Channel 2 - I2C4_TX - - - - - -

Channel 3 - - - - - - - -

Channel 4 - - - - - USART2_RX USART2_TX I2C4_TX

Channel 5 - - - - - - - -

Channel 6
TIM5_CH3
TIM5_UP

TIM5_CH4
TIM5_TRIG

TIM5_CH1
TIM5_CH4
TIM5_TRIG

TIM5_CH2 - TIM5_UP USART2_RX

Channel 7 I2C4_RX TIM6_UP I2C2_RX I2C2_RX - DAC1 DAC2 I2C2_TX

RM0401 Rev 3 167/771

RM0401 Direct memory access controller (DMA)

197

8.3.5 Arbiter

An arbiter manages the 8 DMA stream requests based on their priority for each of the two
AHB master ports (memory and peripheral ports) and launches the peripheral/memory
access sequences.

Priorities are managed in two stages:

• Software: each stream priority can be configured in the DMA_SxCR register. There are
four levels:

– Very high priority

– High priority

– Medium priority

– Low priority

• Hardware: If two requests have the same software priority level, the stream with the
lower number takes priority over the stream with the higher number. For example,
stream 2 takes priority over stream 4.

8.3.6 DMA streams

Each of the 8 DMA controller streams provides a unidirectional transfer link between a
source and a destination.

Each stream can be configured to perform:

• Regular type transactions: memory-to-peripherals, peripherals-to-memory or memory-
to-memory transfers

• Double-buffer type transactions: double buffer transfers using two memory pointers for
the memory (while the DMA is reading/writing from/to a buffer, the application can
write/read to/from the other buffer).

The amount of data to be transferred (up to 65535) is programmable and related to the
source width of the peripheral that requests the DMA transfer connected to the peripheral
AHB port. The register that contains the amount of data items to be transferred is
decremented after each transaction.

Table 30. DMA2 request mapping

Peripheral
requests

Stream 0 Stream 1 Stream 2 Stream 3 Stream 4 Stream 5 Stream 6 Stream 7

Channel 0 ADC1 - - - ADC1 -
TIM1_CH1
TIM1_CH2
TIM1_CH3

-

Channel 1 - - - - - - - -

Channel 2 - - SPI1_TX SPI5_RX SPI5_TX - - -

Channel 3 SPI1_RX - SPI1_RX SPI1_TX - SPI1_TX - -

Channel 4 - - USART1_RX - - USART1_RX - USART1_TX

Channel 5 - USART6_RX USART6_RX - - SPI5_TX USART6_TX USART6_TX

Channel 6 TIM1_TRIG TIM1_CH1 TIM1_CH2 TIM1_CH1
TIM1_CH4
TIM1_TRIG
TIM1_COM

TIM1_UP TIM1_CH3 -

Channel 7 - - - - - SPI5_RX SPI5_TX -

Direct memory access controller (DMA) RM0401

168/771 RM0401 Rev 3

8.3.7 Source, destination and transfer modes

Both source and destination transfers can address peripherals and memories in the entire
4 Gbytes area, at addresses comprised between 0x0000 0000 and 0xFFFF FFFF.

The direction is configured using the DIR[1:0] bits in the DMA_SxCR register and offers
three possibilities: memory-to-peripheral, peripheral-to-memory or memory-to-memory
transfers. Table 31 describes the corresponding source and destination addresses.

When the data width (programmed in the PSIZE or MSIZE bits in the DMA_SxCR register)
is a half-word or a word, respectively, the peripheral or memory address written into the
DMA_SxPAR or DMA_SxM0AR/M1AR registers has to be aligned on a word or half-word
address boundary, respectively.

Peripheral-to-memory mode

Figure 25 describes this mode.

When this mode is enabled (by setting the bit EN in the DMA_SxCR register), each time a
peripheral request occurs, the stream initiates a transfer from the source to fill the FIFO.

When the threshold level of the FIFO is reached, the contents of the FIFO are drained and
stored into the destination.

The transfer stops once the DMA_SxNDTR register reaches zero, when the peripheral
requests the end of transfers (in case of a peripheral flow controller) or when the EN bit in
the DMA_SxCR register is cleared by software.

In direct mode (when the DMDIS value in the DMA_SxFCR register is ‘0’), the threshold
level of the FIFO is not used: after each single data transfer from the peripheral to the FIFO,
the corresponding data are immediately drained and stored into the destination.

The stream has access to the AHB source or destination port only if the arbitration of the
corresponding stream is won. This arbitration is performed using the priority defined for
each stream using the PL[1:0] bits in the DMA_SxCR register.

Table 31. Source and destination address

Bits DIR[1:0] of the
DMA_SxCR register

Direction Source address Destination address

00 Peripheral-to-memory DMA_SxPAR DMA_SxM0AR

01 Memory-to-peripheral DMA_SxM0AR DMA_SxPAR

10 Memory-to-memory DMA_SxPAR DMA_SxM0AR

11 Reserved - -

RM0401 Rev 3 169/771

RM0401 Direct memory access controller (DMA)

197

Figure 25. Peripheral-to-memory mode

1. For double-buffer mode.

Memory-to-peripheral mode

Figure 26 describes this mode.

When this mode is enabled (by setting the EN bit in the DMA_SxCR register), the stream
immediately initiates transfers from the source to entirely fill the FIFO.

Each time a peripheral request occurs, the contents of the FIFO are drained and stored into
the destination. When the level of the FIFO is lower than or equal to the predefined
threshold level, the FIFO is fully reloaded with data from the memory.

The transfer stops once the DMA_SxNDTR register reaches zero, when the peripheral
requests the end of transfers (in case of a peripheral flow controller) or when the EN bit in
the DMA_SxCR register is cleared by software.

In direct mode (when the DMDIS value in the DMA_SxFCR register is '0'), the threshold
level of the FIFO is not used. Once the stream is enabled, the DMA preloads the first data to
transfer into an internal FIFO. As soon as the peripheral requests a data transfer, the DMA
transfers the preloaded value into the configured destination. It then reloads again the
empty internal FIFO with the next data to be transfer. The preloaded data size corresponds
to the value of the PSIZE bitfield in the DMA_SxCR register.

The stream has access to the AHB source or destination port only if the arbitration of the
corresponding stream is won. This arbitration is performed using the priority defined for
each stream using the PL[1:0] bits in the DMA_SxCR register.

Direct memory access controller (DMA) RM0401

170/771 RM0401 Rev 3

Figure 26. Memory-to-peripheral mode

1. For double-buffer mode.

Memory-to-memory mode

The DMA channels can also work without being triggered by a request from a peripheral.
This is the memory-to-memory mode, described in Figure 27.

When the stream is enabled by setting the Enable bit (EN) in the DMA_SxCR register, the
stream immediately starts to fill the FIFO up to the threshold level. When the threshold level
is reached, the FIFO contents are drained and stored into the destination.

The transfer stops once the DMA_SxNDTR register reaches zero or when the EN bit in the
DMA_SxCR register is cleared by software.

The stream has access to the AHB source or destination port only if the arbitration of the
corresponding stream is won. This arbitration is performed using the priority defined for
each stream using the PL[1:0] bits in the DMA_SxCR register.

Note: When memory-to-memory mode is used, the circular and direct modes are not allowed.

Only the DMA2 controller is able to perform memory-to-memory transfers.

RM0401 Rev 3 171/771

RM0401 Direct memory access controller (DMA)

197

Figure 27. Memory-to-memory mode

1. For double-buffer mode.

8.3.8 Pointer incrementation

Peripheral and memory pointers can optionally be automatically post-incremented or kept
constant after each transfer depending on the PINC and MINC bits in the DMA_SxCR
register.

Disabling the increment mode is useful when the peripheral source or destination data is
accessed through a single register.

If the increment mode is enabled, the address of the next transfer is the address of the
previous one incremented by 1 (for bytes), 2 (for half-words) or 4 (for words) depending on
the data width programmed in the PSIZE or MSIZE bits in the DMA_SxCR register.

In order to optimize the packing operation, it is possible to fix the increment offset size for
the peripheral address whatever the size of the data transferred on the AHB peripheral port.
The PINCOS bit in the DMA_SxCR register is used to align the increment offset size with
the data size on the peripheral AHB port, or on a 32-bit address (the address is then
incremented by 4). The PINCOS bit has an impact on the AHB peripheral port only.

If the PINCOS bit is set, the address of the following transfer is the address of the previous
one incremented by 4 (automatically aligned on a 32-bit address), whatever the PSIZE
value. The AHB memory port, however, is not impacted by this operation.

Direct memory access controller (DMA) RM0401

172/771 RM0401 Rev 3

8.3.9 Circular mode

The circular mode is available to handle circular buffers and continuous data flows (e.g.
ADC scan mode). This feature can be enabled using the CIRC bit in the DMA_SxCR
register.

When the circular mode is activated, the number of data items to be transferred is
automatically reloaded with the initial value programmed during the stream configuration
phase, and the DMA requests continue to be served.

Note: In the circular mode, it is mandatory to respect the following rule in case of a burst mode
configured for memory:

DMA_SxNDTR = Multiple of ((Mburst beat) × (Msize)/(Psize)), where:

– (Mburst beat) = 4, 8 or 16 (depending on the MBURST bits in the DMA_SxCR
register)

– ((Msize)/(Psize)) = 1, 2, 4, 1/2 or 1/4 (Msize and Psize represent the MSIZE and
PSIZE bits in the DMA_SxCR register. They are byte dependent)

– DMA_SxNDTR = Number of data items to transfer on the AHB peripheral port

For example: Mburst beat = 8 (INCR8), MSIZE = ‘00’ (byte) and PSIZE = ‘01’ (half-word), in
this case: DMA_SxNDTR must be a multiple of (8 × 1/2 = 4).

If this formula is not respected, the DMA behavior and data integrity are not guaranteed.

NDTR must also be a multiple of the Peripheral burst size multiplied by the peripheral data
size, otherwise this could result in a bad DMA behavior.

8.3.10 Double-buffer mode

This mode is available for all the DMA1 and DMA2 streams.

The double-buffer mode is enabled by setting the DBM bit in the DMA_SxCR register.

A double-buffer stream works as a regular (single buffer) stream with the difference that it
has two memory pointers. When the double-buffer mode is enabled, the circular mode is
automatically enabled (CIRC bit in DMA_SxCR is not relevant) and at each end of
transaction, the memory pointers are swapped.

In this mode, the DMA controller swaps from one memory target to another at each end of
transaction. This allows the software to process one memory area while the second memory
area is being filled/used by the DMA transfer. The double-buffer stream can work in both
directions (the memory can be either the source or the destination) as described in
Table 32: Source and destination address registers in double-buffer mode (DBM = 1).

Note: In double-buffer mode, it is possible to update the base address for the AHB memory port
on-the-fly (DMA_SxM0AR or DMA_SxM1AR) when the stream is enabled, by respecting the
following conditions:

• When the CT bit is ‘0’ in the DMA_SxCR register, the DMA_SxM1AR register can be
written. Attempting to write to this register while CT = '1' sets an error flag (TEIF) and
the stream is automatically disabled.

• When the CT bit is ‘1’ in the DMA_SxCR register, the DMA_SxM0AR register can be
written. Attempting to write to this register while CT = '0', sets an error flag (TEIF) and
the stream is automatically disabled.

To avoid any error condition, it is advised to change the base address as soon as the TCIF
flag is asserted because, at this point, the targeted memory must have changed from

RM0401 Rev 3 173/771

RM0401 Direct memory access controller (DMA)

197

memory 0 to 1 (or from 1 to 0) depending on the value of CT in the DMA_SxCR register in
accordance with one of the two above conditions.

For all the other modes (except the double-buffer mode), the memory address registers are
write-protected as soon as the stream is enabled.

8.3.11 Programmable data width, packing/unpacking, endianness

The number of data items to be transferred has to be programmed into DMA_SxNDTR
(number of data items to transfer bit, NDT) before enabling the stream (except when the
flow controller is the peripheral, PFCTRL bit in DMA_SxCR is set).

When using the internal FIFO, the data widths of the source and destination data are
programmable through the PSIZE and MSIZE bits in the DMA_SxCR register (can be 8-,
16- or 32-bit).

When PSIZE and MSIZE are not equal:

• The data width of the number of data items to transfer, configured in the DMA_SxNDTR
register is equal to the width of the peripheral bus (configured by the PSIZE bits in the
DMA_SxCR register). For instance, in case of peripheral-to-memory, memory-to-
peripheral or memory-to-memory transfers and if the PSIZE[1:0] bits are configured for
half-word, the number of bytes to be transferred is equal to 2 × NDT.

• The DMA controller only copes with little-endian addressing for both source and
destination. This is described in Table 33: Packing/unpacking and endian behavior (bit
PINC = MINC = 1).

This packing/unpacking procedure may present a risk of data corruption when the operation
is interrupted before the data are completely packed/unpacked. So, to ensure data
coherence, the stream may be configured to generate burst transfers: in this case, each
group of transfers belonging to a burst are indivisible (refer to Section 8.3.12: Single and
burst transfers).

In direct mode (DMDIS = 0 in the DMA_SxFCR register), the packing/unpacking of data is
not possible. In this case, it is not allowed to have different source and destination transfer
data widths: both are equal and defined by the PSIZE bits in the DMA_SxCR register.
MSIZE bits are not relevant.

Table 32. Source and destination address registers in double-buffer mode (DBM = 1)

Bits DIR[1:0] of the
DMA_SxCR register

Direction Source address Destination address

00 Peripheral-to-memory DMA_SxPAR DMA_SxM0AR / DMA_SxM1AR

01 Memory-to-peripheral DMA_SxM0AR / DMA_SxM1AR DMA_SxPAR

10 Not allowed(1)

11 Reserved - -

1. When the double-buffer mode is enabled, the circular mode is automatically enabled. Since the memory-to-memory mode
is not compatible with the circular mode, when the double-buffer mode is enabled, it is not allowed to configure the
memory-to-memory mode.

Direct memory access controller (DMA) RM0401

174/771 RM0401 Rev 3

Note: Peripheral port may be the source or the destination (it could also be the memory source in
the case of memory-to-memory transfer).

PSIZE, MSIZE and NDT[15:0] have to be configured so as to ensure that the last transfer
will not be incomplete. This can occur when the data width of the peripheral port (PSIZE
bits) is lower than the data width of the memory port (MSIZE bits). This constraint is
summarized in Table 34.

Table 33. Packing/unpacking and endian behavior (bit PINC = MINC = 1)

AHB
memory

port
width

AHB
peripheral

port
width

Number
of data

items to
transfer
(NDT)

-
Memory
transfer
number

Memory port
address / byte

lane

Peripheral
transfer
number

Peripheral port address / byte lane

- PINCOS = 1 PINCOS = 0

8 8 4 -

1
2
3
4

0x0 / B0[7:0]
0x1 / B1[7:0]
0x2 / B2[7:0]
0x3 / B3[7:0]

1
2
3
4

0x0 / B0[7:0]
0x4 / B1[7:0]
0x8 / B2[7:0]
0xC / B3[7:0]

0x0 / B0[7:0]
0x1 / B1[7:0]
0x2 / B2[7:0]
0x3 / B3[7:0]

8 16 2 -

1
2
3
4

0x0 / B0[7:0]
0x1 / B1[7:0]
0x2 / B2[7:0]
0x3 / B3[7:0]

1

2

0x0 / B1|B0[15:0]

0x4 / B3|B2[15:0]

0x0 / B1|B0[15:0]

0x2 / B3|B2[15:0]

8 32 1 -

1
2
3
4

0x0 / B0[7:0]
0x1 / B1[7:0]
0x2 / B2[7:0]
0x3 / B3[7:0]

1 0x0 /
B3|B2|B1|B0[31:0]

0x0 /
B3|B2|B1|B0[31:0]

16 8 4 -

1

2

0x0 / B1|B0[15:0]

0x2 / B3|B2[15:0]

1
2
3
4

0x0 / B0[7:0]
0x4 / B1[7:0]
0x8 / B2[7:0]
0xC / B3[7:0]

0x0 / B0[7:0]
0x1 / B1[7:0]
0x2 / B2[7:0]
0x3 / B3[7:0]

16 16 2 -
1

2

0x0 / B1|B0[15:0]

0x2 / B1|B0[15:0]

1

2

0x0 / B1|B0[15:0]

0x4 / B3|B2[15:0]

0x0 / B1|B0[15:0]

0x2 / B3|B2[15:0]

16 32 1 - 1
2

0x0 / B1|B0[15:0]
0x2 / B3|B2[15:0]

1 0x0 /
B3|B2|B1|B0[31:0]

0x0 /
B3|B2|B1|B0[31:0]

32 8 4 -

1 0x0 / B3|B2|B1|B0[31:0] 1
2
3
4

0x0 / B0[7:0]
0x4 / B1[7:0]
0x8 / B2[7:0]
0xC / B3[7:0]

0x0 / B0[7:0]
0x1 / B1[7:0]
0x2 / B2[7:0]
0x3 / B3[7:0]

32 16 2 - 1 0x0 /B3|B2|B1|B0[31:0] 1
2

0x0 / B1|B0[15:0]
0x4 / B3|B2[15:0]

0x0 / B1|B0[15:0]
0x2 / B3|B2[15:0]

32 32 1 - 1 0x0 /B3|B2|B1|B0 [31:0] 1
0x0 /B3|B2|B1|B0
[31:0]

0x0 /
B3|B2|B1|B0[31:0]

Table 34. Restriction on NDT versus PSIZE and MSIZE

PSIZE[1:0] of DMA_SxCR MSIZE[1:0] of DMA_SxCR NDT[15:0] of DMA_SxNDTR

00 (8-bit) 01 (16-bit) must be a multiple of 2

00 (8-bit) 10 (32-bit) must be a multiple of 4

01 (16-bit) 10 (32-bit) must be a multiple of 2

RM0401 Rev 3 175/771

RM0401 Direct memory access controller (DMA)

197

8.3.12 Single and burst transfers

The DMA controller can generate single transfers or incremental burst transfers of 4, 8 or 16
beats.

The size of the burst is configured by software independently for the two AHB ports by using
the MBURST[1:0] and PBURST[1:0] bits in the DMA_SxCR register.

The burst size indicates the number of beats in the burst, not the number of bytes
transferred.

To ensure data coherence, each group of transfers that form a burst are indivisible: AHB
transfers are locked and the arbiter of the AHB bus matrix does not degrant the DMA master
during the sequence of the burst transfer.

Depending on the single or burst configuration, each DMA request initiates a different
number of transfers on the AHB peripheral port:

• When the AHB peripheral port is configured for single transfers, each DMA request
generates a data transfer of a byte, half-word or word depending on the PSIZE[1:0] bits
in the DMA_SxCR register

• When the AHB peripheral port is configured for burst transfers, each DMA request
generates 4,8 or 16 beats of byte, half word or word transfers depending on the
PBURST[1:0] and PSIZE[1:0] bits in the DMA_SxCR register.

The same as above has to be considered for the AHB memory port considering the
MBURST and MSIZE bits.

In direct mode, the stream can only generate single transfers and the MBURST[1:0] and
PBURST[1:0] bits are forced by hardware.

The address pointers (DMA_SxPAR or DMA_SxM0AR registers) must be chosen so as to
ensure that all transfers within a burst block are aligned on the address boundary equal to
the size of the transfer.

The burst configuration has to be selected in order to respect the AHB protocol, where
bursts must not cross the 1 Kbyte address boundary because the minimum address space
that can be allocated to a single slave is 1 Kbyte. This means that the 1 Kbyte address
boundary must not be crossed by a burst block transfer, otherwise an AHB error is
generated, that is not reported by the DMA registers.

8.3.13 FIFO

FIFO structure

The FIFO is used to temporarily store data coming from the source before transmitting them
to the destination.

Each stream has an independent 4-word FIFO and the threshold level is software-
configurable between 1/4, 1/2, 3/4 or full.

To enable the use of the FIFO threshold level, the direct mode must be disabled by setting
the DMDIS bit in the DMA_SxFCR register.

The structure of the FIFO differs depending on the source and destination data widths, and
is described in Figure 28: FIFO structure.

Direct memory access controller (DMA) RM0401

176/771 RM0401 Rev 3

Figure 28. FIFO structure

FIFO threshold and burst configuration

Caution is required when choosing the FIFO threshold (bits FTH[1:0] of the DMA_SxFCR
register) and the size of the memory burst (MBURST[1:0] of the DMA_SxCR register): The
content pointed by the FIFO threshold must exactly match an integer number of memory
burst transfers. If this is not in the case, a FIFO error (flag FEIFx of the DMA_HISR or
DMA_LISR register) is generated when the stream is enabled, then the stream is
automatically disabled. The allowed and forbidden configurations are described in Table 35.
The forbidden configurations are highlighted in gray in the table.

Table 35. FIFO threshold configurations

MSIZE FIFO level MBURST = INCR4 MBURST = INCR8 MBURST = INCR16

Byte

1/4 1 burst of 4 beats Forbidden

Forbidden1/2 2 bursts of 4 beats 1 burst of 8 beats

3/4 3 bursts of 4 beats Forbidden

Full 4 bursts of 4 beats 2 bursts of 8 beats 1 burst of 16 beats

RM0401 Rev 3 177/771

RM0401 Direct memory access controller (DMA)

197

In all cases, the burst size multiplied by the data size must not exceed the FIFO size (data
size can be: 1 (byte), 2 (half-word) or 4 (word)).

Incomplete burst transfer at the end of a DMA transfer may happen if one of the following
conditions occurs:

• For the AHB peripheral port configuration: the total number of data items (set in the
DMA_SxNDTR register) is not a multiple of the burst size multiplied by the data size.

• For the AHB memory port configuration: the number of remaining data items in the
FIFO to be transferred to the memory is not a multiple of the burst size multiplied by the
data size.

In such cases, the remaining data to be transferred is managed in single mode by the DMA,
even if a burst transaction is requested during the DMA stream configuration.

Note: When burst transfers are requested on the peripheral AHB port and the FIFO is used
(DMDIS = 1 in the DMA_SxCR register), it is mandatory to respect the following rule to
avoid permanent underrun or overrun conditions, depending on the DMA stream direction:

If (PBURST × PSIZE) = FIFO_SIZE (4 words), FIFO_Threshold = 3/4 is forbidden with
PSIZE = 1, 2 or 4 and PBURST = 4, 8 or 16.

This rule ensures that enough FIFO space at a time is free to serve the request from the
peripheral.

FIFO flush

The FIFO can be flushed when the stream is disabled by resetting the EN bit in the
DMA_SxCR register and when the stream is configured to manage peripheral-to-memory or
memory-to-memory transfers. If some data are still present in the FIFO when the stream is
disabled, the DMA controller continues transferring the remaining data to the destination
(even though stream is effectively disabled). When this flush is completed, the transfer
complete status bit (TCIFx) in the DMA_LISR or DMA_HISR register is set.

The remaining data counter DMA_SxNDTR keeps the value in this case to indicate how
many data items are currently available in the destination memory.

Note that during the FIFO flush operation, if the number of remaining data items in the FIFO
to be transferred to memory (in bytes) is less than the memory data width (for example 2
bytes in FIFO while MSIZE is configured to word), data is sent with the data width set in the
MSIZE bit in the DMA_SxCR register. This means that memory is written with an undesired

Half-word

1/4 Forbidden

Forbidden

Forbidden

1/2 1 burst of 4 beats

3/4 Forbidden

Full 2 bursts of 4 beats 1 burst of 8 beats

Word

1/4

Forbidden
Forbidden

1/2

3/4

Full 1 burst of 4 beats

Table 35. FIFO threshold configurations (continued)

MSIZE FIFO level MBURST = INCR4 MBURST = INCR8 MBURST = INCR16

Direct memory access controller (DMA) RM0401

178/771 RM0401 Rev 3

value. The software may read the DMA_SxNDTR register to determine the memory area
that contains the good data (start address and last address).

If the number of remaining data items in the FIFO is lower than a burst size (if the MBURST
bits in DMA_SxCR register are set to configure the stream to manage burst on the AHB
memory port), single transactions are generated to complete the FIFO flush.

Direct mode

By default, the FIFO operates in direct mode (DMDIS bit in the DMA_SxFCR is reset) and
the FIFO threshold level is not used. This mode is useful when the system requires an
immediate and single transfer to or from the memory after each DMA request.

When the DMA is configured in direct mode (FIFO disabled), to transfer data in memory-to-
peripheral mode, the DMA preloads one data from the memory to the internal FIFO to
ensure an immediate data transfer as soon as a DMA request is triggered by a peripheral.

To avoid saturating the FIFO, it is recommended to configure the corresponding stream with
a high priority.

This mode is restricted to transfers where:

• the source and destination transfer widths are equal and both defined by the
PSIZE[1:0] bits in DMA_SxCR (MSIZE[1:0] bits are not relevant)

• burst transfers are not possible (PBURST[1:0] and MBURST[1:0] bits in DMA_SxCR
are don’t care)

Direct mode must not be used when implementing memory-to-memory transfers.

8.3.14 DMA transfer completion

Different events can generate an end of transfer by setting the TCIFx bit in the DMA_LISR
or DMA_HISR status register:

• In DMA flow controller mode:

– The DMA_SxNDTR counter has reached zero in the memory-to-peripheral mode.

– The stream is disabled before the end of transfer (by clearing the EN bit in the
DMA_SxCR register) and (when transfers are peripheral-to-memory or memory-
to-memory) all the remaining data have been flushed from the FIFO into the
memory.

• In Peripheral flow controller mode:

– The last external burst or single request has been generated from the peripheral
and (when the DMA is operating in peripheral-to-memory mode) the remaining
data have been transferred from the FIFO into the memory

– The stream is disabled by software, and (when the DMA is operating in peripheral-
to-memory mode) the remaining data have been transferred from the FIFO into
the memory

Note: The transfer completion is dependent on the remaining data in FIFO to be transferred into
memory only in the case of peripheral-to-memory mode. This condition is not applicable in
memory-to-peripheral mode.

If the stream is configured in noncircular mode, after the end of the transfer (that is when the
number of data to be transferred reaches zero), the DMA is stopped (EN bit in DMA_SxCR
register is cleared by Hardware) and no DMA request is served unless the software
reprograms the stream and re-enables it (by setting the EN bit in the DMA_SxCR register).

RM0401 Rev 3 179/771

RM0401 Direct memory access controller (DMA)

197

8.3.15 DMA transfer suspension

At any time, a DMA transfer can be suspended to be restarted later on or to be definitively
disabled before the end of the DMA transfer.

There are two cases:

• The stream disables the transfer with no later-on restart from the point where it was
stopped. There is no particular action to do, except to clear the EN bit in the
DMA_SxCR register to disable the stream. The stream may take time to be disabled
(ongoing transfer is completed first). The transfer complete interrupt flag (TCIF in the
DMA_LISR or DMA_HISR register) is set in order to indicate the end of transfer. The
value of the EN bit in DMA_SxCR is now ‘0’ to confirm the stream interruption. The
DMA_SxNDTR register contains the number of remaining data items at the moment
when the stream was stopped so that the software can determine how many data items
have been transferred before the stream was interrupted.

• The stream suspends the transfer before the number of remaining data items to be
transferred in the DMA_SxNDTR register reaches 0. The aim is to restart the transfer
later by re-enabling the stream. In order to restart from the point where the transfer was
stopped, the software has to read the DMA_SxNDTR register after disabling the stream
by writing the EN bit in DMA_SxCR register (and then checking that it is at ‘0’) to know
the number of data items already collected. Then:

– The peripheral and/or memory addresses have to be updated in order to adjust
the address pointers

– The SxNDTR register has to be updated with the remaining number of data items
to be transferred (the value read when the stream was disabled)

– The stream may then be re-enabled to restart the transfer from the point it was
stopped

Note: A transfer complete interrupt flag (TCIF in DMA_LISR or DMA_HISR) is set to indicate the
end of transfer due to the stream interruption.

8.3.16 Flow controller

The entity that controls the number of data to be transferred is known as the flow controller.
This flow controller is configured independently for each stream using the PFCTRL bit in the
DMA_SxCR register.

The flow controller can be:

• The DMA controller: in this case, the number of data items to be transferred is
programmed by software into the DMA_SxNDTR register before the DMA stream is
enabled.

• The peripheral source or destination: this is the case when the number of data items to
be transferred is unknown. The peripheral indicates by hardware to the DMA controller
when the last data are being transferred. This feature is only supported for peripherals
that are able to signal the end of the transfer.

When the peripheral flow controller is used for a given stream, the value written into the
DMA_SxNDTR has no effect on the DMA transfer. Actually, whatever the value written, it will
be forced by hardware to 0xFFFF as soon as the stream is enabled, to respect the following
schemes:

• Anticipated stream interruption: EN bit in DMA_SxCR register is reset to 0 by the
software to stop the stream before the last data hardware signal (single or burst) is sent
by the peripheral. In such a case, the stream is switched off and the FIFO flush is

Direct memory access controller (DMA) RM0401

180/771 RM0401 Rev 3

triggered in the case of a peripheral-to-memory DMA transfer. The TCIFx flag of the
corresponding stream is set in the status register to indicate the DMA completion. To
know the number of data items transferred during the DMA transfer, read the
DMA_SxNDTR register and apply the following formula:

– Number_of_data_transferred = 0xFFFF – DMA_SxNDTR

• Normal stream interruption due to the reception of a last data hardware signal: the
stream is automatically interrupted when the peripheral requests the last transfer
(single or burst) and when this transfer is complete. the TCIFx flag of the corresponding
stream is set in the status register to indicate the DMA transfer completion. To know the
number of data items transferred, read the DMA_SxNDTR register and apply the same
formula as above.

• The DMA_SxNDTR register reaches 0: the TCIFx flag of the corresponding stream is
set in the status register to indicate the forced DMA transfer completion. The stream is
automatically switched off even though the last data hardware signal (single or burst)
has not been yet asserted. The already transferred data is not lost. This means that a
maximum of 65535 data items can be managed by the DMA in a single transaction,
even in peripheral flow control mode.

Note: When configured in memory-to-memory mode, the DMA is always the flow controller and
the PFCTRL bit is forced to 0 by hardware.

The circular mode is forbidden in the peripheral flow controller mode.

8.3.17 Summary of the possible DMA configurations

Table 36 summarizes the different possible DMA configurations. The forbidden
configurations are highlighted in gray in the table.

Table 36. Possible DMA configurations

DMA transfer
mode

Source Destination
Flow

controller
Circular
mode

Transfer
type

Direct
mode

Double-
buffer mode

Peripheral-to-
memory

AHB
peripheral port

AHB
memory port

DMA Possible
single Possible

Possible
burst Forbidden

Peripheral Forbidden
single Possible

Forbidden
burst Forbidden

Memory-to-
peripheral

AHB
memory port

AHB
peripheral port

DMA Possible
single Possible

Possible
burst Forbidden

Peripheral Forbidden
single Possible

Forbidden
burst Forbidden

Memory-to-
memory

AHB
peripheral port

AHB
memory port

DMA only Forbidden
single

Forbidden Forbidden
burst

RM0401 Rev 3 181/771

RM0401 Direct memory access controller (DMA)

197

8.3.18 Stream configuration procedure

The following sequence must be followed to configure a DMA stream x (where x is the
stream number):

1. If the stream is enabled, disable it by resetting the EN bit in the DMA_SxCR register,
then read this bit in order to confirm that there is no ongoing stream operation. Writing
this bit to 0 is not immediately effective since it is actually written to 0 once all the
current transfers are finished. When the EN bit is read as 0, this means that the stream
is ready to be configured. It is therefore necessary to wait for the EN bit to be cleared
before starting any stream configuration. All the stream dedicated bits set in the status
register (DMA_LISR and DMA_HISR) from the previous data block DMA transfer must
be cleared before the stream can be re-enabled.

2. Set the peripheral port register address in the DMA_SxPAR register. The data is moved
from/ to this address to/ from the peripheral port after the peripheral event.

3. Set the memory address in the DMA_SxMA0R register (and in the DMA_SxMA1R
register in the case of a double-buffer mode). The data is written to or read from this
memory after the peripheral event.

4. Configure the total number of data items to be transferred in the DMA_SxNDTR
register. After each peripheral event or each beat of the burst, this value is
decremented.

5. Select the DMA channel (request) using CHSEL[2:0] in the DMA_SxCR register.

6. If the peripheral is intended to be the flow controller and if it supports this feature, set
the PFCTRL bit in the DMA_SxCR register.

7. Configure the stream priority using the PL[1:0] bits in the DMA_SxCR register.

8. Configure the FIFO usage (enable or disable, threshold in transmission and reception)

9. Configure the data transfer direction, peripheral and memory incremented/fixed mode,
single or burst transactions, peripheral and memory data widths, circular mode,
double-buffer mode and interrupts after half and/or full transfer, and/or errors in the
DMA_SxCR register.

10. Activate the stream by setting the EN bit in the DMA_SxCR register.

As soon as the stream is enabled, it can serve any DMA request from the peripheral
connected to the stream.

Once half the data have been transferred on the AHB destination port, the half-transfer flag
(HTIF) is set and an interrupt is generated if the half-transfer interrupt enable bit (HTIE) is
set. At the end of the transfer, the transfer complete flag (TCIF) is set and an interrupt is
generated if the transfer complete interrupt enable bit (TCIE) is set.

Warning: To switch off a peripheral connected to a DMA stream
request, it is mandatory to, first, switch off the DMA stream to
which the peripheral is connected, then to wait for EN bit = 0.
Only then can the peripheral be safely disabled.

Direct memory access controller (DMA) RM0401

182/771 RM0401 Rev 3

8.3.19 Error management

The DMA controller can detect the following errors:

• Transfer error: the transfer error interrupt flag (TEIFx) is set when:

– a bus error occurs during a DMA read or a write access

– a write access is requested by software on a memory address register in
double-buffer mode whereas the stream is enabled and the current target memory
is the one impacted by the write into the memory address register (refer to
Section 8.3.10: Double-buffer mode)

• FIFO error: the FIFO error interrupt flag (FEIFx) is set if:

– a FIFO underrun condition is detected

– a FIFO overrun condition is detected (no detection in memory-to-memory mode
because requests and transfers are internally managed by the DMA)

– the stream is enabled while the FIFO threshold level is not compatible with the
size of the memory burst (refer to Table 35: FIFO threshold configurations)

• Direct mode error: the direct mode error interrupt flag (DMEIFx) can only be set in the
peripheral-to-memory mode while operating in direct mode and when the MINC bit in
the DMA_SxCR register is cleared. This flag is set when a DMA request occurs while
the previous data have not yet been fully transferred into the memory (because the
memory bus was not granted). In this case, the flag indicates that 2 data items were be
transferred successively to the same destination address, which could be an issue if
the destination is not able to manage this situation

In direct mode, the FIFO error flag can also be set under the following conditions:

• In the peripheral-to-memory mode, the FIFO can be saturated (overrun) if the memory
bus is not granted for several peripheral requests.

• In the memory-to-peripheral mode, an underrun condition may occur if the memory bus
has not been granted before a peripheral request occurs.

If the TEIFx or the FEIFx flag is set due to incompatibility between burst size and FIFO
threshold level, the faulty stream is automatically disabled through a hardware clear of its
EN bit in the corresponding stream configuration register (DMA_SxCR).

If the DMEIFx or the FEIFx flag is set due to an overrun or underrun condition, the faulty
stream is not automatically disabled and it is up to the software to disable or not the stream
by resetting the EN bit in the DMA_SxCR register. This is because there is no data loss
when this kind of errors occur.

When the stream's error interrupt flag (TEIF, FEIF, DMEIF) in the DMA_LISR or DMA_HISR
register is set, an interrupt is generated if the corresponding interrupt enable bit (TEIE,
FEIE, DMIE) in the DMA_SxCR or DMA_SxFCR register is set.

Note: When a FIFO overrun or underrun condition occurs, the data is not lost because the
peripheral request is not acknowledged by the stream until the overrun or underrun
condition is cleared. If this acknowledge takes too much time, the peripheral itself may
detect an overrun or underrun condition of its internal buffer and data might be lost.

RM0401 Rev 3 183/771

RM0401 Direct memory access controller (DMA)

197

8.4 DMA interrupts

For each DMA stream, an interrupt can be produced on the following events:

• Half-transfer reached

• Transfer complete

• Transfer error

• FIFO error (overrun, underrun or FIFO level error)

• Direct mode error

Separate interrupt enable control bits are available for flexibility as shown in Table 37.

Note: Before setting an enable control bit EN = 1, the corresponding event flag must be cleared,
otherwise an interrupt is immediately generated.

Table 37. DMA interrupt requests

Interrupt event Event flag Enable control bit

Half-transfer HTIF HTIE

Transfer complete TCIF TCIE

Transfer error TEIF TEIE

FIFO overrun/underrun FEIF FEIE

Direct mode error DMEIF DMEIE

Direct memory access controller (DMA) RM0401

184/771 RM0401 Rev 3

8.5 DMA registers

The DMA registers have to be accessed by words (32 bits).

8.5.1 DMA low interrupt status register (DMA_LISR)

Address offset: 0x00

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. TCIF3 HTIF3 TEIF3 DMEIF3 Res. FEIF3 TCIF2 HTIF2 TEIF2 DMEIF2 Res. FEIF2

r r r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. TCIF1 HTIF1 TEIF1 DMEIF1 Res. FEIF1 TCIF0 HTIF0 TEIF0 DMEIF0 Res. FEIF0

r r r r r r r r r r

Bits 31:28, 15:12 Reserved, must be kept at reset value.

Bits 27, 21, 11, 5 TCIFx: stream x transfer complete interrupt flag (x = 3..0)

This bit is set by hardware. It is cleared by software writing 1 to the corresponding bit in the
DMA_LIFCR register.
0: no transfer complete event on stream x
1: a transfer complete event occurred on stream x

Bits 26, 20, 10, 4 HTIFx: stream x half transfer interrupt flag (x = 3..0)

This bit is set by hardware. It is cleared by software writing 1 to the corresponding bit in the
DMA_LIFCR register.
0: no half transfer event on stream x
1: a half transfer event occurred on stream x

Bits 25, 19, 9, 3 TEIFx: stream x transfer error interrupt flag (x = 3..0)

This bit is set by hardware. It is cleared by software writing 1 to the corresponding bit in the
DMA_LIFCR register.
0: no transfer error on stream x
1: a transfer error occurred on stream x

Bits 24, 18, 8, 2 DMEIFx: stream x direct mode error interrupt flag (x = 3..0)

This bit is set by hardware. It is cleared by software writing 1 to the corresponding bit in the
DMA_LIFCR register.
0: No direct mode error on stream x
1: a direct mode error occurred on stream x

Bits 23, 17, 7, 1 Reserved, must be kept at reset value.

Bits 22, 16, 6, 0 FEIFx: stream x FIFO error interrupt flag (x = 3..0)

This bit is set by hardware. It is cleared by software writing 1 to the corresponding bit in the
DMA_LIFCR register.
0: no FIFO error event on stream x
1: a FIFO error event occurred on stream x

RM0401 Rev 3 185/771

RM0401 Direct memory access controller (DMA)

197

8.5.2 DMA high interrupt status register (DMA_HISR)

Address offset: 0x04

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. TCIF7 HTIF7 TEIF7 DMEIF7 Res. FEIF7 TCIF6 HTIF6 TEIF6 DMEIF6 Res. FEIF6

r r r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. TCIF5 HTIF5 TEIF5 DMEIF5 Res. FEIF5 TCIF4 HTIF4 TEIF4 DMEIF4 Res. FEIF4

r r r r r r r r r r

Bits 31:28, 15:12 Reserved, must be kept at reset value.

Bits 27, 21, 11, 5 TCIFx: stream x transfer complete interrupt flag (x = 7..4)

This bit is set by hardware. It is cleared by software writing 1 to the corresponding bit in the
DMA_HIFCR register.
0: no transfer complete event on stream x
1: atransfer complete event occurred on stream x

Bits 26, 20, 10, 4 HTIFx: stream x half transfer interrupt flag (x = 7..4)

This bit is set by hardware. It is cleared by software writing 1 to the corresponding bit in the
DMA_HIFCR register.
0: no half transfer event on stream x
1: a half transfer event occurred on stream x

Bits 25, 19, 9, 3 TEIFx: stream x transfer error interrupt flag (x = 7..4)

This bit is set by hardware. It is cleared by software writing 1 to the corresponding bit in the
DMA_HIFCR register.
0: no transfer error on stream x
1: a transfer error occurred on stream x

Bits 24, 18, 8, 2 DMEIFx: stream x direct mode error interrupt flag (x = 7..4)

This bit is set by hardware. It is cleared by software writing 1 to the corresponding bit in the
DMA_HIFCR register.
0: no direct mode error on stream x
1: a direct mode error occurred on stream x

Bits 23, 17, 7, 1 Reserved, must be kept at reset value.

Bits 22, 16, 6, 0 FEIFx: stream x FIFO error interrupt flag (x = 7..4)

This bit is set by hardware. It is cleared by software writing 1 to the corresponding bit in the
DMA_HIFCR register.
0: no FIFO error event on stream x
1: a FIFO error event occurred on stream x

Direct memory access controller (DMA) RM0401

186/771 RM0401 Rev 3

8.5.3 DMA low interrupt flag clear register (DMA_LIFCR)

Address offset: 0x08

Reset value: 0x0000 0000

8.5.4 DMA high interrupt flag clear register (DMA_HIFCR)

Address offset: 0x0C

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. CTCIF3 CHTIF3 CTEIF3 CDMEIF3 Res. CFEIF3 CTCIF2 CHTIF2 CTEIF2 CDMEIF2 Res. CFEIF2

w w w w w w w w w w

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. CTCIF1 CHTIF1 CTEIF1 CDMEIF1 Res. CFEIF1 CTCIF0 CHTIF0 CTEIF0 CDMEIF0 Res. CFEIF0

w w w w w w w w w w

Bits 31:28, 15:12 Reserved, must be kept at reset value.

Bits 27, 21, 11, 5 CTCIFx: stream x clear transfer complete interrupt flag (x = 3..0)

Writing 1 to this bit clears the corresponding TCIFx flag in the DMA_LISR register.

Bits 26, 20, 10, 4 CHTIFx: stream x clear half transfer interrupt flag (x = 3..0)

Writing 1 to this bit clears the corresponding HTIFx flag in the DMA_LISR register

Bits 25, 19, 9, 3 CTEIFx: Stream x clear transfer error interrupt flag (x = 3..0)

Writing 1 to this bit clears the corresponding TEIFx flag in the DMA_LISR register.

Bits 24, 18, 8, 2 CDMEIFx: stream x clear direct mode error interrupt flag (x = 3..0)

Writing 1 to this bit clears the corresponding DMEIFx flag in the DMA_LISR register.

Bits 23, 17, 7, 1 Reserved, must be kept at reset value.

Bits 22, 16, 6, 0 CFEIFx: stream x clear FIFO error interrupt flag (x = 3..0)

Writing 1 to this bit clears the corresponding CFEIFx flag in the DMA_LISR register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. CTCIF7 CHTIF7 CTEIF7 CDMEIF7 Res. CFEIF7 CTCIF6 CHTIF6 CTEIF6 CDMEIF6 Res. CFEIF6

w w w w w w w w w w

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. CTCIF5 CHTIF5 CTEIF5 CDMEIF5 Res. CFEIF5 CTCIF4 CHTIF4 CTEIF4 CDMEIF4 Res. CFEIF4

w w w w w w w w w w

Bits 31:28, 15:12 Reserved, must be kept at reset value.

Bits 27, 21, 11, 5 CTCIFx: stream x clear transfer complete interrupt flag (x = 7..4)

Writing 1 to this bit clears the corresponding TCIFx flag in the DMA_HISR register.

Bits 26, 20, 10, 4 CHTIFx: stream x clear half transfer interrupt flag (x = 7..4)

Writing 1 to this bit clears the corresponding HTIFx flag in the DMA_HISR register.

Bits 25, 19, 9, 3 CTEIFx: stream x clear transfer error interrupt flag (x = 7..4)

Writing 1 to this bit clears the corresponding TEIFx flag in the DMA_HISR register.

RM0401 Rev 3 187/771

RM0401 Direct memory access controller (DMA)

197

8.5.5 DMA stream x configuration register (DMA_SxCR)

This register is used to configure the concerned stream.

Address offset: 0x10 + 0x18 * x, (x = 0 to 7)

Reset value: 0x0000 0000

Bits 24, 18, 8, 2 CDMEIFx: stream x clear direct mode error interrupt flag (x = 7..4)

Writing 1 to this bit clears the corresponding DMEIFx flag in the DMA_HISR register.

Bits 23, 17, 7, 1 Reserved, must be kept at reset value.

Bits 22, 16, 6, 0 CFEIFx: stream x clear FIFO error interrupt flag (x = 7..4)

Writing 1 to this bit clears the corresponding CFEIFx flag in the DMA_HISR register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. CHSEL[2:0] MBURST [1:0] PBURST[1:0] Res. CT DBM PL[1:0]

rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PINCOS MSIZE[1:0] PSIZE[1:0] MINC PINC CIRC DIR[1:0] PFCTRL TCIE HTIE TEIE DMEIE EN

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:28 Reserved, must be kept at reset value.

Bits 27:25 CHSEL[2:0]: channel selection

These bits are set and cleared by software.
000: channel 0 selected
001: channel 1 selected
010: channel 2 selected
011: channel 3 selected
100: channel 4 selected
101: channel 5 selected
110: channel 6 selected
111: channel 7 selected
These bits are protected and can be written only if EN is ‘0’.

Bits 24:23 MBURST[1:0]: memory burst transfer configuration

These bits are set and cleared by software.
00: single transfer
01: INCR4 (incremental burst of 4 beats)
10: INCR8 (incremental burst of 8 beats)
11: INCR16 (incremental burst of 16 beats)
These bits are protected and can be written only if EN is ‘0’.
In direct mode, these bits are forced to 0x0 by hardware as soon as bit EN= '1'.

Bits 22:21 PBURST[1:0]: peripheral burst transfer configuration

These bits are set and cleared by software.
00: single transfer
01: INCR4 (incremental burst of 4 beats)
10: INCR8 (incremental burst of 8 beats)
11: INCR16 (incremental burst of 16 beats)
These bits are protected and can be written only if EN is ‘0’.
In direct mode, these bits are forced to 0x0 by hardware.

Bit 20 Reserved, must be kept at reset value.

Direct memory access controller (DMA) RM0401

188/771 RM0401 Rev 3

Bit 19 CT: current target (only in double-buffer mode)

This bit is set and cleared by hardware. It can also be written by software.
0: current target memory is Memory 0 (addressed by the DMA_SxM0AR pointer)
1: current target memory is Memory 1 (addressed by the DMA_SxM1AR pointer)
This bit can be written only if EN is ‘0’ to indicate the target memory area of the first transfer.
Once the stream is enabled, this bit operates as a status flag indicating which memory area
is the current target.

Bit 18 DBM: double-buffer mode

This bit is set and cleared by software.
0: no buffer switching at the end of transfer
1: memory target switched at the end of the DMA transfer
This bit is protected and can be written only if EN is ‘0’.

Bits 17:16 PL[1:0]: priority level

These bits are set and cleared by software.
00: low
01: medium
10: high
11: very high
These bits are protected and can be written only if EN is ‘0’.

Bit 15 PINCOS: peripheral increment offset size

This bit is set and cleared by software
0: The offset size for the peripheral address calculation is linked to the PSIZE
1: The offset size for the peripheral address calculation is fixed to 4 (32-bit alignment).
This bit has no meaning if bit PINC = '0'.
This bit is protected and can be written only if EN = '0'.
This bit is forced low by hardware when the stream is enabled (bit EN = '1') if the direct mode
is selected or if PBURST are different from “00”.

Bits 14:13 MSIZE[1:0]: memory data size

These bits are set and cleared by software.
00: byte (8-bit)
01: half-word (16-bit)
10: word (32-bit)
11: reserved
These bits are protected and can be written only if EN is ‘0’.
In direct mode, MSIZE is forced by hardware to the same value as PSIZE as soon as
bit EN = '1'.

Bits 12:11 PSIZE[1:0]: peripheral data size

These bits are set and cleared by software.
00: byte (8-bit)
01: half-word (16-bit)
10: word (32-bit)
11: reserved
These bits are protected and can be written only if EN is ‘0’.

Bit 10 MINC: memory increment mode

This bit is set and cleared by software.
0: memory address pointer is fixed
1: memory address pointer is incremented after each data transfer (increment is done
according to MSIZE)
This bit is protected and can be written only if EN is ‘0’.

RM0401 Rev 3 189/771

RM0401 Direct memory access controller (DMA)

197

Bit 9 PINC: peripheral increment mode

This bit is set and cleared by software.
0: peripheral address pointer is fixed
1: peripheral address pointer is incremented after each data transfer (increment is done
according to PSIZE)
This bit is protected and can be written only if EN is ‘0’.

Bit 8 CIRC: circular mode

This bit is set and cleared by software and can be cleared by hardware.
0: circular mode disabled
1: circular mode enabled
When the peripheral is the flow controller (bit PFCTRL = 1) and the stream is enabled (bit
EN = 1), then this bit is automatically forced by hardware to 0.
It is automatically forced by hardware to 1 if the DBM bit is set, as soon as the stream is
enabled (bit EN ='1').

Bits 7:6 DIR[1:0]: data transfer direction

These bits are set and cleared by software.
00: peripheral-to-memory
01: memory-to-peripheral
10: memory-to-memory
11: reserved
These bits are protected and can be written only if EN is ‘0’.

Bit 5 PFCTRL: peripheral flow controller

This bit is set and cleared by software.
0: DMA is the flow controller
1: The peripheral is the flow controller
This bit is protected and can be written only if EN is ‘0’.
When the memory-to-memory mode is selected (bits DIR[1:0]=10), then this bit is
automatically forced to 0 by hardware.

Bit 4 TCIE: transfer complete interrupt enable

This bit is set and cleared by software.
0: TC interrupt disabled
1: TC interrupt enabled

Bit 3 HTIE: half transfer interrupt enable

This bit is set and cleared by software.
0: HT interrupt disabled
1: HT interrupt enabled

Bit 2 TEIE: transfer error interrupt enable

This bit is set and cleared by software.
0: TE interrupt disabled
1: TE interrupt enabled

Bit 1 DMEIE: direct mode error interrupt enable

This bit is set and cleared by software.
0: DME interrupt disabled
1: DME interrupt enabled

Direct memory access controller (DMA) RM0401

190/771 RM0401 Rev 3

8.5.6 DMA stream x number of data register (DMA_SxNDTR)

Address offset: 0x14 + 0x18 * x, (x = 0 to 7)

Reset value: 0x0000 0000

Bit 0 EN: stream enable / flag stream ready when read low

This bit is set and cleared by software.
0: stream disabled
1: stream enabled
This bit may be cleared by hardware:

– on a DMA end of transfer (stream ready to be configured)

– if a transfer error occurs on the AHB master buses

– when the FIFO threshold on memory AHB port is not compatible with the size of the
burst

When this bit is read as 0, the software is allowed to program the configuration and FIFO bits
registers. It is forbidden to write these registers when the EN bit is read as 1.

Note: Before setting EN bit to '1' to start a new transfer, the event flags corresponding to the
stream in DMA_LISR or DMA_HISR register must be cleared.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NDT[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 NDT[15:0]: number of data items to transfer (0 up to 65535)

This register can be written only when the stream is disabled. When the stream is enabled,
this register is read-only, indicating the remaining data items to be transmitted. This register
decrements after each DMA transfer.
Once the transfer is completed, this register can either stay at zero (when the stream is in
normal mode) or be reloaded automatically with the previously programmed value in the
following cases:

– when the stream is configured in circular mode.

– when the stream is enabled again by setting EN bit to '1'.
If the value of this register is zero, no transaction can be served even if the stream is
enabled.

RM0401 Rev 3 191/771

RM0401 Direct memory access controller (DMA)

197

8.5.7 DMA stream x peripheral address register (DMA_SxPAR)

Address offset: 0x18 + 0x18 * x, (x = 0 to 7)

Reset value: 0x0000 0000

8.5.8 DMA stream x memory 0 address register (DMA_SxM0AR)

Address offset: 0x1C + 0x18 * x, (x = 0 to 7)

Reset value: 0x0000 0000

8.5.9 DMA stream x memory 1 address register (DMA_SxM1AR)

Address offset: 0x20 + 0x18 * x, (x = 0 to 7)

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

PAR[31:16]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PAR[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:0 PAR[31:0]: peripheral address

Base address of the peripheral data register from/to which the data is read/written.
These bits are write-protected and can be written only when bit EN = '0' in the DMA_SxCR
register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

M0A[31:16]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

M0A[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:0 M0A[31:0]: memory 0 address

Base address of memory area 0 from/to which the data is read/written.
These bits are write-protected. They can be written only if:

– the stream is disabled (bit EN= '0' in the DMA_SxCR register) or

– the stream is enabled (EN=’1’ in DMA_SxCR register) and bit CT = '1' in the
DMA_SxCR register (in double-buffer mode).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

M1A[31:16]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

M1A[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Direct memory access controller (DMA) RM0401

192/771 RM0401 Rev 3

8.5.10 DMA stream x FIFO control register (DMA_SxFCR)

Address offset: 0x24 + 0x18 * x, (x = 0 to 7)

Reset value: 0x0000 0021

Bits 31:0 M1A[31:0]: memory 1 address (used in case of double-buffer mode)

Base address of memory area 1 from/to which the data is read/written.
This register is used only for the double-buffer mode.
These bits are write-protected. They can be written only if:

– the stream is disabled (bit EN= '0' in the DMA_SxCR register) or

– the stream is enabled (EN=’1’ in DMA_SxCR register) and bit CT = '0' in the
DMA_SxCR register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. FEIE Res. FS[2:0] DMDIS FTH[1:0]

rw r r r rw rw rw

Bits 31:8 Reserved, must be kept at reset value.

Bit 7 FEIE: FIFO error interrupt enable

This bit is set and cleared by software.
0: FE interrupt disabled
1: FE interrupt enabled

Bit 6 Reserved, must be kept at reset value.

Bits 5:3 FS[2:0]: FIFO status

These bits are read-only.
000: 0 < fifo_level < 1/4
001: 1/4 ≤ fifo_level < 1/2
010: 1/2 ≤ fifo_level < 3/4
011: 3/4 ≤ fifo_level < full
100: FIFO is empty
101: FIFO is full
others: no meaning
These bits are not relevant in the direct mode (DMDIS bit is zero).

Bit 2 DMDIS: direct mode disable

This bit is set and cleared by software. It can be set by hardware.
0: direct mode enabled
1: direct mode disabled
This bit is protected and can be written only if EN is ‘0’.
This bit is set by hardware if the memory-to-memory mode is selected (DIR bit in
DMA_SxCR are “10”) and the EN bit in the DMA_SxCR register is ‘1’ because the direct
mode is not allowed in the memory-to-memory configuration.

RM0401 Rev 3 193/771

RM0401 Direct memory access controller (DMA)

197

Bits 1:0 FTH[1:0]: FIFO threshold selection

These bits are set and cleared by software.
00: 1/4 full FIFO
01: 1/2 full FIFO
10: 3/4 full FIFO
11: full FIFO
These bits are not used in the direct mode when the DMIS value is zero.
These bits are protected and can be written only if EN is ‘0’.

Direct memory access controller (DMA) RM0401

194/771 RM0401 Rev 3

8.5.11 DMA register map

Table 38 summarizes the DMA registers.

Table 38. DMA register map and reset values

Offset Register name 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x0000
DMA_LISR

R
es

.

R
es

.

R
es

.

R
es

.

T
C

IF
3

H
T

IF
3

T
E

IF
3

D
M

E
IF

3

R
es

.

F
E

IF
3

T
C

IF
2

H
T

IF
2

T
E

IF
2

D
M

E
IF

2

R
es

.

F
E

IF
2

R
es

.

R
es

.

R
es

.

R
es

.

T
C

IF
1

H
T

IF
1

T
E

IF
1

D
M

E
IF

1

R
es

.

F
E

IF
1

T
C

IF
0

H
T

IF
0

T
E

IF
0

D
M

E
IF

0

R
es

.

F
E

IF
0

Reset value 0

0x0004
DMA_HISR

R
es

R
es

R
es

R
es

T
C

IF
7

H
T

IF
7

T
E

IF
7

D
M

E
IF

7

R
es

F
E

IF
7

T
C

IF
6

H
T

IF
6

T
E

IF
6

D
M

E
IF

6

R
es

F
E

IF
6

R
es

R
es

R
es

R
es

T
C

IF
5

H
T

IF
5

T
E

IF
5

D
M

E
IF

5

R
es

F
E

IF
5

T
C

IF
4

H
T

IF
4

T
E

IF
4

D
M

E
IF

4

R
es

F
E

IF
4

Reset value 0

0x0008
DMA_LIFCR

R
e

s

R
e

s

R
e

s

R
e

s

C
T

C
IF

3

C
H

T
IF

3

T
E

IF
3

C
D

M
E

IF
3

R
e

s

C
F

E
IF

3

C
T

C
IF

2

C
H

T
IF

2

C
T

E
IF

2

C
D

M
E

IF
2

R
e

s

C
F

E
IF

2

R
e

s

R
e

s

R
e

s

R
e

s

C
T

C
IF

1

C
H

T
IF

1

C
T

E
IF

1

C
D

M
E

IF
1

R
e

s

C
F

E
IF

1

C
T

C
IF

0

C
H

T
IF

0

C
T

E
IF

0

C
D

M
E

IF
0

R
e

s

C
F

E
IF

0

Reset value 0

0x000C
DMA_HIFCR

R
es

R
es

R
es

R
es

C
T

C
IF

7

C
H

T
IF

7

C
T

E
IF

7

C
D

M
E

IF
7

R
es

C
F

E
IF

7

C
T

C
IF

6

C
H

T
IF

6

C
T

E
IF

6

C
D

M
E

IF
6

R
es

C
F

E
IF

6

R
es

R
es

R
es

R
es

C
T

C
IF

5

C
H

T
IF

5

C
T

E
IF

5

C
D

M
E

IF
5

R
es

C
F

E
IF

5

C
T

C
IF

4

C
H

T
IF

4

C
T

E
IF

4

C
D

M
E

IF
4

R
es

C
F

E
IF

4

Reset value 0

0x0010
DMA_S0CR

R
e

s

R
e

s

R
e

s

R
e

s

C
H

S
E

L
[2

:0
]

M
B

U
R

S
T

[1
:0

]

P
B

U
R

S
T

[1
:0

]

R
e

s

C
T

D
B

M

P
L

[1
:0

]

P
IN

C
O

S

M
S

IZ
E

[1
:0

]

P
S

IZ
E

[1
:0

]

M
IN

C

P
IN

C

C
IR

C

D
IR

[1
:0

]

P
F

C
T

R
L

T
C

IE

H
T

IE

T
E

IE

D
M

E
IE

E
N

Reset value 0

0x0014
DMA_S0NDTR

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

NDT[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x0018
DMA_S0PAR PA[31:0]

Reset value 0

0x001C
DMA_S0M0AR M0A[31:0]

Reset value 0

0x0020
DMA_S0M1AR M1A[31:0]

Reset value 0

0x0024
DMA_S0FCR

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

F
E

IE

R
e

s

FS[2:0]

D
M

D
IS

F
T

H
[1

:0
]

Reset value 0 1 0 0 0 0 1

0x0028
DMA_S1CR

R
es

.

R
es

.

R
es

.

R
es

.

C
H

S
E

L
[2

:0
]

M
B

U
R

S
T

[1
:]

P
B

U
R

S
T

[1
:0

]

R
es

.

C
T

D
B

M

P
L

[1
:0

]

P
IN

C
O

S

M
S

IZ
E

[1
:0

]

P
S

IZ
E

[1
:0

]

M
IN

C

P
IN

C

C
IR

C

D
IR

[1
:0

]

P
F

C
T

R
L

T
C

IE

H
T

IE

T
E

IE

D
M

E
IE

E
N

Reset value 0 0 0 0 0 0 0 - 0

0x002C
DMA_S1NDTR

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

NDT[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x0030
DMA_S1PAR PA[31:0]

Reset value 0

RM0401 Rev 3 195/771

RM0401 Direct memory access controller (DMA)

197

0x0034
DMA_S1M0AR M0A[31:0]

Reset value 0

0x0038
DMA_S1M1AR M1A[31:0]

Reset value 0

0x003C
DMA_S1FCR

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

F
E

IE

R
e

s

FS[2:0]

D
M

D
IS

F
T

H
[1

:0
]

Reset value 0 1 0 0 0 0 1

0x0040
DMA_S2CR

R
e

s

R
e

s

R
e

s

R
e

s

C
H

S
E

L
[2

:0
]

M
B

U
R

S
T

[1
:0

]

P
B

U
R

S
T

[1
:0

]

R
e

s

C
T

D
B

M

P
L

[1
:0

]

P
IN

C
O

S

M
S

IZ
E

[1
:0

]

P
S

IZ
E

[1
:0

]

M
IN

C

P
IN

C

C
IR

C

D
IR

[1
:0

]

P
F

C
T

R
L

T
C

IE

H
T

IE

T
E

IE

D
M

E
IE

E
N

Reset value 0

0x0044
DMA_S2NDTR

R
es

R
es

R
es

R
es

R
es

R
es

R
es

R
es

R
es

R
es

R
es

R
es

R
es

R
es

R
es

R
es NDT[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x0048
DMA_S2PAR PA[31:0]

Reset value 0

0x004C
DMA_S2M0AR M0A[31:0]

Reset value 0

0x0050
DMA_S2M1AR M1A[31:0]

Reset value 0

0x0054
DMA_S2FCR

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

F
E

IE

R
e

s

FS[2:0]

D
M

D
IS

F
T

H
[1

:0
]

Reset value 0 1 0 0 0 0 1

0x0058
DMA_S3CR

R
e

s

R
e

s

R
e

s

R
e

s

C
H

S
E

L
[2

:0
]

M
B

U
R

S
T

[1
:0

]

P
B

U
R

S
T

[1
:0

]

R
e

s

C
T

D
B

M

P
L

[1
:0

]

P
IN

C
O

S

M
S

IZ
E

[1
:0

]

P
S

IZ
E

[1
:0

]

M
IN

C

P
IN

C

C
IR

C

D
IR

[1
:0

]

P
F

C
T

R
L

T
C

IE

H
T

IE

T
E

IE

D
M

E
IE

E
N

Reset value 0

0x005C
DMA_S3NDTR

R
es

R
es

R
es

R
es

R
es

R
es

R
es

R
es

R
es

R
es

R
es

R
es

R
es

R
es

R
es

R
es NDT[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x0060
DMA_S3PAR PA[31:0]

Reset value 0

0x0064
DMA_S3M0AR M0A[31:0]

Reset value 0

0x0068
DMA_S3M1AR M1A[31:0]

Reset value 0

Table 38. DMA register map and reset values (continued)

Offset Register name 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Direct memory access controller (DMA) RM0401

196/771 RM0401 Rev 3

0x006C
DMA_S3FCR

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

F
E

IE

R
e

s

FS[2:0]

D
M

D
IS

F
T

H
[1

:0
]

Reset value 0 1 0 0 0 0 1

0x0070
DMA_S4CR

R
e

s

R
e

s

R
e

s

R
e

s

C
H

S
E

L
[2

:0
]

M
B

U
R

S
T

[1
:0

]

P
B

U
R

S
T

[1
:0

]

R
e

s

C
T

D
B

M

P
L

[1
:0

]

P
IN

C
O

S

M
S

IZ
E

[1
:0

]

P
S

IZ
E

[1
:0

]

M
IN

C

P
IN

C

C
IR

C

D
IR

[1
:0

]

P
F

C
T

R
L

T
C

IE

H
T

IE

T
E

IE

D
M

E
IE

E
N

Reset value 0

0x0074
DMA_S4NDTR

R
es

R
es

R
es

R
es

R
es

R
es

R
es

R
es

R
es

R
es

R
es

R
es

R
es

R
es

R
es

R
es NDT[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x0078
DMA_S4PAR PA[31:0]

Reset value 0

0x007C
DMA_S4M0AR M0A[31:0]

Reset value 0

0x0080
DMA_S4M1AR M1A[31:0]

Reset value 0

0x0084
DMA_S4FCR

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

F
E

IE

R
e

s

FS[2:0]

D
M

D
IS

F
T

H
[1

:0
]

Reset value 0 1 0 0 0 0 1

0x0088
DMA_S5CR

R
e

s

R
e

s

R
e

s

R
e

s

C
H

S
E

L
[2

:0
]

M
B

U
R

S
T

[1
:0

]

P
B

U
R

S
T

[1
:0

]

R
e

s

C
T

D
B

M

P
L

[1
:0

]

P
IN

C
O

S

M
S

IZ
E

[1
:0

]

P
S

IZ
E

[1
:0

]

M
IN

C

P
IN

C

C
IR

C

D
IR

[1
:0

]

P
F

C
T

R
L

T
C

IE

H
T

IE

T
E

IE

D
M

E
IE

E
N

Reset value 0

0x008C
DMA_S5NDTR

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

NDT[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x0090
DMA_S5PAR PA[31:0]

Reset value 0

0x0094
DMA_S5M0AR M0A[31:0]

Reset value 0

0x0098
DMA_S5M1AR M1A[31:0]

Reset value 0

0x009C
DMA_S5FCR

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

F
E

IE

R
e

s

FS[2:0]

D
M

D
IS

F
T

H
[1

:0
]

Reset value 0 1 0 0 0 0 1

Table 38. DMA register map and reset values (continued)

Offset Register name 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RM0401 Rev 3 197/771

RM0401 Direct memory access controller (DMA)

197

Refer to Section 2.2 on page 41 for the register boundary addresses.

0x00A0
DMA_S6CR

R
es

R
es

R
es

R
es

C
H

S
E

L
[2

:0
]

M
B

U
R

S
T

[1
:0

]

P
B

U
R

S
T

[1
:0

]

R
es C
T

D
B

M

P
L

[1
:0

]

P
IN

C
O

S

M
S

IZ
E

[1
:0

]

P
S

IZ
E

[1
:0

]

M
IN

C

P
IN

C

C
IR

C

D
IR

[1
:0

]

P
F

C
T

R
L

T
C

IE

H
T

IE

T
E

IE

D
M

E
IE

E
N

Reset value 0

0x00A4
DMA_S6NDTR

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

NDT[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x00A8
DMA_S6PAR PA[31:0]

Reset value 0

0x00AC
DMA_S6M0AR M0A[31:0]

Reset value 0

0x00B0
DMA_S6M1AR M1A[31:0]

Reset value 0

0x00B4
DMA_S6FCR

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

F
E

IE

R
e

s

FS[2:0]

D
M

D
IS

F
T

H
[1

:0
]

Reset value 0 1 0 0 0 0 1

0x00B8
DMA_S7CR

R
e

s

R
e

s

R
e

s

R
e

s

C
H

S
E

L
[2

:0
]

M
B

U
R

S
T

[1
:0

]

P
B

U
R

S
T

[1
:0

]

R
e

s

C
T

D
B

M

P
L

[1
:0

]

P
IN

C
O

S

M
S

IZ
E

[1
:0

]

P
S

IZ
E

[1
:0

]

M
IN

C

P
IN

C

C
IR

C

D
IR

[1
:0

]

P
F

C
T

R
L

T
C

IE

H
T

IE

T
E

IE

D
M

E
IE

E
N

Reset value 0

0x00BC
DMA_S7NDTR

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

R
e

s

NDT[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x00C0
DMA_S7PAR PA[31:0]

Reset value 0

0x00C4
DMA_S7M0AR M0A[31:0]

Reset value 0

0x00C8
DMA_S7M1AR M1A[31:0]

Reset value 0

0x00CC
DMA_S7FCR

R
es

R
es

R
es

R
es

R
es

R
es

R
es

R
es

R
es

R
es

R
es

R
es

R
es

R
es

R
es

R
es

R
es

R
es

R
es

R
es

R
es

R
es

R
es

R
es

F
E

IE

R
es FS[2:0]

D
M

D
IS

F
T

H
[1

:0
]

Reset value 0 1 0 0 0 0 1

Table 38. DMA register map and reset values (continued)

Offset Register name 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Interrupts and events RM0401

198/771 RM0401 Rev 3

9 Interrupts and events

9.1 Nested vectored interrupt controller (NVIC)

9.1.1 NVIC features

The nested vector interrupt controller NVIC includes the following features:

• 52 maskable interrupt channels (not including the 16 interrupt lines of Cortex®-M4 with
FPU)

• 16 programmable priority levels (4 bits of interrupt priority are used)

• low-latency exception and interrupt handling

• power management control

• implementation of system control registers

The NVIC and the processor core interface are closely coupled, which enables low latency
interrupt processing and efficient processing of late arriving interrupts.

All interrupts including the core exceptions are managed by the NVIC. For more information
on exceptions and NVIC programming, refer to programming manual PM0214.

9.1.2 SysTick calibration value register

The SysTick calibration value is fixed to 12500, which gives a reference time base of 1 ms
with the SysTick clock set to 12.5 MHz (HCLK/8, with HCLK set to 100 MHz).

9.1.3 Interrupt and exception vectors

Refer to Table 39: Vector table.

9.2 External interrupt/event controller (EXTI)

The external interrupt/event controller consists of up to 23 edge detectors for generating
event/interrupt requests. Each input line can be independently configured to select the type
(interrupt or event) and the corresponding trigger event (rising or falling or both). Each line
can also masked independently. A pending register maintains the status line of the interrupt
requests.

Table 39. Vector table

P
o

si
ti

o
n

P
ri

o
ri

ty Type of
priority

Acronym Description Address

- - - Reserved 0x0000 0000

-3 fixed Reset Reset 0x0000 0004

RM0401 Rev 3 199/771

RM0401 Interrupts and events

210

-2 fixed NMI
Non maskable interrupt, Clock Security

System
0x0000 0008

-1 fixed HardFault All class of fault 0x0000 000C

0 settable MemManage Memory management 0x0000 0010

1 settable BusFault Prefetch fault, memory access fault 0x0000 0014

2 settable UsageFault Undefined instruction or illegal state 0x0000 0018

- - - Reserved
0x0000 001C -
0x0000 002B

3 settable SVCall System Service call via SWI instruction 0x0000 002C

4 settable Debug Monitor Debug Monitor 0x0000 0030

- - Reserved 0x0000 0034

5 settable PendSV Pendable request for system service 0x0000 0038

6 settable Systick System tick timer 0x0000 003C

0 7 settable WWDG Window Watchdog interrupt 0x0000 0040

1 8 settable PVD PVD through EXTI line detection interrupt 0x0000 0044

2 9 settable EXTI21 / TAMP_STAMP
EXTI Line 21 interrupt /

Tamper and TimeStamp interrupts through
the EXTI line

0x0000 0048

3 10 settable EXTI22 / RTC_WKUP
EXTI Line 22 interrupt /

RTC Wakeup interrupt through the EXTI
line

0x0000 004C

4 11 settable FLASH Flash memory global interrupt 0x0000 0050

5 12 settable RCC RCC global interrupt 0x0000 0054

6 13 settable EXTI0 EXTI Line0 interrupt 0x0000 0058

7 14 settable EXTI1 EXTI Line1 interrupt 0x0000 005C

8 15 settable EXTI2 EXTI Line2 interrupt 0x0000 0060

9 16 settable EXTI3 EXTI Line3 interrupt 0x0000 0064

10 17 settable EXTI4 EXTI Line4 interrupt 0x0000 0068

11 18 settable DMA1_Stream0 DMA1 Stream0 global interrupt 0x0000 006C

12 19 settable DMA1_Stream1 DMA1 Stream1 global interrupt 0x0000 0070

13 20 settable DMA1_Stream2 DMA1 Stream2 global interrupt 0x0000 0074

14 21 settable DMA1_Stream3 DMA1 Stream3 global interrupt 0x0000 0078

Table 39. Vector table (continued)

P
o

si
ti

o
n

P
ri

o
ri

ty Type of
priority

Acronym Description Address

Interrupts and events RM0401

200/771 RM0401 Rev 3

15 22 settable DMA1_Stream4 DMA1 Stream4 global interrupt 0x0000 007C

16 23 settable DMA1_Stream5 DMA1 Stream5 global interrupt 0x0000 0080

17 24 settable DMA1_Stream6 DMA1 Stream6 global interrupt 0x0000 0084

18 25 settable ADC ADC1 global interrupts 0x0000 0088

19 to
22

- - - Reserved
0x0000 008C to

0x0000 0098

23 30 settable EXTI9_5 EXTI Line[9:5] interrupts 0x0000 009C

24 31 settable TIM1_BRK_TIM9
TIM1 Break interrupt and TIM9 global

interrupt
0x0000 00A0

25 32 settable TIM1_UP TIM1 Update interrupt 0x0000 00A4

26 33 settable TIM1_TRG_COM_TIM11
TIM1 Trigger and Commutation interrupts

and TIM11 global interrupt
0x0000 00A8

27 34 settable TIM1_CC TIM1 Capture Compare interrupt 0x0000 00AC

28 to
30

- - - Reserved
0x0000 00B0 to
0x0000 00B8

31 38 settable I2C1_EV I2C1 event interrupt 0x0000 00BC

32 39 settable I2C1_ER I2C1 error interrupt 0x0000 00C0

33 40 settable I2C2_EV I2C2 event interrupt 0x0000 00C4

34 41 settable I2C2_ER I2C2 error interrupt 0x0000 00C8

35 42 settable SPI1 SPI1 global interrupt 0x0000 00CC

36 43 settable SPI2 SPI2 global interrupt 0x0000 00D0

37 44 settable USART1 USART1 global interrupt 0x0000 00D4

38 45 settable USART2 USART2 global interrupt 0x0000 00D8

39 - - - Reserved 0x0000 00DC

40 47 settable EXTI15_10 EXTI Line[15:10] interrupts 0x0000 00E0

41 48 settable EXTI17 / RTC_Alarm
EXTI Line 17 interrupt / RTC Alarms (A and

B) through EXTI line interrupt
0x0000 00E4

42 to
46

- - - Reserved
0x0000 00E8 to

0x0000 00F8

47 54 settable DMA1_Stream7 DMA1 Stream7 global interrupt 0x0000 00FC

48 to
49

- - - Reserved
0x0000 0100 to

0x0000 0104

50 57 settable TIM5 TIM5 global interrupt 0x0000 0108

Table 39. Vector table (continued)

P
o

si
ti

o
n

P
ri

o
ri

ty Type of
priority

Acronym Description Address

RM0401 Rev 3 201/771

RM0401 Interrupts and events

210

51 to
53

- - - Reserved
0x0000 010C to

0x0000 0114

54 61 settable TIM6_DAC
TIM6 global interrupt,

DAC1 underrun error interrupt
0x0000 0118

55 - - - Reserved 0x0000 011C

56 63 settable DMA2_Stream0 DMA2 Stream0 global interrupt 0x0000 0120

57 64 settable DMA2_Stream1 DMA2 Stream1 global interrupt 0x0000 0124

58 65 settable DMA2_Stream2 DMA2 Stream2 global interrupt 0x0000 0128

59 66 settable DMA2_Stream3 DMA2 Stream3 global interrupt 0x0000 012C

60 67 settable DMA2_Stream4 DMA2 Stream4 global interrupt 0x0000 0130

61 - - - Reserved 0x0000 0134

62 69 settable EXTI19 EXTI Line 19 interrupt 0x0000 0138

63 to
67

- - - Reserved
0x0000 013C to
0x0000 014C

68 75 settable DMA2_Stream5 DMA2 Stream5 global interrupt 0x0000 0150

69 76 settable DMA2_Stream6 DMA2 Stream6 global interrupt 0x0000 0154

70 77 settable DMA2_Stream7 DMA2 Stream7 global interrupt 0x0000 0158

71 78 settable USART6 USART6 global interrupt 0x0000 015C

72 to
75

- - - Reserved
0x0000 0160 to
0x0000 016C

76 83 settable EXTI20 EXTI Line 20 interrupt 0x0000 0170

77 to
79

- - - Reserved
0x0000 0174 to
0x0000 017C

80 87 settable RNG RNG global interrupt 0x0000 0180

81 88 Settable FPU FPU global interrupt 0x0000 0184

82 to
84

- - - Reserved
0x0000 0188 to

0x0000 0190

85 92 settable SPI5 SPI 5 global interrupt 0x0000 0194

86

to 94
- - - Reserved

0x0000 0198

to 0x0000 01B8

95 102 settable I2C4_EV I2C4 event interrupt 0x0000 01C0

Table 39. Vector table (continued)

P
o

si
ti

o
n

P
ri

o
ri

ty Type of
priority

Acronym Description Address

Interrupts and events RM0401

202/771 RM0401 Rev 3

9.2.1 EXTI main features

The main features of the EXTI controller are the following:

• independent trigger and mask on each interrupt/event line

• dedicated status bit for each interrupt line

• generation of up to 23 software event/interrupt requests

• detection of external signals with a pulse width lower than the APB2 clock period. Refer
to the electrical characteristics section of the datasheets for details on this parameter.

96 103 settable I2C4_ER I2C4 error interrupt 0x0000 01C4

97 103 settable LPTIM1/EXTI23
LPTIM1 global interrupt or EXTI Line 23

interrupt
 0x0000 01C8

Table 39. Vector table (continued)

P
o

si
ti

o
n

P
ri

o
ri

ty Type of
priority

Acronym Description Address

RM0401 Rev 3 203/771

RM0401 Interrupts and events

210

9.2.2 EXTI block diagram

Figure 29 shows the block diagram.

Figure 29. External interrupt/event controller block diagram

9.2.3 Wakeup event management

The STM32F4xx are able to handle external or internal events in order to wake up the core
(WFE). The wakeup event can be generated either by:

• enabling an interrupt in the peripheral control register but not in the NVIC, and enabling
the SEVONPEND bit in the Cortex®-M4 with FPU System Control register. When the
MCU resumes from WFE, the peripheral interrupt pending bit and the peripheral NVIC
IRQ channel pending bit (in the NVIC interrupt clear pending register) have to be
cleared.

• or configuring an external or internal EXTI line in event mode. When the CPU resumes
from WFE, it is not necessary to clear the peripheral interrupt pending bit or the NVIC
IRQ channel pending bit as the pending bit corresponding to the event line is not set.

To use an external line as a wakeup event, refer to Section 9.2.4: Functional description.

9.2.4 Functional description

To generate the interrupt, the interrupt line should be configured and enabled. This is done
by programming the two trigger registers with the desired edge detection and by enabling
the interrupt request by writing a ‘1’ to the corresponding bit in the interrupt mask register.
When the selected edge occurs on the external interrupt line, an interrupt request is

Interrupts and events RM0401

204/771 RM0401 Rev 3

generated. The pending bit corresponding to the interrupt line is also set. This request is
reset by writing a ‘1’ in the pending register.

To generate the event, the event line should be configured and enabled. This is done by
programming the two trigger registers with the desired edge detection and by enabling the
event request by writing a ‘1’ to the corresponding bit in the event mask register. When the
selected edge occurs on the event line, an event pulse is generated. The pending bit
corresponding to the event line is not set.

An interrupt/event request can also be generated by software by writing a ‘1’ in the software
interrupt/event register.

Hardware interrupt selection

To configure the 23 lines as interrupt sources, use the following procedure:

• Configure the mask bits of the 23 interrupt lines (EXTI_IMR)

• Configure the Trigger selection bits of the interrupt lines (EXTI_RTSR and EXTI_FTSR)

• Configure the enable and mask bits that control the NVIC IRQ channel mapped to the
external interrupt controller (EXTI) so that an interrupt coming from one of the 23 lines
can be correctly acknowledged.

Hardware event selection

To configure the 23 lines as event sources, use the following procedure:

• Configure the mask bits of the 23 event lines (EXTI_EMR)

• Configure the Trigger selection bits of the event lines (EXTI_RTSR and EXTI_FTSR)

Software interrupt/event selection

The 23 lines can be configured as software interrupt/event lines. The following is the
procedure to generate a software interrupt.

• Configure the mask bits of the 23 interrupt/event lines (EXTI_IMR, EXTI_EMR)

• Set the required bit in the software interrupt register (EXTI_SWIER)

RM0401 Rev 3 205/771

RM0401 Interrupts and events

210

9.2.5 External interrupt/event line mapping

Up to 50 GPIOs are connected to the 16 external interrupt/event lines in the following
manner:

Figure 30. External interrupt/event GPIO mapping

The five other EXTI lines are connected as follows:

• EXTI line 16 is connected to the PVD output

• EXTI line 17 is connected to the RTC Alarm event

• EXTI line 21 is connected to the RTC Tamper and TimeStamp events

• EXTI line 22 is connected to the RTC Wakeup event

• EXTI line 23 is connected to the LPTIM1 asynchronous interrupt

Interrupts and events RM0401

206/771 RM0401 Rev 3

9.3 EXTI registers

Refer to Section 1.2: List of abbreviations for registers for a list of abbreviations used in
register descriptions.

9.3.1 Interrupt mask register (EXTI_IMR)

Address offset: 0x00

Reset value: 0x0000 0000

9.3.2 Event mask register (EXTI_EMR)

Address offset: 0x04
Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. MR22 MR21 Res. Res. MR18 MR17 MR16

rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MR15 MR14 MR13 MR12 MR11 MR10 MR9 MR8 MR7 MR6 MR5 MR4 MR3 MR2 MR1 MR0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:23 Reserved, must be kept at reset value.

Bits 22:21 MRx: Interrupt mask on line x

0: Interrupt request from line x is masked
1: Interrupt request from line x is not masked

Bits 20-19 Reserved, must be kept at reset value.

Bits 18:0 MRx: Interrupt mask on line x

0: Interrupt request from line x is masked
1: Interrupt request from line x is not masked

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. MR22 MR21 Res. Res. MR18 MR17 MR16

rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MR15 MR14 MR13 MR12 MR11 MR10 MR9 MR8 MR7 MR6 MR5 MR4 MR3 MR2 MR1 MR0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:23 Reserved, must be kept at reset value.

Bits 22:21 MRx: Event mask on line x

0: Event request from line x is masked
1: Event request from line x is not masked

Bits 20-19 Reserved, must be kept at reset value.

Bits 18:0 MRx: Event mask on line x

0: Event request from line x is masked
1: Event request from line x is not masked

RM0401 Rev 3 207/771

RM0401 Interrupts and events

210

9.3.3 Rising trigger selection register (EXTI_RTSR)

Address offset: 0x08
Reset value: 0x0000 0000

Note: The external wakeup lines are edge triggered, no glitch must be generated on these lines.
If a rising edge occurs on the external interrupt line while writing to the EXTI_RTSR register,
the pending bit is be set.

Rising and falling edge triggers can be set for the same interrupt line. In this configuration,
both generate a trigger condition.

9.3.4 Falling trigger selection register (EXTI_FTSR)

Address offset: 0x0C
Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. TR22 TR21 Res. Res. TR18 TR17 TR16

rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TR15 TR14 TR13 TR12 TR11 TR10 TR9 TR8 TR7 TR6 TR5 TR4 TR3 TR2 TR1 TR0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:23 Reserved, must be kept at reset value.

Bits 22:21 TRx: Rising trigger event configuration bit of line x

0: Rising trigger disabled (for Event and Interrupt) for input line
1: Rising trigger enabled (for Event and Interrupt) for input line

Bits 20:19 Reserved, must be kept at reset value.

Bits 18-0 TRx: Rising trigger event configuration bit of line x

0: Rising trigger disabled (for Event and Interrupt) for input line
1: Rising trigger enabled (for Event and Interrupt) for input line

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. TR22 TR21 Res. Res. TR18 TR17 TR16

rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TR15 TR14 TR13 TR12 TR11 TR10 TR9 TR8 TR7 TR6 TR5 TR4 TR3 TR2 TR1 TR0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:23 Reserved, must be kept at reset value.

Interrupts and events RM0401

208/771 RM0401 Rev 3

Note: The external wakeup lines are edge triggered, no glitch must be generated on these lines.
If a falling edge occurs on the external interrupt line while writing to the EXTI_FTSR register,
the pending bit is not set.

Rising and falling edge triggers can be set for the same interrupt line. In this configuration,
both generate a trigger condition.

9.3.5 Software interrupt event register (EXTI_SWIER)

Address offset: 0x10
Reset value: 0x0000 0000

9.3.6 Pending register (EXTI_PR)

Address offset: 0x14
Reset value: undefined

Bits 22:21 TRx: Falling trigger event configuration bit of line x

0: Falling trigger disabled (for Event and Interrupt) for input line
1: Falling trigger enabled (for Event and Interrupt) for input line.

Bits 20:19 Reserved, must be kept at reset value.

Bits 18:0 TRx: Falling trigger event configuration bit of line x

0: Falling trigger disabled (for Event and Interrupt) for input line
1: Falling trigger enabled (for Event and Interrupt) for input line.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res.
SWIER

22
SWIER

21
Res. Res.

SWIER
18

SWIER
17

SWIER
16

rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SWIER
15

SWIER
14

SWIER
13

SWIER
12

SWIER
11

SWIER
10

SWIER
9

SWIER
8

SWIER
7

SWIER
6

SWIER
5

SWIER
4

SWIER
3

SWIER
2

SWIER
1

SWIER
0

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:23 Reserved, must be kept at reset value.

Bits 22:21 SWIERx: Software Interrupt on line x

If interrupt are enabled on line x in the EXTI_IMR register, writing '1' to SWIERx bit when it is
set at '0' sets the corresponding pending bit in the EXTI_PR register, thus resulting in an
interrupt request generation.
This bit is cleared by clearing the corresponding bit in EXTI_PR (by writing a 1 to the bit).

Bits 20:19 Reserved, must be kept at reset value.

Bits 18:0 SWIERx: Software Interrupt on line x

If interrupt are enabled on line x in the EXTI_IMR register, writing '1' to SWIERx bit when it is
set at '0' sets the corresponding pending bit in the EXTI_PR register, thus resulting in an
interrupt request generation.
This bit is cleared by clearing the corresponding bit in EXTI_PR (by writing a 1 to the bit).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. PR22 PR21 Res. Res. PR18 PR17 PR16

rc_w1 rc_w1 rc_w1 rc_w1 rc_w1

RM0401 Rev 3 209/771

RM0401 Interrupts and events

210

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PR15 PR14 PR13 PR12 PR11 PR10 PR9 PR8 PR7 PR6 PR5 PR4 PR3 PR2 PR1 PR0

rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1 rc_w1

Bits 31:23 Reserved, must be kept at reset value.

Bits 22:21 PRx: Pending bit

0: No trigger request occurred
1: selected trigger request occurred
This bit is set when the selected edge event arrives on the external interrupt line.
This bit is cleared by programming it to ‘1’.

Bits 20:19 Reserved, must be kept at reset value.

Bits 18:0 PRx: Pending bit

0: No trigger request occurred
1: selected trigger request occurred
This bit is set when the selected edge event arrives on the external interrupt line.
This bit is cleared by programming it to ‘1’.

Interrupts and events RM0401

210/771 RM0401 Rev 3

9.3.7 EXTI register map

Table 40 gives the EXTI register map and the reset values.

Refer to Section 2.2 on page 41 for the register boundary addresses.

Table 40. External interrupt/event controller register map and reset values

Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x00
EXTI_IMR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

. MR
[22:21] R

es
.

R
es

.

MR[18:0]

Reset value 0

0x04
EXTI_EMR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

. MR
[22:21] R

es
.

R
es

.

MR[18:0]

Reset value 0

0x08
EXTI_RTSR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

. TR
[22:21] R

es
.

R
es

.

TR[18:0]

Reset value 0

0x0C
EXTI_FTSR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

. TR
[22:21] R

es
.

R
es

.

TR[18:0]

Reset value 0

0x10
EXTI_SWIER

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

. SWIER
[22:21] R

es
.

R
es

.

SWIER[18:0]

Reset value 0

0x14
EXTI_PR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

. PR
[22:21] R

es
.

R
es

.

PR[18:0]

Reset value 0

RM0401 Rev 3 211/771

RM0401 CRC calculation unit

214

10 CRC calculation unit

10.1 CRC introduction

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit
data word and a fixed generator polynomial.

Among other applications, CRC-based techniques are used to verify data transmission or
storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a way of verifying
the Flash memory integrity. The CRC calculation unit helps compute a signature of the
software during runtime, to be compared with a reference signature generated at link-time
and stored at a given memory location.

10.2 CRC main features

• Uses CRC-32 (Ethernet) polynomial: 0x4C11DB7

– X32 + X26 + X23 + X22 + X16 + X12 + X11 + X10 +X8 + X7 + X5 + X4 + X2+ X +1

• Single input/output 32-bit data register

• CRC computation done in four AHB clock cycles (HCLK)

• General-purpose 8-bit register (can be used for temporary storage)

The block diagram is shown in Figure 31.

Figure 31. CRC calculation unit block diagram

10.3 CRC functional description

The CRC calculation unit mainly consists of a single 32-bit data register, which:

• is used as an input register to enter new data in the CRC calculator (when writing into
the register)

• holds the result of the previous CRC calculation (when reading the register)

CRC calculation unit RM0401

212/771 RM0401 Rev 3

Each write operation into the data register creates a combination of the previous CRC value
and the new one (CRC computation is done on the whole 32-bit data word, and not byte per
byte).

The write operation is stalled until the end of the CRC computation, thus allowing back-to-
back write accesses or consecutive write and read accesses.

The CRC calculator can be reset to 0xFFFF FFFF with the RESET control bit in the
CRC_CR register. This operation does not affect the contents of the CRC_IDR register.

10.4 CRC registers

The CRC calculation unit contains two data registers and a control register.The peripheral
The CRC registers have to be accessed by words (32 bits).

10.4.1 Data register (CRC_DR)

Address offset: 0x00

Reset value: 0xFFFF FFFF

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

DR [31:16]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DR [15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:0 Data register bits

Used as an input register when writing new data into the CRC calculator.
Holds the previous CRC calculation result when it is read.

RM0401 Rev 3 213/771

RM0401 CRC calculation unit

214

10.4.2 Independent data register (CRC_IDR)

Address offset: 0x04

Reset value: 0x0000 0000

10.4.3 Control register (CRC_CR)

Address offset: 0x08

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. IDR[7:0]

rw rw rw rw rw rw rw rw

Bits 31:8 Reserved, must be kept at reset value.

Bits 7:0 General-purpose 8-bit data register bits

Can be used as a temporary storage location for one byte.
This register is not affected by CRC resets generated by the RESET bit in the CRC_CR
register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. RESET

w

Bits 31:1 Reserved, must be kept at reset value.

Bit 0 RESET bit

Resets the CRC calculation unit and sets the data register to 0xFFFF FFFF.
This bit can only be set, it is automatically cleared by hardware.

CRC calculation unit RM0401

214/771 RM0401 Rev 3

10.4.4 CRC register map

Refer to Section 2.2 on page 41 for the register boundary addresses.

Table 41. CRC calculation unit register map and reset values

Offset Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

0x00
CRC_DR Data register

Reset value 0xFFFF FFFF

0x04
CRC_IDR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

Independent data register

Reset value 0x0000

0x08
CRC_CR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
E

S
E

T

Reset value 0

RM0401 Rev 3 215/771

RM0401 Analog-to-digital converter (ADC)

242

11 Analog-to-digital converter (ADC)

11.1 ADC introduction

The 12-bit ADC is a successive approximation analog-to-digital converter. It has up to 19
multiplexed channels allowing it to measure signals from 16 external sources, two internal
sources, and the VBAT channel. The A/D conversion of the channels can be performed in
single, continuous, scan or discontinuous mode. The result of the ADC is stored into a left-
or right-aligned 16-bit data register.

The analog watchdog feature allows the application to detect if the input voltage goes
beyond the user-defined, higher or lower thresholds.

11.2 ADC main features

• 12-bit, 10-bit, 8-bit or 6-bit configurable resolution

• Interrupt generation at the end of conversion, end of injected conversion, and in case of
analog watchdog or overrun events

• Single and continuous conversion modes

• Scan mode for automatic conversion of channel 0 to channel ‘n’

• Data alignment with in-built data coherency

• Channel-wise programmable sampling time

• External trigger option with configurable polarity for both regular and injected
conversions

• Discontinuous mode

• Configurable delay between conversions in Dual/Triple interleaved mode

• ADC supply requirements: 2.4 V to 3.6 V at full speed and down to 1.8 V at slower
speed

• ADC input range: VSSA ≤ VIN ≤ VREF+

• DMA request generation during regular channel conversion

Figure 32 shows the block diagram of the ADC.

11.3 ADC functional description

Figure 32 shows a single ADC block diagram and Table 42 gives the ADC pin description.

Analog-to-digital converter (ADC) RM0401

216/771 RM0401 Rev 3

Figure 32. Single ADC block diagram

RM0401 Rev 3 217/771

RM0401 Analog-to-digital converter (ADC)

242

11.3.1 ADC on-off control

The ADC is powered on by setting the ADON bit in the ADC_CR2 register. When the ADON
bit is set for the first time, it wakes up the ADC from the Power-down mode.

The conversion starts when either the SWSTART or the JSWSTART bit is set.

The user can stop conversion and put the ADC in power down mode by clearing the ADON
bit. In this mode the ADC consumes almost no power (only a few µA).

11.3.2 ADC clock

The ADC features two clock schemes:

• Clock for the analog circuitry: ADCCLK

This clock is generated from the APB2 clock divided by a programmable prescaler that
allows the ADC to work at fPCLK2/2, /4, /6 or /8. Refer to the datasheets for the
maximum value of ADCCLK.

• Clock for the digital interface (used for registers read/write access)

This clock is equal to the APB2 clock. The digital interface clock can be
enabled/disabled individually for each ADC through the RCC APB2 peripheral clock
enable register (RCC_APB2ENR).

11.3.3 Channel selection

There are 16 multiplexed channels. It is possible to organize the conversions in two groups:
regular and injected. A group consists of a sequence of conversions that can be done on
any channel and in any order. For instance, it is possible to implement the conversion
sequence in the following order: ADC_IN3, ADC_IN8, ADC_IN2, ADC_IN2, ADC_IN0,
ADC_IN2, ADC_IN2, ADC_IN15.

• A regular group is composed of up to 16 conversions. The regular channels and their
order in the conversion sequence must be selected in the ADC_SQRx registers. The
total number of conversions in the regular group must be written in the L[3:0] bits in the
ADC_SQR1 register.

• An injected group is composed of up to 4 conversions. The injected channels and
their order in the conversion sequence must be selected in the ADC_JSQR register.

Table 42. ADC pins

Name Signal type Remarks

VREF+
Input, analog reference
positive

The higher/positive reference voltage for the ADC,
1.8 V ≤ VREF+ ≤ VDDA

VDDA Input, analog supply
Analog power supply equal to VDD and
2.4 V ≤VDDA ≤VDD (3.6 V) for full speed
1.8 V ≤VDDA ≤VDD (3.6 V) for reduced speed

VREF–
Input, analog reference
negative

The lower/negative reference voltage for the ADC,
VREF– = VSSA

VSSA
Input, analog supply
ground

Ground for analog power supply equal to VSS

ADCx_IN[15:0] Analog input signals 16 analog input channels

Analog-to-digital converter (ADC) RM0401

218/771 RM0401 Rev 3

The total number of conversions in the injected group must be written in the L[1:0] bits
in the ADC_JSQR register.

If the ADC_SQRx or ADC_JSQR registers are modified during a conversion, the current
conversion is reset and a new start pulse is sent to the ADC to convert the newly chosen
group.

Temperature sensor, VREFINT and VBAT internal channels

• The temperature sensor is internally connected to ADC1_IN18 and ADC1_IN16
channels which is shared with VBAT. Only one conversion, temperature sensor or
VBAT, must be selected at a time. When the temperature sensor and VBAT conversion
are set simultaneously, only the VBAT conversion is performed.

The internal reference voltage VREFINT is connected to ADC1_IN17.

The VBAT channel is connected to ADC1_IN18 and ADC1_IN16 channels. It can also be
converted as an injected or regular channel.

11.3.4 Single conversion mode

In Single conversion mode the ADC does one conversion. This mode is started with the
CONT bit at 0 by either:

• setting the SWSTART bit in the ADC_CR2 register (for a regular channel only)

• setting the JSWSTART bit (for an injected channel)

• external trigger (for a regular or injected channel)

Once the conversion of the selected channel is complete:

• If a regular channel was converted:

– The converted data are stored into the 16-bit ADC_DR register

– The EOC (end of conversion) flag is set

– An interrupt is generated if the EOCIE bit is set

• If an injected channel was converted:

– The converted data are stored into the 16-bit ADC_JDR1 register

– The JEOC (end of conversion injected) flag is set

– An interrupt is generated if the JEOCIE bit is set

Then the ADC stops.

11.3.5 Continuous conversion mode

In continuous conversion mode, the ADC starts a new conversion as soon as it finishes one.
This mode is started with the CONT bit at 1 either by external trigger or by setting the
SWSTRT bit in the ADC_CR2 register (for regular channels only).

After each conversion:

• If a regular group of channels was converted:

– The last converted data are stored into the 16-bit ADC_DR register

– The EOC (end of conversion) flag is set

– An interrupt is generated if the EOCIE bit is set

Note: Injected channels cannot be converted continuously. The only exception is when an injected
channel is configured to be converted automatically after regular channels in continuous

RM0401 Rev 3 219/771

RM0401 Analog-to-digital converter (ADC)

242

mode (using JAUTO bit), refer to Auto-injection section).

11.3.6 Timing diagram

As shown in Figure 33, the ADC needs a stabilization time of tSTAB before it starts
converting accurately. After the start of the ADC conversion and after 15 clock cycles, the
EOC flag is set and the 16-bit ADC data register contains the result of the conversion.

Figure 33. Timing diagram

11.3.7 Analog watchdog

The AWD analog watchdog status bit is set if the analog voltage converted by the ADC is
below a lower threshold or above a higher threshold. These thresholds are programmed in
the 12 least significant bits of the ADC_HTR and ADC_LTR 16-bit registers. An interrupt can
be enabled by using the AWDIE bit in the ADC_CR1 register.

The threshold value is independent of the alignment selected by the ALIGN bit in the
ADC_CR2 register. The analog voltage is compared to the lower and higher thresholds
before alignment.

Table 43 shows how the ADC_CR1 register should be configured to enable the analog
watchdog on one or more channels.

Figure 34. Analog watchdog’s guarded area

Analog-to-digital converter (ADC) RM0401

220/771 RM0401 Rev 3

11.3.8 Scan mode

This mode is used to scan a group of analog channels.

The Scan mode is selected by setting the SCAN bit in the ADC_CR1 register. Once this bit
has been set, the ADC scans all the channels selected in the ADC_SQRx registers (for
regular channels) or in the ADC_JSQR register (for injected channels). A single conversion
is performed for each channel of the group. After each end of conversion, the next channel
in the group is converted automatically. If the CONT bit is set, regular channel conversion
does not stop at the last selected channel in the group but continues again from the first
selected channel.

If the DMA bit is set, the direct memory access (DMA) controller is used to transfer the data
converted from the regular group of channels (stored in the ADC_DR register) to SRAM
after each regular channel conversion.

The EOC bit is set in the ADC_SR register:

• At the end of each regular group sequence if the EOCS bit is cleared to 0

• At the end of each regular channel conversion if the EOCS bit is set to 1

The data converted from an injected channel are always stored into the ADC_JDRx
registers.

11.3.9 Injected channel management

Triggered injection

To use triggered injection, the JAUTO bit must be cleared in the ADC_CR1 register.

1. Start the conversion of a group of regular channels either by external trigger or by
setting the SWSTART bit in the ADC_CR2 register.

2. If an external injected trigger occurs or if the JSWSTART bit is set during the
conversion of a regular group of channels, the current conversion is reset and the
injected channel sequence switches to Scan-once mode.

3. Then, the regular conversion of the regular group of channels is resumed from the last
interrupted regular conversion.
If a regular event occurs during an injected conversion, the injected conversion is not

Table 43. Analog watchdog channel selection

Channels guarded by the analog
watchdog

ADC_CR1 register control bits (x = don’t care)

AWDSGL bit AWDEN bit JAWDEN bit

None x 0 0

All injected channels 0 0 1

All regular channels 0 1 0

All regular and injected channels 0 1 1

Single(1) injected channel

1. Selected by the AWDCH[4:0] bits

1 0 1

Single(1) regular channel 1 1 0

Single (1) regular or injected channel 1 1 1

RM0401 Rev 3 221/771

RM0401 Analog-to-digital converter (ADC)

242

interrupted but the regular sequence is executed at the end of the injected sequence.
Figure 35 shows the corresponding timing diagram.

Note: When using triggered injection, one must ensure that the interval between trigger events is
longer than the injection sequence. For instance, if the sequence length is 30 ADC clock
cycles (that is two conversions with a sampling time of 3 clock periods), the minimum
interval between triggers must be 31 ADC clock cycles.

Auto-injection

If the JAUTO bit is set, then the channels in the injected group are automatically converted
after the regular group of channels. This can be used to convert a sequence of up to 20
conversions programmed in the ADC_SQRx and ADC_JSQR registers.

In this mode, external trigger on injected channels must be disabled.

If the CONT bit is also set in addition to the JAUTO bit, regular channels followed by injected
channels are continuously converted.

Note: It is not possible to use both the auto-injected and discontinuous modes simultaneously.

Figure 35. Injected conversion latency

1. The maximum latency value can be found in the electrical characteristics of the STM32F410 datasheets.

11.3.10 Discontinuous mode

Regular group

This mode is enabled by setting the DISCEN bit in the ADC_CR1 register. It can be used to
convert a short sequence of n conversions (n ≤ 8) that is part of the sequence of
conversions selected in the ADC_SQRx registers. The value of n is specified by writing to
the DISCNUM[2:0] bits in the ADC_CR1 register.

When an external trigger occurs, it starts the next n conversions selected in the ADC_SQRx
registers until all the conversions in the sequence are done. The total sequence length is
defined by the L[3:0] bits in the ADC_SQR1 register.

Analog-to-digital converter (ADC) RM0401

222/771 RM0401 Rev 3

Example:

• n = 3, channels to be converted = 0, 1, 2, 3, 6, 7, 9, 10

• 1st trigger: sequence converted 0, 1, 2. An EOC event is generated at each
conversion.

• 2nd trigger: sequence converted 3, 6, 7. An EOC event is generated at each
conversion

• 3rd trigger: sequence converted 9, 10.An EOC event is generated at each conversion

• 4th trigger: sequence converted 0, 1, 2. An EOC event is generated at each conversion

Note: When a regular group is converted in discontinuous mode, no rollover occurs.

When all subgroups are converted, the next trigger starts the conversion of the first
subgroup. In the example above, the 4th trigger reconverts the channels 0, 1 and 2 in the
1st subgroup.

Injected group

This mode is enabled by setting the JDISCEN bit in the ADC_CR1 register. It can be used to
convert the sequence selected in the ADC_JSQR register, channel by channel, after an
external trigger event.

When an external trigger occurs, it starts the next channel conversions selected in the
ADC_JSQR registers until all the conversions in the sequence are done. The total sequence
length is defined by the JL[1:0] bits in the ADC_JSQR register.

Example:

n = 1, channels to be converted = 1, 2, 3
1st trigger: channel 1 converted
2nd trigger: channel 2 converted
3rd trigger: channel 3 converted and JEOC event generated
4th trigger: channel 1

Note: When all injected channels are converted, the next trigger starts the conversion of the first
injected channel. In the example above, the 4th trigger reconverts the 1st injected channel
1.

It is not possible to use both the auto-injected and discontinuous modes simultaneously.

Discontinuous mode must not be set for regular and injected groups at the same time.
Discontinuous mode must be enabled only for the conversion of one group.

11.4 Data alignment

The ALIGN bit in the ADC_CR2 register selects the alignment of the data stored after
conversion. Data can be right- or left-aligned as shown in Figure 36 and Figure 37.

The converted data value from the injected group of channels is decreased by the user-
defined offset written in the ADC_JOFRx registers so the result can be a negative value.
The SEXT bit represents the extended sign value.

For channels in a regular group, no offset is subtracted so only twelve bits are significant.

RM0401 Rev 3 223/771

RM0401 Analog-to-digital converter (ADC)

242

Figure 36. Right alignment of 12-bit data

Figure 37. Left alignment of 12-bit data

Special case: when left-aligned, the data are aligned on a half-word basis except when the
resolution is set to 6-bit. in that case, the data are aligned on a byte basis as shown in
Figure 38.

Figure 38. Left alignment of 6-bit data

11.5 Channel-wise programmable sampling time

The ADC samples the input voltage for a number of ADCCLK cycles that can be modified
using the SMP[2:0] bits in the ADC_SMPR1 and ADC_SMPR2 registers. Each channel can
be sampled with a different sampling time.

The total conversion time is calculated as follows:

Tconv = Sampling time + 12 cycles

Example:

With ADCCLK = 30 MHz and sampling time = 3 cycles:

Tconv = 3 + 12 = 15 cycles = 0.5 µs with APB2 at 60 MHz

Analog-to-digital converter (ADC) RM0401

224/771 RM0401 Rev 3

11.6 Conversion on external trigger and trigger polarity

Conversion can be triggered by an external event (e.g. timer capture, EXTI line). If the
EXTEN[1:0] control bits (for a regular conversion) or JEXTEN[1:0] bits (for an injected
conversion) are different from “0b00”, then external events are able to trigger a conversion
with the selected polarity. Table 44 provides the correspondence between the EXTEN[1:0]
and JEXTEN[1:0] values and the trigger polarity.

Note: The polarity of the external trigger can be changed on the fly.

The EXTSEL[3:0] and JEXTSEL[3:0] control bits are used to select which out of 16 possible
events can trigger conversion for the regular and injected groups.

Table 45 gives the possible external trigger for regular conversion.

Table 44. Configuring the trigger polarity

Source EXTEN[1:0] / JEXTEN[1:0]

Trigger detection disabled 00

Detection on the rising edge 01

Detection on the falling edge 10

Detection on both the rising and falling edges 11

Table 45. External trigger for regular channels

Source Type EXTSEL[3:0]

TIM1_CH1 event

Internal signal from on-chip
timers

0000

TIM1_CH2 event 0001

TIM1_CH3 event 0010

TIM5_CH1 event 1010

TIM5_CH2 event 1011

TIM5_CH3 event 1100

Not used 1101

Not used 1110

EXTI line11 External pin 1111

RM0401 Rev 3 225/771

RM0401 Analog-to-digital converter (ADC)

242

Table 46 gives the possible external trigger for injected conversion.

Software source trigger events can be generated by setting SWSTART (for regular
conversion) or JSWSTART (for injected conversion) in ADC_CR2.

A regular group conversion can be interrupted by an injected trigger.

Note: The trigger selection can be changed on the fly. However, when the selection changes,
there is a time frame of 1 APB clock cycle during which the trigger detection is disabled.
This is to avoid spurious detection during transitions.

11.7 Fast conversion mode

It is possible to perform faster conversion by reducing the ADC resolution. The RES bits are
used to select the number of bits available in the data register. The minimum conversion
time for each resolution is then as follows:

• 12 bits: 3 + 12 = 15 ADCCLK cycles

• 10 bits: 3 + 10 = 13 ADCCLK cycles

• 8 bits: 3 + 8 = 11 ADCCLK cycles

• 6 bits: 3 + 6 = 9 ADCCLK cycles

11.8 Data management

11.8.1 Using the DMA

Since converted regular channel values are stored into a unique data register, it is useful to
use DMA for conversion of more than one regular channel. This avoids the loss of the data
already stored in the ADC_DR register.

When the DMA mode is enabled (DMA bit set to 1 in the ADC_CR2 register), after each
conversion of a regular channel, a DMA request is generated. This allows the transfer of the
converted data from the ADC_DR register to the destination location selected by the
software.

Despite this, if data are lost (overrun), the OVR bit in the ADC_SR register is set and an
interrupt is generated (if the OVRIE enable bit is set). DMA transfers are then disabled and

Table 46. External trigger for injected channels

Source Connection type JEXTSEL[3:0]

TIM1_CH4 event

Internal signal from on-chip
timers

0000

TIM1_TRGO event 0001

TIM5_CH4 event 1010

TIM5_TRGO event 1011

Not used 1100

Not used 1101

Not used 1110

EXTI line15 External pin 1111

Analog-to-digital converter (ADC) RM0401

226/771 RM0401 Rev 3

DMA requests are no longer accepted. In this case, if a DMA request is made, the regular
conversion in progress is aborted and further regular triggers are ignored. It is then
necessary to clear the OVR flag and the DMAEN bit in the used DMA stream, and to re-
initialize both the DMA and the ADC to have the wanted converted channel data transferred
to the right memory location. Only then can the conversion be resumed and the data
transfer, enabled again. Injected channel conversions are not impacted by overrun errors.

When OVR = 1 in DMA mode, the DMA requests are blocked after the last valid data have
been transferred, which means that all the data transferred to the RAM can be considered
as valid.

At the end of the last DMA transfer (number of transfers configured in the DMA controller’s
DMA_SxNTR register):

• No new DMA request is issued to the DMA controller if the DDS bit is cleared to 0 in the
ADC_CR2 register (this avoids generating an overrun error). However the DMA bit is
not cleared by hardware. It must be written to 0, then to 1 to start a new transfer.

• Requests can continue to be generated if the DDS bit is set to 1. This allows
configuring the DMA in double-buffer circular mode.

To recover the ADC from OVR state when the DMA is used, follow the steps below:

1. Reinitialize the DMA (adjust destination address and NDTR counter)

2. Clear the ADC OVR bit in ADC_SR register

3. Trigger the ADC to start the conversion.

11.8.2 Managing a sequence of conversions without using the DMA

If the conversions are slow enough, the conversion sequence can be handled by the
software. In this case the EOCS bit must be set in the ADC_CR2 register for the EOC status
bit to be set at the end of each conversion, and not only at the end of the sequence. When
EOCS = 1, overrun detection is automatically enabled. Thus, each time a conversion is
complete, EOC is set and the ADC_DR register can be read. The overrun management is
the same as when the DMA is used.

To recover the ADC from OVR state when the EOCS is set, follow the steps below:

1. Clear the ADC OVR bit in ADC_SR register

2. Trigger the ADC to start the conversion.

11.8.3 Conversions without DMA and without overrun detection

It may be useful to let the ADC convert one or more channels without reading the data each
time (if there is an analog watchdog for instance). For that, the DMA must be disabled
(DMA = 0) and the EOC bit must be set at the end of a sequence only (EOCS = 0). In this
configuration, overrun detection is disabled.

11.9 Temperature sensor

The temperature sensor can be used to measure the ambient temperature (TA) of the
device.

Figure 39 shows the block diagram of the temperature sensor.

When not in use, the sensor can be put in power down mode.

RM0401 Rev 3 227/771

RM0401 Analog-to-digital converter (ADC)

242

Note: The TSVREFE bit must be set to enable the conversion of both internal channels: the
ADC1_IN18 or ADC1_IN16 (temperature sensor) and the ADC1_IN17 (VREFINT).

Main features

• Supported temperature range: –40 to 125 °C

• Precision: ±1.5 °C

Figure 39. Temperature sensor and VREFINT channel block diagram

1. VSENSE is input to ADC1_IN18 and ADC1_IN16.

Reading the temperature

To use the sensor:

3. Select ADC1_IN18 input channel.

4. Select a sampling time greater than the minimum sampling time specified in the
datasheet.

5. Set the TSVREFE bit in the ADC_CCR register to wake up the temperature sensor
from power down mode

6. Start the ADC conversion by setting the SWSTART bit (or by external trigger)

7. Read the resulting VSENSE data in the ADC data register

8. Calculate the temperature using the following formula:

Temperature (in °C) = {(VSENSE – V25) / Avg_Slope} + 25

Where:

– V25 = VSENSE value for 25° C

– Avg_Slope = average slope of the temperature vs. VSENSE curve (given in mV/°C
or µV/°C)

Refer to the datasheet electrical characteristics section for the actual values of V25 and
Avg_Slope.

Analog-to-digital converter (ADC) RM0401

228/771 RM0401 Rev 3

Note: The sensor has a startup time after waking from power down mode before it can output
VSENSE at the correct level. The ADC also has a startup time after power-on, so to minimize
the delay, the ADON and TSVREFE bits should be set at the same time.

The temperature sensor output voltage changes linearly with temperature. The offset of this
linear function depends on each chip due to process variation (up to 45 °C from one chip to
another).

The internal temperature sensor is more suited for applications that detect temperature
variations instead of absolute temperatures. If accurate temperature reading is required, an
external temperature sensor should be used.

11.10 Battery charge monitoring

The VBATE bit in the ADC_CCR register is used to switch to the battery voltage. As the
VBAT voltage could be higher than VDDA, to ensure the correct operation of the ADC, the
VBAT pin is internally connected to a bridge divider.

When the VBATE is set, the bridge is automatically enabled to connect:

• VBAT/4 to the ADC1_IN18 and ADC1_IN16 input channels

Note: The VBAT and temperature sensor are connected to the same ADC internal channels
(ADC1_IN18 and ADC1_IN16). Only one conversion, either temperature sensor or VBAT,
must be selected at a time. When both conversion are enabled simultaneously, only the
VBAT conversion is performed.

11.11 ADC interrupts

An interrupt can be produced on the end of conversion for regular and injected groups,
when the analog watchdog status bit is set and when the overrun status bit is set. Separate
interrupt enable bits are available for flexibility.

Two other flags are present in the ADC_SR register, but there is no interrupt associated with
them:

• JSTRT (Start of conversion for channels of an injected group)

• STRT (Start of conversion for channels of a regular group)

Table 47. ADC interrupts

Interrupt event Event flag Enable control bit

End of conversion of a regular group EOC EOCIE

End of conversion of an injected group JEOC JEOCIE

Analog watchdog status bit is set AWD AWDIE

Overrun OVR OVRIE

RM0401 Rev 3 229/771

RM0401 Analog-to-digital converter (ADC)

242

11.12 ADC registers

Refer to Section 1.2 on page 34 for a list of abbreviations used in register descriptions.

The peripheral registers must be written at word level (32 bits). Read accesses can be done
by bytes (8 bits), half-words (16 bits) or words (32 bits).

11.12.1 ADC status register (ADC_SR)

Address offset: 0x00

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. OVR STRT JSTRT JEOC EOC AWD

rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0

Bits 31:6 Reserved, must be kept at reset value.

Bit 5 OVR: Overrun

This bit is set by hardware when data are lost (either in single mode or in dual/triple mode). It
is cleared by software. Overrun detection is enabled only when DMA = 1 or EOCS = 1.
0: No overrun occurred
1: Overrun has occurred

Bit 4 STRT: Regular channel start flag

This bit is set by hardware when regular channel conversion starts. It is cleared by software.
0: No regular channel conversion started
1: Regular channel conversion has started

Bit 3 JSTRT: Injected channel start flag

This bit is set by hardware when injected group conversion starts. It is cleared by software.
0: No injected group conversion started
1: Injected group conversion has started

Bit 2 JEOC: Injected channel end of conversion

This bit is set by hardware at the end of the conversion of all injected channels in the group.
It is cleared by software.
0: Conversion is not complete
1: Conversion complete

Bit 1 EOC: Regular channel end of conversion

This bit is set by hardware at the end of the conversion of a regular group of channels. It is
cleared by software or by reading the ADC_DR register.
0: Conversion not complete (EOCS=0), or sequence of conversions not complete (EOCS=1)
1: Conversion complete (EOCS=0), or sequence of conversions complete (EOCS=1)

Bit 0 AWD: Analog watchdog flag

This bit is set by hardware when the converted voltage crosses the values programmed in
the ADC_LTR and ADC_HTR registers. It is cleared by software.
0: No analog watchdog event occurred
1: Analog watchdog event occurred

Analog-to-digital converter (ADC) RM0401

230/771 RM0401 Rev 3

11.12.2 ADC control register 1 (ADC_CR1)

Address offset: 0x04

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. OVRIE RES AWDEN JAWDEN Res. Res. Res. Res. Res. Res.

rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DISCNUM[2:0] JDISCEN DISCEN JAUTO AWDSGL SCAN JEOCIE AWDIE EOCIE AWDCH[4:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:27 Reserved, must be kept at reset value.

Bit 26 OVRIE: Overrun interrupt enable

This bit is set and cleared by software to enable/disable the Overrun interrupt.
0: Overrun interrupt disabled
1: Overrun interrupt enabled. An interrupt is generated when the OVR bit is set.

Bits 25:24 RES[1:0]: Resolution

These bits are written by software to select the resolution of the conversion.
00: 12-bit (minimum 15 ADCCLK cycles)
01: 10-bit (minimum 13 ADCCLK cycles)
10: 8-bit (minimum 11 ADCCLK cycles)
11: 6-bit (minimum 9 ADCCLK cycles)

Bit 23 AWDEN: Analog watchdog enable on regular channels

This bit is set and cleared by software.
0: Analog watchdog disabled on regular channels
1: Analog watchdog enabled on regular channels

Bit 22 JAWDEN: Analog watchdog enable on injected channels

This bit is set and cleared by software.
0: Analog watchdog disabled on injected channels
1: Analog watchdog enabled on injected channels

Bits 21:16 Reserved, must be kept at reset value.

Bits 15:13 DISCNUM[2:0]: Discontinuous mode channel count

These bits are written by software to define the number of regular channels to be converted
in discontinuous mode, after receiving an external trigger.
000: 1 channel
001: 2 channels
...
111: 8 channels

Bit 12 JDISCEN: Discontinuous mode on injected channels

This bit is set and cleared by software to enable/disable discontinuous mode on the injected
channels of a group.
0: Discontinuous mode on injected channels disabled
1: Discontinuous mode on injected channels enabled

RM0401 Rev 3 231/771

RM0401 Analog-to-digital converter (ADC)

242

Bit 11 DISCEN: Discontinuous mode on regular channels

This bit is set and cleared by software to enable/disable Discontinuous mode on regular
channels.
0: Discontinuous mode on regular channels disabled
1: Discontinuous mode on regular channels enabled

Bit 10 JAUTO: Automatic injected group conversion

This bit is set and cleared by software to enable/disable automatic injected group conversion
after regular group conversion.
0: Automatic injected group conversion disabled
1: Automatic injected group conversion enabled

Bit 9 AWDSGL: Enable the watchdog on a single channel in scan mode

This bit is set and cleared by software to enable/disable the analog watchdog on the channel
identified by the AWDCH[4:0] bits.
0: Analog watchdog enabled on all channels
1: Analog watchdog enabled on a single channel

Bit 8 SCAN: Scan mode

This bit is set and cleared by software to enable/disable the Scan mode. In Scan mode, the
inputs selected through the ADC_SQRx or ADC_JSQRx registers are converted.
0: Scan mode disabled
1: Scan mode enabled

Note: An EOC interrupt is generated if the EOCIE bit is set:

– At the end of each regular group sequence if the EOCS bit is cleared to 0

– At the end of each regular channel conversion if the EOCS bit is set to 1

Note: A JEOC interrupt is generated only on the end of conversion of the last channel if the
JEOCIE bit is set.

Bit 7 JEOCIE: Interrupt enable for injected channels

This bit is set and cleared by software to enable/disable the end of conversion interrupt for
injected channels.
0: JEOC interrupt disabled
1: JEOC interrupt enabled. An interrupt is generated when the JEOC bit is set.

Bit 6 AWDIE: Analog watchdog interrupt enable

This bit is set and cleared by software to enable/disable the analog watchdog interrupt.
0: Analog watchdog interrupt disabled
1: Analog watchdog interrupt enabled

Bit 5 EOCIE: Interrupt enable for EOC

This bit is set and cleared by software to enable/disable the end of conversion interrupt.
0: EOC interrupt disabled
1: EOC interrupt enabled. An interrupt is generated when the EOC bit is set.

Bits 4:0 AWDCH[4:0]: Analog watchdog channel select bits

These bits are set and cleared by software. They select the input channel to be guarded by
the analog watchdog.

Note: 00000: ADC analog input Channel0
00001: ADC analog input Channel1
...
01111: ADC analog input Channel15
10000: ADC analog input Channel16
10001: ADC analog input Channel17
10010: ADC analog input Channel18
Other values reserved

Analog-to-digital converter (ADC) RM0401

232/771 RM0401 Rev 3

11.12.3 ADC control register 2 (ADC_CR2)

Address offset: 0x08

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. SWSTART EXTEN EXTSEL[3:0] Res. JSWSTART JEXTEN JEXTSEL[3:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. ALIGN EOCS DDS DMA Res. Res. Res. Res. Res. Res. CONT ADON

rw rw rw rw rw rw

Bit 31 Reserved, must be kept at reset value.

Bit 30 SWSTART: Start conversion of regular channels

This bit is set by software to start conversion and cleared by hardware as soon as the
conversion starts.
0: Reset state
1: Starts conversion of regular channels

Note: This bit can be set only when ADON = 1 otherwise no conversion is launched.

Bits 29:28 EXTEN: External trigger enable for regular channels

These bits are set and cleared by software to select the external trigger polarity and enable
the trigger of a regular group.
00: Trigger detection disabled
01: Trigger detection on the rising edge
10: Trigger detection on the falling edge
11: Trigger detection on both the rising and falling edges

Bits 27:24 EXTSEL[3:0]: External event select for regular group

These bits select the external event used to trigger the start of conversion of a regular group:
0000: Timer 1 CC1 event
0001: Timer 1 CC2 event
0010: Timer 1 CC3 event
1010: Timer 5 CC1 event
1011: Timer 5 CC2 event
1100: Timer 5 CC3 event
1111: EXTI line 11
Other configurations: reserved

Bit 23 Reserved, must be kept at reset value.

Bit 22 JSWSTART: Start conversion of injected channels

This bit is set by software and cleared by hardware as soon as the conversion starts.
0: Reset state
1: Starts conversion of injected channels

This bit can be set only when ADON = 1 otherwise no conversion is launched.

RM0401 Rev 3 233/771

RM0401 Analog-to-digital converter (ADC)

242

Bits 21:20 JEXTEN: External trigger enable for injected channels

These bits are set and cleared by software to select the external trigger polarity and enable
the trigger of an injected group.
00: Trigger detection disabled
01: Trigger detection on the rising edge
10: Trigger detection on the falling edge
11: Trigger detection on both the rising and falling edges

Bits 19:16 JEXTSEL[3:0]: External event select for injected group

These bits select the external event used to trigger the start of conversion of an injected group.

0000: Timer 1 CC4 event

0001: Timer 1 TRGO event

1010: Timer 5 CC4 event

1011: Timer 5 TRGO event

1111: EXTI line15

Other configurations: reserved

Bits 15:12 Reserved, must be kept at reset value.

Bit 11 ALIGN: Data alignment

This bit is set and cleared by software. Refer to Figure 36 and Figure 37.
0: Right alignment
1: Left alignment

Bit 10 EOCS: End of conversion selection

This bit is set and cleared by software.
0:The EOC bit is set at the end of each sequence of regular conversions. Overrun detection

is enabled only if DMA=1.
1: The EOC bit is set at the end of each regular conversion. Overrun detection is enabled.

Bit 9 DDS: DMA disable selection (for single ADC mode)

This bit is set and cleared by software.
0: No new DMA request is issued after the last transfer (as configured in the DMA controller)
1: DMA requests are issued as long as data are converted and DMA=1

Bit 8 DMA: Direct memory access mode (for single ADC mode)

This bit is set and cleared by software. Refer to the DMA controller chapter for more details.
0: DMA mode disabled
1: DMA mode enabled

Bits 7:2 Reserved, must be kept at reset value.

Bit 1 CONT: Continuous conversion

This bit is set and cleared by software. If it is set, conversion takes place continuously until it
is cleared.
0: Single conversion mode
1: Continuous conversion mode

Bit 0 ADON: A/D Converter ON / OFF

This bit is set and cleared by software.
0: Disable ADC conversion and go to power down mode
1: Enable ADC

Analog-to-digital converter (ADC) RM0401

234/771 RM0401 Rev 3

11.12.4 ADC sample time register 1 (ADC_SMPR1)

Address offset: 0x0C

Reset value: 0x0000 0000

11.12.5 ADC sample time register 2 (ADC_SMPR2)

Address offset: 0x10

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. SMP18[2:0] SMP17[2:0] SMP16[2:0] SMP15[2:1]

rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SMP15_0 SMP14[2:0] SMP13[2:0] SMP12[2:0] SMP11[2:0] SMP10[2:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31: 27 Reserved, must be kept at reset value.

Bits 26:0 SMPx[2:0]: Channel x sampling time selection

These bits are written by software to select the sampling time individually for each channel.
During sampling cycles, the channel selection bits must remain unchanged.

Note: 000: 3 cycles
001: 15 cycles
010: 28 cycles
011: 56 cycles
100: 84 cycles
101: 112 cycles
110: 144 cycles
111: 480 cycles

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. SMP9[2:0] SMP8[2:0] SMP7[2:0] SMP6[2:0] SMP5[2:1]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SMP5_0 SMP4[2:0] SMP3[2:0] SMP2[2:0] SMP1[2:0] SMP0[2:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:30 Reserved, must be kept at reset value.

Bits 29:0 SMPx[2:0]: Channel x sampling time selection

These bits are written by software to select the sampling time individually for each channel.
During sample cycles, the channel selection bits must remain unchanged.

Note: 000: 3 cycles
001: 15 cycles
010: 28 cycles
011: 56 cycles
100: 84 cycles
101: 112 cycles
110: 144 cycles
111: 480 cycles

RM0401 Rev 3 235/771

RM0401 Analog-to-digital converter (ADC)

242

11.12.6 ADC injected channel data offset register x (ADC_JOFRx) (x=1..4)

Address offset: 0x14-0x20

Reset value: 0x0000 0000

11.12.7 ADC watchdog higher threshold register (ADC_HTR)

Address offset: 0x24

Reset value: 0x0000 0FFF

Note: The software can write to these registers when an ADC conversion is ongoing. The
programmed value will be effective when the next conversion is complete. Writing to this
register is performed with a write delay that can create uncertainty on the effective time at
which the new value is programmed.

11.12.8 ADC watchdog lower threshold register (ADC_LTR)

Address offset: 0x28

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. JOFFSETx[11:0]

rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:12 Reserved, must be kept at reset value.

Bits 11:0 JOFFSETx[11:0]: Data offset for injected channel x

These bits are written by software to define the offset to be subtracted from the raw
converted data when converting injected channels. The conversion result can be read from
in the ADC_JDRx registers.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. HT[11:0]

rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:12 Reserved, must be kept at reset value.

Bits 11:0 HT[11:0]: Analog watchdog higher threshold

These bits are written by software to define the higher threshold for the analog watchdog.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

Analog-to-digital converter (ADC) RM0401

236/771 RM0401 Rev 3

Note: The software can write to these registers when an ADC conversion is ongoing. The
programmed value will be effective when the next conversion is complete. Writing to this
register is performed with a write delay that can create uncertainty on the effective time at
which the new value is programmed.

11.12.9 ADC regular sequence register 1 (ADC_SQR1)

Address offset: 0x2C

Reset value: 0x0000 0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. LT[11:0]

rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:12 Reserved, must be kept at reset value.

Bits 11:0 LT[11:0]: Analog watchdog lower threshold

These bits are written by software to define the lower threshold for the analog watchdog.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. L[3:0] SQ16[4:1]

rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SQ16_0 SQ15[4:0] SQ14[4:0] SQ13[4:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:24 Reserved, must be kept at reset value.

Bits 23:20 L[3:0]: Regular channel sequence length

These bits are written by software to define the total number of conversions in the regular
channel conversion sequence.
0000: 1 conversion
0001: 2 conversions
...
1111: 16 conversions

Bits 19:15 SQ16[4:0]: 16th conversion in regular sequence

These bits are written by software with the channel number (0..18) assigned as the 16th in
the conversion sequence.

Bits 14:10 SQ15[4:0]: 15th conversion in regular sequence

Bits 9:5 SQ14[4:0]: 14th conversion in regular sequence

Bits 4:0 SQ13[4:0]: 13th conversion in regular sequence

RM0401 Rev 3 237/771

RM0401 Analog-to-digital converter (ADC)

242

11.12.10 ADC regular sequence register 2 (ADC_SQR2)

Address offset: 0x30

Reset value: 0x0000 0000

11.12.11 ADC regular sequence register 3 (ADC_SQR3)

Address offset: 0x34

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. SQ12[4:0] SQ11[4:0] SQ10[4:1]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SQ10_0 SQ9[4:0] SQ8[4:0] SQ7[4:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:30 Reserved, must be kept at reset value.

Bits 29:26 SQ12[4:0]: 12th conversion in regular sequence

These bits are written by software with the channel number (0..18) assigned as the 12th in
the sequence to be converted.

Bits 24:20 SQ11[4:0]: 11th conversion in regular sequence

Bits 19:15 SQ10[4:0]: 10th conversion in regular sequence

Bits 14:10 SQ9[4:0]: 9th conversion in regular sequence

Bits 9:5 SQ8[4:0]: 8th conversion in regular sequence

Bits 4:0 SQ7[4:0]: 7th conversion in regular sequence

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. SQ6[4:0] SQ5[4:0] SQ4[4:1]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SQ4_0 SQ3[4:0] SQ2[4:0] SQ1[4:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:30 Reserved, must be kept at reset value.

Bits 29:25 SQ6[4:0]: 6th conversion in regular sequence

These bits are written by software with the channel number (0..18) assigned as the 6th in the
sequence to be converted.

Bits 24:20 SQ5[4:0]: 5th conversion in regular sequence

Bits 19:15 SQ4[4:0]: 4th conversion in regular sequence

Bits 14:10 SQ3[4:0]: 3rd conversion in regular sequence

Bits 9:5 SQ2[4:0]: 2nd conversion in regular sequence

Bits 4:0 SQ1[4:0]: 1st conversion in regular sequence

Analog-to-digital converter (ADC) RM0401

238/771 RM0401 Rev 3

11.12.12 ADC injected sequence register (ADC_JSQR)

Address offset: 0x38

Reset value: 0x0000 0000

Note: When JL[1:0]=3 (4 injected conversions in the sequencer), the ADC converts the channels
in the following order: JSQ1[4:0], JSQ2[4:0], JSQ3[4:0], and JSQ4[4:0].

When JL=2 (3 injected conversions in the sequencer), the ADC converts the channels in the
following order: JSQ2[4:0], JSQ3[4:0], and JSQ4[4:0].

When JL=1 (2 injected conversions in the sequencer), the ADC converts the channels in
starting from JSQ3[4:0], and then JSQ4[4:0].

When JL=0 (1 injected conversion in the sequencer), the ADC converts only JSQ4[4:0]
channel.

11.12.13 ADC injected data register x (ADC_JDRx) (x= 1..4)

Address offset: 0x3C - 0x48

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. JL[1:0] JSQ4[4:1]

rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

JSQ4[0] JSQ3[4:0] JSQ2[4:0] JSQ1[4:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:22 Reserved, must be kept at reset value.

Bits 21:20 JL[1:0]: Injected sequence length

These bits are written by software to define the total number of conversions in the injected
channel conversion sequence.
00: 1 conversion
01: 2 conversions
10: 3 conversions
11: 4 conversions

Bits 19:15 JSQ4[4:0]: 4th conversion in injected sequence (when JL[1:0]=3, see note below)

These bits are written by software with the channel number (0..18) assigned as the 4th in the
sequence to be converted.

Bits 14:10 JSQ3[4:0]: 3rd conversion in injected sequence (when JL[1:0]=3, see note below)

Bits 9:5 JSQ2[4:0]: 2nd conversion in injected sequence (when JL[1:0]=3, see note below)

Bits 4:0 JSQ1[4:0]: 1st conversion in injected sequence (when JL[1:0]=3, see note below)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

JDATA[15:0]

r r r r r r r r r r r r r r r r

RM0401 Rev 3 239/771

RM0401 Analog-to-digital converter (ADC)

242

11.12.14 ADC regular data register (ADC_DR)

Address offset: 0x4C

Reset value: 0x0000 0000

11.12.15 ADC Common status register (ADC_CSR)

Address offset: 0x00 (this offset address is relative to ADC1 base address + 0x300)

Reset value: 0x0000 0000

This register provides an image of the status bits of ADC1. Nevertheless it is read-only and
does not allow to clear the different status bits. Instead each status bit must be cleared by
writing it to 0 in the corresponding ADC_SR register.

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 JDATA[15:0]: Injected data

These bits are read-only. They contain the conversion result from injected channel x. The
data are left -or right-aligned as shown in Figure 36 and Figure 37.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DATA[15:0]

r r r r r r r r r r r r r r r r

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 DATA[15:0]: Regular data

These bits are read-only. They contain the conversion result from the regular
channels. The data are left- or right-aligned as shown in Figure 36 and
Figure 37.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. OVR1 STRT1 JSTRT1 JEOC 1 EOC1 AWD1

r r r r r r

Bits 31:6 Reserved, must be kept at reset value.

Bit 5 OVR1: Overrun flag of ADC1

This bit is a copy of the OVR bit in the ADC1_SR register.

Bit 4 STRT1: Regular channel Start flag of ADC1

This bit is a copy of the STRT bit in the ADC1_SR register.

Bit 3 JSTRT1: Injected channel Start flag of ADC1

This bit is a copy of the JSTRT bit in the ADC1_SR register.

Analog-to-digital converter (ADC) RM0401

240/771 RM0401 Rev 3

11.12.16 ADC common control register (ADC_CCR)

Address offset: 0x04 (this offset address is relative to ADC1 base address + 0x300)

Reset value: 0x0000 0000

Bit 2 JEOC1: Injected channel end of conversion of ADC1

This bit is a copy of the JEOC bit in the ADC1_SR register.

Bit 1 EOC1: End of conversion of ADC1

This bit is a copy of the EOC bit in the ADC1_SR register.

Bit 0 AWD1: Analog watchdog flag of ADC1

This bit is a copy of the AWD bit in the ADC1_SR register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. TSVREFE VBATE Res. Res. Res. Res. ADCPRE

rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

Bits 31:24 Reserved, must be kept at reset value.

Bit 23 TSVREFE: Temperature sensor and VREFINT enable

This bit is set and cleared by software to enable/disable the temperature sensor and the
VREFINT channel.
0: Temperature sensor and VREFINT channel disabled
1: Temperature sensor and VREFINT channel enabled

Note: VBATE must be disabled when TSVREFE is set. If both bits are set, only the VBAT
conversion is performed.

Bit 22 VBATE: VBAT enable

This bit is set and cleared by software to enable/disable the VBAT channel.
0: VBAT channel disabled
1: VBAT channel enabled

Bits 21:18 Reserved, must be kept at reset value.

Bits 17:16 ADCPRE: ADC prescaler

Set and cleared by software to select the frequency of the clock to the ADC. The clock is
common for all the ADCs.

Note: 00: PCLK2 divided by 2
01: PCLK2 divided by 4
10: PCLK2 divided by 6
11: PCLK2 divided by 8

Bits 15:0 Reserved, must be kept at reset value.

RM0401 Rev 3 241/771

RM0401 Analog-to-digital converter (ADC)

242

11.12.17 ADC register map

The following table summarizes the ADC registers.

Table 48. ADC global register map

Offset Register

0x000 - 0x04C ADC1

0x050 - 0x2FC Reserved

0x300 - 0x308 Common registers

Table 49. ADC register map and reset values

Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x00
ADC_SR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

O
V

R

S
T

R
T

JS
T

R
T

JE
O

C

E
O

C

A
W

D

Reset value 0 0 0 0 0 0

0x04
ADC_CR1

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

O
V

R
IE

R
E

S
[1

:0
]

A
W

D
E

N

JA
W

D
E

N

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

. DISC
NUM [2:0]

JD
IS

C
E

N

D
IS

C
E

N

JA
U

T
O

A
W

D
 S

G
L

S
C

A
N

JE
O

C
IE

A
W

D
IE

E
O

C
IE

AWDCH[4:0]

Reset value 0

0x08
ADC_CR2

R
es

.

S
W

S
TA

R
T

E
X

T
E

N
[1

:0
]

EXTSEL [3:0]

R
es

.

JS
W

S
TA

R
T

JE
X

T
E

N
[1

:0
]

JEXTSEL
[3:0] R

es
.

R
es

.

R
es

.

R
es

.

A
L

IG
N

E
O

C
S

D
D

S

D
M

A

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

C
O

N
T

A
D

O
N

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x0C
ADC_SMPR1 Sample time bits SMPx_x

Reset value 0

0x10
ADC_SMPR2 Sample time bits SMPx_x

Reset value 0

0x14
ADC_JOFR1

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

JOFFSET1[11:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0

0x18
ADC_JOFR2

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

JOFFSET2[11:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0

0x1C
ADC_JOFR3

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

JOFFSET3[11:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0

0x20
ADC_JOFR4

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

JOFFSET4[11:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0

0x24
ADC_HTR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

HT[11:0]

Reset value 1 1 1 1 1 1 1 1 1 1 1 1

0x28
ADC_LTR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

LT[11:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0

0x2C
ADC_SQR1

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

L[3:0] Regular channel sequence SQx_x bits

Reset value 0

0x30
ADC_SQR2

R
e

s.

R
e

s. Regular channel sequence SQx_x bits

Reset value 0

Analog-to-digital converter (ADC) RM0401

242/771 RM0401 Rev 3

Refer to Section 2.2 on page 41 for the register boundary addresses.

0x34
ADC_SQR3

R
es

.

R
es

.

Regular channel sequence SQx_x bits

Reset value 0

0x38
ADC_JSQR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

JL[1:0] Injected channel sequence JSQx_x bits

Reset value 0

0x3C
ADC_JDR1

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

JDATA[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x40
ADC_JDR2

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

JDATA[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x44
ADC_JDR3

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

JDATA[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x48
ADC_JDR4

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

JDATA[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x4C
ADC_DR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

Regular DATA[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 49. ADC register map and reset values (continued)

Offset Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

Table 50. ADC register map and reset values (common ADC registers)

Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x00
ADC_CSR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

O
V

R

S
T

R
T

JS
T

R
T

JE
O

C

E
O

C

A
W

D

Reset value 0 0 0 0 0 0

0x04
ADC_CCR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

T
S

V
R

E
F

E
.

V
B

A
T

E

R
es

.

R
es

.

R
es

.

R
es

.

A
D

C
P

R
E

[1
:0

]

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

Reset value 0 0

RM0401 Rev 3 243/771

RM0401 Digital-to-analog converter (DAC)

256

12 Digital-to-analog converter (DAC)

12.1 Introduction

The DAC module is a 12-bit, voltage output digital-to-analog converter. The DAC can be
configured in 8- or 12-bit mode and may be used in conjunction with the DMA controller. In
12-bit mode, the data could be left- or right-aligned. An input reference voltage, VREF+
(shared with ADC), is available. The output can optionally be buffered for higher current
drive.

12.2 DAC main features

• One DAC converter

• Left or right data alignment in 12-bit mode

• Synchronized update capability

• Noise-wave generation

• Triangular-wave generation

• DMA capability

• DMA underrun error detection

• External triggers for conversion

• Input voltage reference, VREF+

Figure 40 shows the block diagram of a DAC channel and Table 51 gives the pin
description.

Digital-to-analog converter (DAC) RM0401

244/771 RM0401 Rev 3

Figure 40. DAC channel block diagram

Note: Once DAC_Channelx is enabled, the corresponding GPIO pin (PA5) is automatically
connected to the analog converter output (DAC1_OUT). In order to avoid parasitic
consumption, the PA5 pin should first be configured to analog (AIN).

12.3 DAC output buffer enable

The DAC integrates one output buffer that can be used to reduce the output impedance on
DAC1_OUT1 output, and to drive external loads directly without having to add an external
operational amplifier.

Table 51. DAC pins

Name Signal type Remarks

VREF+
Input, analog positive
reference

The higher/positive reference voltage for the DAC.
VDDA and VREF+ are connected together on the
package.

VDDA Input, analog supply Analog power supply

VSSA Input, analog supply ground Ground for analog power supply

DAC1_OUT Analog output signal DAC1 channel analog output

RM0401 Rev 3 245/771

RM0401 Digital-to-analog converter (DAC)

256

The DAC channel output buffer can be enabled and disabled through the BOFF1 bit in the
DAC_CR register.

12.4 DAC channel enable

The DAC channel can be powered on by setting the EN1 bit in the DAC_CR register. The
DAC channel is then enabled after a startup time tWAKEUP.

Note: The EN1 bit enables the analog DAC Channel macrocell only. The DAC Channel digital
interface is enabled even if the EN1 bit is reset.

12.5 Single mode functional description

12.5.1 DAC data format

There are three possibilities:

• 8-bit right alignment: the software has to load data into the DAC_DHR8Rx [7:0] bits
(stored into the DHRx[11:4] bits)

• 12-bit left alignment: the software has to load data into the DAC_DHR12Lx [15:4] bits
(stored into the DHRx[11:0] bits)

• 12-bit right alignment: the software has to load data into the DAC_DHR12Rx [11:0] bits
(stored into the DHRx[11:0] bits)

Depending on the loaded DAC_DHRyyyx register, the data written by the user is shifted and
stored into the corresponding DHRx (data holding registerx, which are internal non-memory-
mapped registers). The DHRx register is then loaded into the DORx register either
automatically, by software trigger or by an external event trigger.

Figure 41. Data registers in single DAC channel mode

12.5.2 DAC channel conversion

The DAC_DORx cannot be written directly and any data transfer to the DAC channelx must
be performed by loading the DAC_DHRx register (write to DAC_DHR8Rx, DAC_DHR12Lx,
DAC_DHR12Rx).

Data stored in the DAC_DHRx register are automatically transferred to the DAC_DORx
register after one APB1 clock cycle, if no hardware trigger is selected (TENx bit in DAC_CR
register is reset). However, when a hardware trigger is selected (TENx bit in DAC_CR
register is set) and a trigger occurs, the transfer is performed three PCLK clock cycles later.

Digital-to-analog converter (DAC) RM0401

246/771 RM0401 Rev 3

When DAC_DORx is loaded with the DAC_DHRx contents, the analog output voltage
becomes available after a time tSETTLING that depends on the power supply voltage and the
analog output load.

Figure 42. Timing diagram for conversion with trigger disabled TEN = 0

Independent trigger with single LFSR generation

To configure the DAC in this conversion mode (see Section 12.6: Noise generation), the
following sequence is required:

1. Set the DAC channel trigger enable bit TENx.

2. Configure the trigger source by setting TSELx[2:0] bits.

3. Configure the DAC channel WAVEx[1:0] bits as “01” and the same LFSR mask value in
the MAMPx[3:0] bits

4. Load the DAC channel data into the desired DAC_DHRx register (DHR12RD,
DHR12LD or DHR8RD).

When a DAC channelx trigger arrives, the LFSRx counter, with the same mask, is added to
the DHRx register and the sum is transferred into DAC_DORx (three APB clock cycles
later). Then the LFSRx counter is updated.

Independent trigger with single triangle generation

To configure the DAC in this conversion mode (see Section 12.7: Triangle-wave generation),
the following sequence is required:

1. Set the DAC channelx trigger enable TENx bits.

2. Configure the trigger source by setting TSELx[2:0] bits.

3. Configure the DAC channelx WAVEx[1:0] bits as “1x” and the same maximum
amplitude value in the MAMPx[3:0] bits

4. Load the DAC channelx data into the desired DAC_DHRx register. (DHR12RD,
DHR12LD or DHR8RD).

When a DAC channelx trigger arrives, the DAC channelx triangle counter, with the same
triangle amplitude, is added to the DHRx register and the sum is transferred into
DAC_DORx (three APB clock cycles later). The DAC channelx triangle counter is then
updated.

RM0401 Rev 3 247/771

RM0401 Digital-to-analog converter (DAC)

256

12.5.3 DAC output voltage

Digital inputs are converted to output voltages on a linear conversion between 0 and VREF+.

The analog output voltages on each DAC channel pin are determined by the following
equation:

12.5.4 DAC trigger selection

If the TENx control bit is set, conversion can then be triggered by an external event (timer
counter, external interrupt line). The TSELx[2:0] control bits determine which possible
events will trigger conversion as shown in Table 52.

Each time a DAC interface detects a rising edge on the selected timer TRGO output, or on
the selected external interrupt line 9, the last data stored into the DAC_DHRx register are
transferred into the DAC_DORx register. The DAC_DORx register is updated three APB1
cycles after the trigger occurs.

If the software trigger is selected, the conversion starts once the SWTRIG bit is set.
SWTRIG is reset by hardware once the DAC_DORx register has been loaded with the
DAC_DHRx register contents.

Note: TSELx[2:0] bit cannot be changed when the ENx bit is set. When software trigger is
selected, the transfer from the DAC_DHRx register to the DAC_DORx register takes only
one APB1 clock cycle.

DACoutput VREF+
DOR
4096
--------------×=

Table 52. External triggers

Source Type TSEL[2:0]

TIM5 TRGO event
Internal signal from on-chip
timers

011

EXTI line9 External pin 110

SWTRIG Software control bit 111

Digital-to-analog converter (DAC) RM0401

248/771 RM0401 Rev 3

12.6 Noise generation

In order to generate a variable-amplitude pseudonoise, an LFSR (linear feedback shift
register) is available. DAC noise generation is selected by setting WAVEx[1:0] to “01”. The
preloaded value in LFSR is 0xAAA. This register is updated three APB clock cycles after
each trigger event, following a specific calculation algorithm.

Figure 43. DAC LFSR register calculation algorithm

The LFSR value, that may be masked partially or totally by means of the MAMPx[3:0] bits in
the DAC_CR register, is added up to the DAC_DHRx contents without overflow and this
value is then stored into the DAC_DORx register.

If LFSR is 0x0000, a ‘1 is injected into it (antilock-up mechanism).

It is possible to reset LFSR wave generation by resetting the WAVEx[1:0] bits.

Figure 44. DAC conversion (SW trigger enabled) with LFSR wave generation

Note: The DAC trigger must be enabled for noise generation by setting the TENx bit in the
DAC_CR register.

RM0401 Rev 3 249/771

RM0401 Digital-to-analog converter (DAC)

256

12.7 Triangle-wave generation

It is possible to add a small-amplitude triangular waveform on a DC or slowly varying signal.
DAC triangle-wave generation is selected by setting WAVEx[1:0] to “10”. The amplitude is
configured through the MAMPx[3:0] bits in the DAC_CR register. An internal triangle counter
is incremented three APB clock cycles after each trigger event. The value of this counter is
then added to the DAC_DHRx register without overflow and the sum is stored into the
DAC_DORx register. The triangle counter is incremented as long as it is less than the
maximum amplitude defined by the MAMPx[3:0] bits. Once the configured amplitude is
reached, the counter is decremented down to 0, then incremented again and so on.

It is possible to reset triangle wave generation by resetting the WAVEx[1:0] bits.

Figure 45. DAC triangle wave generation

Figure 46. DAC conversion (SW trigger enabled) with triangle wave generation

Note: The DAC trigger must be enabled for triangle generation by setting the TENx bit in the
DAC_CR register.

The MAMPx[3:0] bits must be configured before enabling the DAC, otherwise they cannot
be changed.

Digital-to-analog converter (DAC) RM0401

250/771 RM0401 Rev 3

12.8 DMA request

The DAC channel has a DMA capability. One DMA channel is used to service DAC channel
DMA requests.

A DAC DMA request is generated when an external trigger (but not a software trigger)
occurs while the DMAENx bit is set. The value of the DAC_DHRx register is then transferred
to the DAC_DORx register.

DMA underrun

The DAC DMA request is not queued so that if a second external trigger arrives before the
acknowledgment for the first external trigger is received (first request), then no new request
is issued and the DMA channelx underrun flag DMAUDRx in the DAC_SR register is set,
reporting the error condition. DMA data transfers are then disabled and no further DMA
request is treated. The DAC channelx continues to convert old data.

The software should clear the DMAUDRx flag by writing “1”, clear the DMAEN bit of the
used DMA stream and re-initialize both DMA and DAC channelx to restart the transfer
correctly. The software should modify the DAC trigger conversion frequency or lighten the
DMA workload to avoid a new DMA. Finally, the DAC conversion can be resumed by
enabling both DMA data transfer and conversion trigger.

An interrupt is also generated if the corresponding DMAUDRIE1 bit in the DAC_CR register
is enabled.

RM0401 Rev 3 251/771

RM0401 Digital-to-analog converter (DAC)

256

12.9 DAC registers

Refer to Section 1.2 on page 34 for a list of abbreviations used in register descriptions.

The peripheral registers have to be accessed by words (32-bit).

12.9.1 DAC control register (DAC_CR)

Address offset: 0x00

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res.
DMAU
DRIE1

DMA
EN1

MAMP1[3:0] WAVE1[1:0] TSEL1[2:0] TEN1 BOFF1 EN1

rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:14 Reserved, must be kept at reset value.

Bit 13 DMAUDRIE1: DAC channel1 DMA Underrun Interrupt enable

This bit is set and cleared by software.

0: DAC channel1 DMA Underrun Interrupt disabled
1: DAC channel1 DMA Underrun Interrupt enabled

Bit 12 DMAEN1: DAC channel1 DMA enable

This bit is set and cleared by software.

0: DAC channel1 DMA mode disabled
1: DAC channel1 DMA mode enabled

Bits 11:8 MAMP1[3:0]: DAC channel1 mask/amplitude selector

These bits are written by software to select mask in wave generation mode or amplitude in
triangle generation mode.

0000: Unmask bit0 of LFSR/ triangle amplitude equal to 1
0001: Unmask bits[1:0] of LFSR/ triangle amplitude equal to 3
0010: Unmask bits[2:0] of LFSR/ triangle amplitude equal to 7
0011: Unmask bits[3:0] of LFSR/ triangle amplitude equal to 15
0100: Unmask bits[4:0] of LFSR/ triangle amplitude equal to 31
0101: Unmask bits[5:0] of LFSR/ triangle amplitude equal to 63
0110: Unmask bits[6:0] of LFSR/ triangle amplitude equal to 127
0111: Unmask bits[7:0] of LFSR/ triangle amplitude equal to 255
1000: Unmask bits[8:0] of LFSR/ triangle amplitude equal to 511
1001: Unmask bits[9:0] of LFSR/ triangle amplitude equal to 1023
1010: Unmask bits[10:0] of LFSR/ triangle amplitude equal to 2047
≥ 1011: Unmask bits[11:0] of LFSR/ triangle amplitude equal to 4095

Bits 7:6 WAVE1[1:0]: DAC channel1 noise/triangle wave generation enable

These bits are set and cleared by software.

00: Wave generation disabled
01: Noise wave generation enabled
1x: Triangle wave generation enabled

Note: Only used if bit TEN1 = 1 (DAC channel1 trigger enabled).

Digital-to-analog converter (DAC) RM0401

252/771 RM0401 Rev 3

Bits 5:3 TSEL1[2:0]: DAC channel1 trigger selection

These bits select the external event used to trigger DAC channel1.

011: TIM5 TRGO event
110: EXTI line9
111: Software trigger

Note: Only used if bit TEN1 = 1 (DAC channel1 trigger enabled).

Bit 2 TEN1: DAC channel1 trigger enable

This bit is set and cleared by software to enable/disable DAC channel1 trigger.

0: DAC channel1 trigger disabled and data written into the DAC_DHRx register are
transferred one APB1 clock cycle later to the DAC_DOR1 register
1: DAC channel1 trigger enabled and data from the DAC_DHRx register are transferred
three APB1 clock cycles later to the DAC_DOR1 register

Note: When software trigger is selected, the transfer from the DAC_DHRx register to the
DAC_DOR1 register takes only one APB1 clock cycle.

Bit 1 BOFF1: DAC channel1 output buffer disable

This bit is set and cleared by software to enable/disable DAC channel1 output buffer.

0: DAC channel1 output buffer enabled
1: DAC channel1 output buffer disabled

Bit 0 EN1: DAC channel1 enable

This bit is set and cleared by software to enable/disable DAC channel1.

0: DAC channel1 disabled
1: DAC channel1 enabled

RM0401 Rev 3 253/771

RM0401 Digital-to-analog converter (DAC)

256

12.9.2 DAC software trigger register (DAC_SWTRIGR)

Address offset: 0x04

Reset value: 0x0000 0000

12.9.3 DAC channel1 12-bit right-aligned data holding register
(DAC_DHR12R1)

Address offset: 0x08

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. SWTRIG1

w

Bits 31:1 Reserved, must be kept at reset value.

Bit 0 SWTRIG1: DAC channel1 software trigger

This bit is set and cleared by software to enable/disable the software trigger.

0: Software trigger disabled
1: Software trigger enabled

Note: This bit is cleared by hardware (one APB1 clock cycle later) once the DAC_DHR1
register value has been loaded into the DAC_DOR1 register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. DACC1DHR[11:0]

rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:12 Reserved, must be kept at reset value.

Bits 11:0 DACC1DHR[11:0]: DAC channel1 12-bit right-aligned data

These bits are written by software which specifies 12-bit data for DAC channel1.

Digital-to-analog converter (DAC) RM0401

254/771 RM0401 Rev 3

12.9.4 DAC channel1 12-bit left-aligned data holding register
(DAC_DHR12L1)

Address offset: 0x0C

Reset value: 0x0000 0000

12.9.5 DAC channel1 8-bit right-aligned data holding register
(DAC_DHR8R1)

Address offset: 0x10

Reset value: 0x0000 0000

12.9.6 DAC channel1 data output register (DAC_DOR1)

Address offset: 0x2C

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DACC1DHR[11:0] v Res. Res. Res.

rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:4 DACC1DHR[11:0]: DAC channel1 12-bit left-aligned data

These bits are written by software which specifies 12-bit data for DAC channel1.

Bits 3:0 Reserved, must be kept at reset value.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. DACC1DHR[7:0]

rw rw rw rw rw rw rw rw

Bits 31:8 Reserved, must be kept at reset value.

Bits 7:0 DACC1DHR[7:0]: DAC channel1 8-bit right-aligned data

These bits are written by software which specifies 8-bit data for DAC channel1.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. DACC1DOR[11:0]

r r r r r r r r r r r r

RM0401 Rev 3 255/771

RM0401 Digital-to-analog converter (DAC)

256

12.9.7 DAC status register (DAC_SR)

Address offset: 0x34

Reset value: 0x0000 0000

Bits 31:12 Reserved, must be kept at reset value.

Bits 11:0 DACC1DOR[11:0]: DAC channel1 data output

These bits are read-only, they contain data output for DAC channel1.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. DMAUDR1 Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

rc_w1

Bits 31:14 Reserved, must be kept at reset value.

Bit 13 DMAUDR1: DAC channel1 DMA underrun flag

This bit is set by hardware and cleared by software (by writing it to 1).

0: No DMA underrun error condition occurred for DAC channel1
1: DMA underrun error condition occurred for DAC channel1 (the currently selected trigger is
driving DAC channel1 conversion at a frequency higher than the DMA service capability rate)

Bits 12:0 Reserved, must be kept at reset value.

Digital-to-analog converter (DAC) RM0401

256/771 RM0401 Rev 3

12.9.8 DAC register map

Table 53 summarizes the DAC registers.

Refer to Section 2.2 on page 41 for the register boundary addresses.

Table 53. DAC register map and reset values

Offset Register
name 3

1
3

0
2

9
2

8
2

7
2

6
2

5
2

4
2

3
2

2
2

1
2

0
1

9
1

8
1

7
1

6
1

5
1

4
1

3
1

2 11 1
0 9 8 7 6 5 4 3 2 1 0

0x00
DAC_CR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

D
M

A
U

D
R

IE
1

D
M

A
E

N
1

M
A

M
P

1
[3

:0
].

W
A

V
E

1
[1

:0
]

T
S

E
L1

[2
:0

]

T
E

N
1

B
O

F
F

1

E
N

1

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x04

DAC_
SWTRIGR R

es
.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

S
W

T
R

IG
1

Reset value 0

0x08

DAC_
DHR12R1 R

es
.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

DACC1DHR[11:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0

0x0C

DAC_
DHR12L1 R

es
.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.
DACC1DHR[11:0]

R
es

.

R
es

.

R
es

.

R
es

.

Reset value 0 0 0 0 0 0 0 0 0 0 0 0

0x10

DAC_
DHR8R1 R

es
.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

DACC1DHR[7:0]

Reset value 0 0 0 0 0 0 0 0

0x2C
DAC_DOR1

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

DACC1DOR[11:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0

0x34
DAC_SR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

D
M

A
U

D
R

1

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

Reset value 0

RM0401 Rev 3 257/771

RM0401 True random number generator (RNG)

268

13 True random number generator (RNG)

13.1 Introduction

The RNG is a true random number generator that continuously provides 32-bit entropy
samples, based on an analog noise source. It can be used by the application as a live
entropy source to build a NIST compliant Deterministic Random Bit Generator (DRBG).

The RNG true random number generator has been tested using NIST statistical test suite
SP800 rev1a (April 2010).

13.2 RNG main features

• The RNG delivers 32-bit true random numbers, produced by an analog entropy source
post-processed with linear-feedback shift registers (LFSR).

• It produces one 32-bit random samples every 42 RNG clock cycles (dedicated clock).

• It allows embedded continuous basic health tests with associated error management

– Includes too low sampling clock detection and repetition count tests.

• It can be disabled to reduce power consumption.

• It has an AMBA AHB slave peripheral, accessible through 32-bit word single accesses
only (else an AHB bus error is generated). Warning! any write not equal to 32 bits might
corrupt the register content.

True random number generator (RNG) RM0401

258/771 RM0401 Rev 3

13.3 RNG functional description

13.3.1 RNG block diagram

Figure 47 shows the RNG block diagram.

Figure 47. RNG block diagram

13.3.2 RNG internal signals

Table 54 describes a list of useful-to-know internal signals available at the RNG level, not at
the STM32 product level (on pads).

Table 54. RNG internal input/output signals

Signal name Signal type Description

rng_it Digital output RNG global interrupt request

rng_hclk - Digital input AHB - clock

rng_clk Digital input RNG dedicated clock, asynchronous to rng_hclk -

RM0401 Rev 3 259/771

RM0401 True random number generator (RNG)

268

13.3.3 Random number generation

The true random number generator (RNG) delivers truly random data through its AHB
interface at deterministic intervals. The RNG implements the entropy source model pictured
on Figure 48, and provides three main functions to the application:

• Collects the bitstring output of the entropy source box

• Obtains samples of the noise source for validation purpose

• Collects error messages from continuous health tests

Figure 48. Entropy source model

The main components of the RNG are:

• A source of physical randomness (analog noise source)

• A digitization stage for this analog noise source

• A stage delivering post-processed noise source (raw data)

• An output buffer for the raw data. If further cryptographic conditioning is required by the
application it will need to be performed by software.

• An optional output for the digitized noise source (unbuffered, on digital pads)

• Basic health tests on the digitized noise source

 All those components are detailed below.

Noise source

The noise source is the component that contains the non-deterministic, entropy-providing
activity that is ultimately responsible for the uncertainty associated with the bitstring output
by the entropy source. It is composed of:

• Two analog noise sources, each based on three XORed free-running ring oscillator
outputs. It is possible to disable those analog oscillators to save power, as described in

True random number generator (RNG) RM0401

260/771 RM0401 Rev 3

Section 13.4: RNG low-power usage.

• A sampling stage of these outputs clocked by a dedicated clock input (rng_clk),
delivering a 2-bit raw data output.

This noise source sampling is independent to the AHB interface clock frequency (rng_hclk).

Note: In Section 13.7: Entropy source validation recommended RNG clock frequencies are given.

Post processing

The sample values obtained from a true random noise source consist of 2-bit bitstrings.
Because this noise source output is biased, the RNG implements a post-processing
component that reduces that bias to a tolerable level.

The RNG post-processing consists of two stages, applied to each noise source bits:

• The RNG takes half of the bits from the sampled noise source, and half of the bits from
inverted sampled noise source. Thus, if the source generates more ‘1’ than ‘0’ (or the
opposite), it is filtered

• A linear feedback shift register (LFSR) performs a whitening process, producing 8-bit
strings.

This component is clocked by the RNG clock.

The times required between two random number generations, and between the RNG
initialization and availability of first sample are described in Section 13.6: RNG processing
time.

Output buffer

The RNG_DR data output register can store up to two 16-bit words which have been output
from the post-processing component (LFSR). In order to read back 32-bit random samples it
is required to wait 42 RNG clock cycles.

 Whenever a random number is available through the RNG_DR register the DRDY flag
transitions from “0” to “1”. This flag remains high until output buffer becomes empty after
reading one word from the RNG_DR register.

Note: When interrupts are enabled an interrupt is generated when this data ready flag transitions
from “0” to “1”. Interrupt is then cleared automatically by the RNG as explained above.

RM0401 Rev 3 261/771

RM0401 True random number generator (RNG)

268

Health checks

This component ensures that the entire entropy source (with its noise source) starts then
operates as expected, obtaining assurance that failures are caught quickly and with a high
probability and reliability.

The RNG implements the following health check features:

1. Continuous health tests, running indefinitely on the outputs of the noise source

– Repetition count test, flagging an error when:

a) One of the noise source has provided more than 64 consecutive bits at a constant
value (“0” or “1”)

b) One of the noise sources has delivered more than 32 consecutive occurrence of
two bits patterns (“01” or “10”)

2. Vendor specific continuous test

– Real-time “too slow” sampling clock detector, flagging an error when one RNG
clock cycle is smaller than AHB clock cycle divided by 16.

The CECS and SECS status bits in the RNG_SR register indicate when an error condition is
detected, as detailed in Section 13.3.7: Error management.

Note: An interrupt can be generated when an error is detected.

13.3.4 RNG initialization

When a hardware reset occurs the following chain of events occurs:

1. The analog noise source is enabled, and logic starts sampling the analog output after
four RNG clock cycles, filling LFSR shift register and associated 16-bit post-processing
shift register.

2. The output buffer is refilled automatically according to the RNG usage.

The associated initialization time can be found in Section 13.6: RNG processing time.

13.3.5 RNG operation

Normal operations

To run the RNG using interrupts the following steps are recommended:

1. Enable the interrupts by setting the IE bit in the RNG_CR register. At the same time
enable the RNG by setting the bit RNGEN=1.

2. An interrupt is now generated when a random number is ready or when an error
occurs. Therefore at each interrupt, check that:

– No error occurred. The SEIS and CEIS bits should be set to ‘0’ in the RNG_SR
register.

– A random number is ready. The DRDY bit must be set to ‘1’ in the RNG_SR
register.

– If above two conditions are true the content of the RNG_DR register can be read.

True random number generator (RNG) RM0401

262/771 RM0401 Rev 3

To run the RNG in polling mode following steps are recommended:

1. Enable the random number generation by setting the RNGEN bit to “1” in the RNG_CR
register.

2. Read the RNG_SR register and check that:

– No error occurred (the SEIS and CEIS bits should be set to ‘0’)

– A random number is ready (the DRDY bit should be set to ‘1’)

3. If above conditions are true read the content of the RNG_DR register.

Note: When data is not ready (DRDY=”0”) RNG_DR returns zero.

Low-power operations

If the power consumption is a concern to the application, low-power strategies can be used,
as described in Section 13.4: RNG low-power usage on page 263.

Software post-processing

If a NIST approved DRBG with 128 bits of security strength is required an approved random
generator software must be built around the RNG true random number generator.

13.3.6 RNG clocking

The RNG runs on two different clocks: the AHB bus clock and a dedicated RNG clock.

The AHB clock is used to clock the AHB banked registers and the post-processing
component. The RNG clock is used for noise source sampling. Recommended clock
configurations are detailed in Section 13.7: Entropy source validation.

Caution: When the CED bit in the RNG_CR register is set to “0”, the RNG clock frequency must be
higher than AHB clock frequency divided by 16, otherwise the clock checker will flag a clock
error (CECS or CEIS in the RNG_SR register) and the RNG will stop producing random
numbers.

See Section 13.3.1: RNG block diagram for details (AHB and RNG clock domains).

13.3.7 Error management

In parallel to random number generation an health check block verifies the correct noise
source behavior and the frequency of the RNG source clock as detailed in this section.
Associated error state is also described.

Clock error detection

When the clock error detection is enabled (CED = 0) and if the RNG clock frequency is too
low, the RNG stops generating random numbers and sets to “1” both the CEIS and CECS
bits to indicate that a clock error occurred. In this case, the application should check that the
RNG clock is configured correctly (see Section 13.3.6: RNG clocking) and then it must clear
the CEIS bit interrupt flag. As soon as the RNG clock operates correctly, the CECS bit will
be automatically cleared.

The RNG operates only when the CECS flag is set to “0”. However note that the clock error
has no impact on the previously generated random numbers, and the RNG_DR register
contents can still be used.

RM0401 Rev 3 263/771

RM0401 True random number generator (RNG)

268

Noise source error detection

When a noise source (or seed) error occurs, the RNG stops generating random numbers
and sets to “1” both SEIS and SECS bits to indicate that a seed error occurred. If a value is
available in the RNG_DR register, it must not be used as it may not have enough entropy.

In order to fully recover from a seed error application must clear the SEIS bit by writing it to
“0”, then clear and set the RNGEN bit to reinitialize and restart the RNG.

13.4 RNG low-power usage

If power consumption is a concern, the RNG can be disabled as soon as the DRDY bit is set
to “1” by setting the RNGEN bit to “0” in the RNG_CR register. The 32-bit random value
stored in the RNG_DR register will be still be available. If a new random is needed the
application will need to re-enable the RNG and wait for 42+4 RNG clock cycles.

When disabling the RNG the user deactivates all the analog seed generators, whose power
consumption is given in the datasheet electrical characteristics section.

13.5 RNG interrupts

In the RNG an interrupt can be produced on the following events:

• Data ready flag

• Seed error, see Section 13.3.7: Error management

• Clock error, see Section 13.3.7: Error management

Dedicated interrupt enable control bits are available as shown in Table 55

The user can enable or disable the above interrupt sources individually by changing the
mask bits or the general interrupt control bit IE in the RNG_CR register. The status of the
individual interrupt sources can be read from the RNG_SR register.

Note: Interrupts are generated only when RNG is enabled.

13.6 RNG processing time

The RNG can produce one 32-bit random numbers every 42 RNG clock cycles.

After enabling or re-enabling the RNG using the RNGEN bit it takes 46 RNG clock cycles
before random data are available.

Table 55. RNG interrupt requests

Interrupt event Event flag Enable control bit

Data ready flag DRDY IE

Seed error flag SEIS IE

Clock error flag CEIS IE

True random number generator (RNG) RM0401

264/771 RM0401 Rev 3

13.7 Entropy source validation

13.7.1 Introduction

In order to assess the amount of entropy available from the RNG, STMicroelectronics has
tested the peripheral using NIST SP800-22 rev1a statistical tests.

For more information on running this NIST statistical test suite, refer to STM32
microcontrollers random number generation validation using NIST statistical test suite
application note (AN4230), available on STMicroelectronics website.

13.7.2 Validation conditions

STMicroelectronics has tested the RNG true random number generator in the following
conditions:

• RNG clock rng_clk= 48 MHz (CED bit = ‘0’ in RNG_CR register) and rng_clk= 400kHz
(CED bit=”1” in RNG_CR register)

RM0401 Rev 3 265/771

RM0401 True random number generator (RNG)

268

13.8 RNG registers

The RNG is associated with a control register, a data register and a status register.

13.8.1 RNG control register (RNG_CR)

Address offset: 0x000

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. CED Res. IE RNGEN Res. Res.

rw rw rw

Bits 31:6 Reserved, must be kept at reset value

Bit 5 CED: Clock error detection

0: Clock error detection is enable
1: Clock error detection is disable

The clock error detection cannot be enabled nor disabled on-the-fly when the RNG is
enabled, i.e. to enable or disable CED the RNG must be disabled.

Bit 4 Reserved, must be kept at reset value.

Bit 3 IE: Interrupt Enable

0: RNG Interrupt is disabled
1: RNG Interrupt is enabled. An interrupt is pending as soon as DRDY=’1’, SEIS=’1’ or
CEIS=’1’ in the RNG_SR register.

Bit 2 RNGEN: True random number generator enable

0: True random number generator is disabled. Analog noise sources are powered off and
logic clocked by the RNG clock is gated.
1: True random number generator is enabled.

Bits 1:0 Reserved, must be kept at reset value.

True random number generator (RNG) RM0401

266/771 RM0401 Rev 3

13.8.2 RNG status register (RNG_SR)

Address offset: 0x004

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. Res. SEIS CEIS Res. Res. SECS CECS DRDY

rc_w0 rc_w0 r r r

Bits 31:7 Reserved, must be kept at reset value.

Bit 6 SEIS: Seed error interrupt status

This bit is set at the same time as SECS. It is cleared by writing it to ‘0’.

0: No faulty sequence detected
1: At least one faulty sequence has been detected. See SECS bit description for details.

An interrupt is pending if IE = ‘1’ in the RNG_CR register.

Bit 5 CEIS: Clock error interrupt status

This bit is set at the same time as CECS. It is cleared by writing it to ‘0’.

0: The RNG clock is correct (fRNGCLK > fHCLK/16)
1: The RNG has been detected too slow (fRNGCLK < fHCLK/16)

An interrupt is pending if IE = ‘1’ in the RNG_CR register.

Bits 4:3 Reserved, must be kept at reset value.

Bit 2 SECS: Seed error current status

0: No faulty sequence has currently been detected. If the SEIS bit is set, this means that a
faulty sequence was detected and the situation has been recovered.
1: One of the noise source has provided more than 64 consecutive bits at a constant value
(“0” or “1”), or more than 32 consecutive occurrence of two bits patterns (“01” or “10”)

Bit 1 CECS: Clock error current status

0: The RNG clock is correct (fRNGCLK> fHCLK/16). If the CEIS bit is set, this means that a
slow clock was detected and the situation has been recovered.
1: The RNG clock is too slow (fRNGCLK< fHCLK/16).

Note: CECS bit is valid only if the CED bit in the RNG_CR register is set to “0”.

Bit 0 DRDY: Data Ready

0: The RNG_DR register is not yet valid, no random data is available.
1: The RNG_DR register contains valid random data.

Once the RNG_DR register has been read, this bit returns to ‘0’ until a new random value is
generated.

If IE=’1’ in the RNG_CR register, an interrupt is generated when DRDY=’1’.

RM0401 Rev 3 267/771

RM0401 True random number generator (RNG)

268

13.8.3 RNG data register (RNG_DR)

Address offset: 0x008

Reset value: 0x0000 0000

The RNG_DR register is a read-only register that delivers a 32-bit random value when read.
After being read this register delivers a new random value after 42 periods of RNG clock if
the output FIFO is empty.

The content of this register is valid when DRDY=’1’, even if RNGEN=’0’.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

RNDATA[31:16]

r r r r r r r r r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RNDATA[15:0]

r r r r r r r r r r r r r r r r

Bits 31:0 RNDATA[31:0]: Random data

32-bit random data which are valid when DRDY=’1’. When DRDY=’0’ RNDATA value is zero.

True random number generator (RNG) RM0401

268/771 RM0401 Rev 3

13.8.4 RNG register map

Table 56 gives the RNG register map and reset values.

Refer to Section 2.2 on page 41 for the register boundary addresses.

Table 56. RNG register map and reset map

Offset Register name 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

0x000
RNG_CR

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

C
E

D
R

es
.

IE
R

N
G

E
N

R
es

.
R

es
.

Reset value 0 0 0

0x004
RNG_SR

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.

S
E

IS
C

E
IS

R
e

s.
R

e
s.

S
E

C
S

C
E

C
S

D
R

D
Y

Reset value 0 0 0 0 0

0x008
RNG_DR RNDATA[31:0]

Reset value 0

RM0401 Rev 3 269/771

RM0401 Advanced-control timers (TIM1)

339

14 Advanced-control timers (TIM1)

14.1 TIM1 introduction

The advanced-control timer (TIM1) consists of a 16-bit auto-reload counter driven by a
programmable prescaler.

It may be used for a variety of purposes, including measuring the pulse length of input
signals (input capture) or generating output waveforms (output compare, PWM,
complementary PWM with dead-time insertion).

Pulse lengths and waveform periods can be modulated from a few microseconds to several
milliseconds using the timer prescaler and the RCC clock controller prescalers.

The advanced-control (TIM1) and general-purpose (TIMx) timers are completely
independent, and do not share any resources. They can be synchronized together as
described in Section .

14.2 TIM1 main features

TIM1 timer features include:

• 16-bit up, down, up/down auto-reload counter.

• 16-bit programmable prescaler allowing dividing (also “on the fly”) the counter clock
frequency either by any factor between 1 and 65536.

• Up to 4 independent channels for:

– Input Capture

– Output Compare

– PWM generation (Edge and Center-aligned Mode)

– One-pulse mode output

• Complementary outputs with programmable dead-time

• Synchronization circuit to control the timer with external signals and to interconnect
several timers together.

• Repetition counter to update the timer registers only after a given number of cycles of
the counter.

• Break input to put the timer’s output signals in reset state or in a known state.

• Interrupt/DMA generation on the following events:

– Update: counter overflow/underflow, counter initialization (by software or
internal/external trigger)

– Trigger event (counter start, stop, initialization or count by internal/external trigger)

– Input capture

– Output compare

– Break input

• Supports incremental (quadrature) encoder and Hall-sensor circuitry for positioning
purposes

• Trigger input for external clock or cycle-by-cycle current management

Advanced-control timers (TIM1) RM0401

270/771 RM0401 Rev 3

Figure 49. Advanced-control timer block diagram

RM0401 Rev 3 271/771

RM0401 Advanced-control timers (TIM1)

339

14.3 TIM1 functional description

14.3.1 Time-base unit

The main block of the programmable advanced-control timer is a 16-bit counter with its
related auto-reload register. The counter can count up, down or both up and down. The
counter clock can be divided by a prescaler.

The counter, the auto-reload register and the prescaler register can be written or read by
software. This is true even when the counter is running.

The time-base unit includes:

• Counter register (TIMx_CNT)

• Prescaler register (TIMx_PSC)

• Auto-reload register (TIMx_ARR)

• Repetition counter register (TIMx_RCR)

The auto-reload register is preloaded. Writing to or reading from the auto-reload register
accesses the preload register. The content of the preload register are transferred into the
shadow register permanently or at each update event (UEV), depending on the auto-reload
preload enable bit (ARPE) in TIMx_CR1 register. The update event is sent when the counter
reaches the overflow (or underflow when downcounting) and if the UDIS bit equals 0 in the
TIMx_CR1 register. It can also be generated by software. The generation of the update
event is described in detailed for each configuration.

The counter is clocked by the prescaler output CK_CNT, which is enabled only when the
counter enable bit (CEN) in TIMx_CR1 register is set (refer also to the slave mode controller
description to get more details on counter enabling).

Note that the counter starts counting 1 clock cycle after setting the CEN bit in the TIMx_CR1
register.

Prescaler description

The prescaler can divide the counter clock frequency by any factor between 1 and 65536. It
is based on a 16-bit counter controlled through a 16-bit register (in the TIMx_PSC register).
It can be changed on the fly as this control register is buffered. The new prescaler ratio is
taken into account at the next update event.

Figure 50 and Figure 51 give some examples of the counter behavior when the prescaler
ratio is changed on the fly:

Advanced-control timers (TIM1) RM0401

272/771 RM0401 Rev 3

Figure 50. Counter timing diagram with prescaler division change from 1 to 2

Figure 51. Counter timing diagram with prescaler division change from 1 to 4

RM0401 Rev 3 273/771

RM0401 Advanced-control timers (TIM1)

339

14.3.2 Counter modes

Upcounting mode

In upcounting mode, the counter counts from 0 to the auto-reload value (content of the
TIMx_ARR register), then restarts from 0 and generates a counter overflow event.

If the repetition counter is used, the update event (UEV) is generated after upcounting is
repeated for the number of times programmed in the repetition counter register plus one
(TIMx_RCR+1). Else the update event is generated at each counter overflow.

Setting the UG bit in the TIMx_EGR register (by software or by using the slave mode
controller) also generates an update event.

The UEV event can be disabled by software by setting the UDIS bit in the TIMx_CR1
register. This is to avoid updating the shadow registers while writing new values in the
preload registers. Then no update event occurs until the UDIS bit has been written to 0.
However, the counter restarts from 0, as well as the counter of the prescaler (but the
prescale rate does not change). In addition, if the URS bit (update request selection) in
TIMx_CR1 register is set, setting the UG bit generates an update event UEV but without
setting the UIF flag (thus no interrupt or DMA request is sent). This is to avoid generating
both update and capture interrupts when clearing the counter on the capture event.

When an update event occurs, all the registers are updated and the update flag (UIF bit in
TIMx_SR register) is set (depending on the URS bit):

• The repetition counter is reloaded with the content of TIMx_RCR register,

• The auto-reload shadow register is updated with the preload value (TIMx_ARR),

• The buffer of the prescaler is reloaded with the preload value (content of the TIMx_PSC
register).

The following figures show some examples of the counter behavior for different clock
frequencies when TIMx_ARR=0x36.

Figure 52. Counter timing diagram, internal clock divided by 1

Advanced-control timers (TIM1) RM0401

274/771 RM0401 Rev 3

Figure 53. Counter timing diagram, internal clock divided by 2

Figure 54. Counter timing diagram, internal clock divided by 4

Figure 55. Counter timing diagram, internal clock divided by N

RM0401 Rev 3 275/771

RM0401 Advanced-control timers (TIM1)

339

Figure 56. Counter timing diagram, update event when ARPE=0
(TIMx_ARR not preloaded)

Figure 57. Counter timing diagram, update event when ARPE=1
(TIMx_ARR preloaded)

Advanced-control timers (TIM1) RM0401

276/771 RM0401 Rev 3

Downcounting mode

In downcounting mode, the counter counts from the auto-reload value (content of the
TIMx_ARR register) down to 0, then restarts from the auto-reload value and generates a
counter underflow event.

If the repetition counter is used, the update event (UEV) is generated after downcounting is
repeated for the number of times programmed in the repetition counter register plus one
(TIMx_RCR+1). Else the update event is generated at each counter underflow.

Setting the UG bit in the TIMx_EGR register (by software or by using the slave mode
controller) also generates an update event.

The UEV update event can be disabled by software by setting the UDIS bit in TIMx_CR1
register. This is to avoid updating the shadow registers while writing new values in the
preload registers. Then no update event occurs until UDIS bit has been written to 0.
However, the counter restarts from the current auto-reload value, whereas the counter of the
prescaler restarts from 0 (but the prescale rate doesn’t change).

In addition, if the URS bit (update request selection) in TIMx_CR1 register is set, setting the
UG bit generates an update event UEV but without setting the UIF flag (thus no interrupt or
DMA request is sent). This is to avoid generating both update and capture interrupts when
clearing the counter on the capture event.

When an update event occurs, all the registers are updated and the update flag (UIF bit in
TIMx_SR register) is set (depending on the URS bit):

• The repetition counter is reloaded with the content of TIMx_RCR register

• The buffer of the prescaler is reloaded with the preload value (content of the TIMx_PSC
register)

• The auto-reload active register is updated with the preload value (content of the
TIMx_ARR register). Note that the auto-reload is updated before the counter is
reloaded, so that the next period is the expected one

The following figures show some examples of the counter behavior for different clock
frequencies when TIMx_ARR=0x36.

RM0401 Rev 3 277/771

RM0401 Advanced-control timers (TIM1)

339

Figure 58. Counter timing diagram, internal clock divided by 1

Figure 59. Counter timing diagram, internal clock divided by 2

Advanced-control timers (TIM1) RM0401

278/771 RM0401 Rev 3

Figure 60. Counter timing diagram, internal clock divided by 4

Figure 61. Counter timing diagram, internal clock divided by N

RM0401 Rev 3 279/771

RM0401 Advanced-control timers (TIM1)

339

Figure 62. Counter timing diagram, update event when repetition counter is not used

Center-aligned mode (up/down counting)

In center-aligned mode, the counter counts from 0 to the auto-reload value (content of the
TIMx_ARR register) – 1, generates a counter overflow event, then counts from the auto-
reload value down to 1 and generates a counter underflow event. Then it restarts counting
from 0.

Center-aligned mode is active when the CMS bits in TIMx_CR1 register are not equal to
'00'. The Output compare interrupt flag of channels configured in output is set when: the
counter counts down (Center aligned mode 1, CMS = "01"), the counter counts up (Center
aligned mode 2, CMS = "10") the counter counts up and down (Center aligned mode 3,
CMS = "11").

In this mode, the DIR direction bit in the TIMx_CR1 register cannot be written. It is updated
by hardware and gives the current direction of the counter.

The update event can be generated at each counter overflow and at each counter underflow
or by setting the UG bit in the TIMx_EGR register (by software or by using the slave mode
controller) also generates an update event. In this case, the counter restarts counting from
0, as well as the counter of the prescaler.

The UEV update event can be disabled by software by setting the UDIS bit in the TIMx_CR1
register. This is to avoid updating the shadow registers while writing new values in the
preload registers. Then no update event occurs until UDIS bit has been written to 0.
However, the counter continues counting up and down, based on the current auto-reload
value.

In addition, if the URS bit (update request selection) in TIMx_CR1 register is set, setting the
UG bit generates an UEV update event but without setting the UIF flag (thus no interrupt or

Advanced-control timers (TIM1) RM0401

280/771 RM0401 Rev 3

DMA request is sent). This is to avoid generating both update and capture interrupts when
clearing the counter on the capture event.

When an update event occurs, all the registers are updated and the update flag (UIF bit in
TIMx_SR register) is set (depending on the URS bit):

• The repetition counter is reloaded with the content of TIMx_RCR register

• The buffer of the prescaler is reloaded with the preload value (content of the TIMx_PSC
register)

• The auto-reload active register is updated with the preload value (content of the
TIMx_ARR register). Note that if the update source is a counter overflow, the auto-
reload is updated before the counter is reloaded, so that the next period is the expected
one (the counter is loaded with the new value).

The following figures show some examples of the counter behavior for different clock
frequencies.

Figure 63. Counter timing diagram, internal clock divided by 1, TIMx_ARR = 0x6

1. Here, center-aligned mode 1 is used (for more details refer to Section 14.4: TIM1 registers).

Figure 64. Counter timing diagram, internal clock divided by 2

RM0401 Rev 3 281/771

RM0401 Advanced-control timers (TIM1)

339

Figure 65. Counter timing diagram, internal clock divided by 4, TIMx_ARR=0x36

1. Center-aligned mode 2 or 3 is used with an UIF on overflow.

Figure 66. Counter timing diagram, internal clock divided by N

Advanced-control timers (TIM1) RM0401

282/771 RM0401 Rev 3

Figure 67. Counter timing diagram, update event with ARPE=1 (counter underflow)

Figure 68. Counter timing diagram, update event with ARPE=1 (counter overflow)

14.3.3 Repetition counter

Section 14.3.1: Time-base unit describes how the update event (UEV) is generated with
respect to the counter overflows/underflows. It is actually generated only when the repetition
counter has reached zero. This can be useful when generating PWM signals.

This means that data are transferred from the preload registers to the shadow registers
(TIMx_ARR auto-reload register, TIMx_PSC prescaler register, but also TIMx_CCRx
capture/compare registers in compare mode) every N+1 counter overflows or underflows,
where N is the value in the TIMx_RCR repetition counter register.

RM0401 Rev 3 283/771

RM0401 Advanced-control timers (TIM1)

339

The repetition counter is decremented:

• At each counter overflow in upcounting mode,

• At each counter underflow in downcounting mode,

• At each counter overflow and at each counter underflow in center-aligned mode.
Although this limits the maximum number of repetition to 128 PWM cycles, it makes it
possible to update the duty cycle twice per PWM period. When refreshing compare
registers only once per PWM period in center-aligned mode, maximum resolution is
2xTck, due to the symmetry of the pattern.

The repetition counter is an auto-reload type; the repetition rate is maintained as defined by
the TIMx_RCR register value (refer to Figure 69). When the update event is generated by
software (by setting the UG bit in TIMx_EGR register) or by hardware through the slave
mode controller, it occurs immediately whatever the value of the repetition counter is and the
repetition counter is reloaded with the content of the TIMx_RCR register.

In center-aligned mode, for odd values of RCR, the update event occurs either on the
overflow or on the underflow depending on when the RCR register was written and when
the counter was started. If the RCR was written before starting the counter, the UEV occurs
on the overflow. If the RCR was written after starting the counter, the UEV occurs on the
underflow. For example for RCR = 3, the UEV is generated on each 4th overflow or
underflow event depending on when RCR was written.

Figure 69. Update rate examples depending on mode and TIMx_RCR register settings

Advanced-control timers (TIM1) RM0401

284/771 RM0401 Rev 3

14.3.4 Clock selection

The counter clock can be provided by the following clock sources:

• Internal clock (CK_INT)

• External clock mode1: external input pin

• External clock mode2: external trigger input ETR

• Internal trigger inputs (ITRx): using one timer as prescaler for another timer

Internal clock source (CK_INT)

If the slave mode controller is disabled (SMS=000), then the CEN, DIR (in the TIMx_CR1
register) and UG bits (in the TIMx_EGR register) are actual control bits and can be changed
only by software (except UG which remains cleared automatically). As soon as the CEN bit
is written to 1, the prescaler is clocked by the internal clock CK_INT.

Figure 70 shows the behavior of the control circuit and the upcounter in normal mode,
without prescaler.

Figure 70. Control circuit in normal mode, internal clock divided by 1

External clock source mode 1

This mode is selected when SMS=111 in the TIMx_SMCR register. The counter can count at
each rising or falling edge on a selected input.

RM0401 Rev 3 285/771

RM0401 Advanced-control timers (TIM1)

339

Figure 71. TI2 external clock connection example

For example, to configure the upcounter to count in response to a rising edge on the TI2
input, use the following procedure:

1. Configure channel 2 to detect rising edges on the TI2 input by writing CC2S = ‘01’ in
the TIMx_CCMR1 register.

2. Configure the input filter duration by writing the IC2F[3:0] bits in the TIMx_CCMR1
register (if no filter is needed, keep IC2F=0000).

3. Select rising edge polarity by writing CC2P=0 and CC2NP=0 in the TIMx_CCER
register.

4. Configure the timer in external clock mode 1 by writing SMS=111 in the TIMx_SMCR
register.

5. Select TI2 as the trigger input source by writing TS=110 in the TIMx_SMCR register.

6. Enable the counter by writing CEN=1 in the TIMx_CR1 register.

Note: The capture prescaler is not used for triggering, so it does not need to be configured.

When a rising edge occurs on TI2, the counter counts once and the TIF flag is set.

The delay between the rising edge on TI2 and the actual clock of the counter is due to the
resynchronization circuit on TI2 input.

Advanced-control timers (TIM1) RM0401

286/771 RM0401 Rev 3

Figure 72. Control circuit in external clock mode 1

External clock source mode 2

This mode is selected by writing ECE=1 in the TIMx_SMCR register.

The counter can count at each rising or falling edge on the external trigger input ETR.

Figure 73 gives an overview of the external trigger input block.

Figure 73. External trigger input block

For example, to configure the upcounter to count each 2 rising edges on ETR, use the
following procedure:

RM0401 Rev 3 287/771

RM0401 Advanced-control timers (TIM1)

339

1. As no filter is needed in this example, write ETF[3:0]=0000 in the TIMx_SMCR register.

2. Set the prescaler by writing ETPS[1:0]=01 in the TIMx_SMCR register

3. Select rising edge detection on the ETR pin by writing ETP=0 in the TIMx_SMCR
register

4. Enable external clock mode 2 by writing ECE=1 in the TIMx_SMCR register.

5. Enable the counter by writing CEN=1 in the TIMx_CR1 register.

The counter counts once each 2 ETR rising edges.

The delay between the rising edge on ETR and the actual clock of the counter is due to the
resynchronization circuit on the ETRP signal.

Figure 74. Control circuit in external clock mode 2

14.3.5 Capture/compare channels

Each Capture/Compare channel is built around a capture/compare register (including a
shadow register), a input stage for capture (with digital filter, multiplexing and prescaler) and
an output stage (with comparator and output control).

Figure 75 to Figure 78 give an overview of one Capture/Compare channel.

The input stage samples the corresponding TIx input to generate a filtered signal TIxF.
Then, an edge detector with polarity selection generates a signal (TIxFPx) which can be
used as trigger input by the slave mode controller or as the capture command. It is
prescaled before the capture register (ICxPS).

Advanced-control timers (TIM1) RM0401

288/771 RM0401 Rev 3

Figure 75. Capture/compare channel (example: channel 1 input stage)

The output stage generates an intermediate waveform which is then used for reference:
OCxRef (active high). The polarity acts at the end of the chain.

Figure 76. Capture/compare channel 1 main circuit

RM0401 Rev 3 289/771

RM0401 Advanced-control timers (TIM1)

339

Figure 77. Output stage of capture/compare channel (channels 1 to 3)

Figure 78. Output stage of capture/compare channel (channel 4)

The capture/compare block is made of one preload register and one shadow register. Write
and read always access the preload register.

In capture mode, captures are actually done in the shadow register, which is copied into the
preload register.

In compare mode, the content of the preload register is copied into the shadow register
which is compared to the counter.

Advanced-control timers (TIM1) RM0401

290/771 RM0401 Rev 3

14.3.6 Input capture mode

In Input capture mode, the Capture/Compare Registers (TIMx_CCRx) are used to latch the
value of the counter after a transition detected by the corresponding ICx signal. When a
capture occurs, the corresponding CCXIF flag (TIMx_SR register) is set and an interrupt or
a DMA request can be sent if they are enabled. If a capture occurs while the CCxIF flag was
already high, then the over-capture flag CCxOF (TIMx_SR register) is set. CCxIF can be
cleared by software by writing it to ‘0’ or by reading the captured data stored in the
TIMx_CCRx register. CCxOF is cleared when it is written with 0.

The following example shows how to capture the counter value in TIMx_CCR1 when TI1
input rises. To do this, use the following procedure:

• Select the active input: TIMx_CCR1 must be linked to the TI1 input, so write the CC1S
bits to 01 in the TIMx_CCMR1 register. As soon as CC1S becomes different from 00,
the channel is configured in input and the TIMx_CCR1 register becomes read-only.

• Program the appropriate input filter duration in relation with the signal connected to the
timer (by programming ICxF bits in the TIMx_CCMRx register if the input is a TIx input).
Let’s imagine that, when toggling, the input signal is not stable during at must 5 internal
clock cycles. We must program a filter duration longer than these 5 clock cycles. We
can validate a transition on TI1 when 8 consecutive samples with the new level have
been detected (sampled at fDTS frequency). Then write IC1F bits to 0011 in the
TIMx_CCMR1 register.

• Select the edge of the active transition on the TI1 channel by writing CC1P and CC1NP
bits to 0 in the TIMx_CCER register (rising edge in this case).

• Program the input prescaler. In our example, we wish the capture to be performed at
each valid transition, so the prescaler is disabled (write IC1PS bits to ‘00’ in the
TIMx_CCMR1 register).

• Enable capture from the counter into the capture register by setting the CC1E bit in the
TIMx_CCER register.

• If needed, enable the related interrupt request by setting the CC1IE bit in the
TIMx_DIER register, and/or the DMA request by setting the CC1DE bit in the
TIMx_DIER register.

When an input capture occurs:

• The TIMx_CCR1 register gets the value of the counter on the active transition.

• CC1IF flag is set (interrupt flag). CC1OF is also set if at least two consecutive captures
occurred whereas the flag was not cleared.

• An interrupt is generated depending on the CC1IE bit.

• A DMA request is generated depending on the CC1DE bit.

In order to handle the overcapture, it is recommended to read the data before the
overcapture flag. This is to avoid missing an overcapture which could happen after reading
the flag and before reading the data.

Note: IC interrupt and/or DMA requests can be generated by software by setting the
corresponding CCxG bit in the TIMx_EGR register.

RM0401 Rev 3 291/771

RM0401 Advanced-control timers (TIM1)

339

14.3.7 PWM input mode

This mode is a particular case of input capture mode. The procedure is the same except:

• Two ICx signals are mapped on the same TIx input.

• These 2 ICx signals are active on edges with opposite polarity.

• One of the two TIxFP signals is selected as trigger input and the slave mode controller
is configured in reset mode.

For example, one can measure the period (in TIMx_CCR1 register) and the duty cycle (in
TIMx_CCR2 register) of the PWM applied on TI1 using the following procedure (depending
on CK_INT frequency and prescaler value):

• Select the active input for TIMx_CCR1: write the CC1S bits to 01 in the TIMx_CCMR1
register (TI1 selected).

• Select the active polarity for TI1FP1 (used both for capture in TIMx_CCR1 and counter
clear): write the CC1P and CC1NP bits to ‘0’ (active on rising edge).

• Select the active input for TIMx_CCR2: write the CC2S bits to 10 in the TIMx_CCMR1
register (TI1 selected).

• Select the active polarity for TI1FP2 (used for capture in TIMx_CCR2): write the CC2P
and CC2NP bits to ‘1’ (active on falling edge).

• Select the valid trigger input: write the TS bits to 101 in the TIMx_SMCR register
(TI1FP1 selected).

• Configure the slave mode controller in reset mode: write the SMS bits to 100 in the
TIMx_SMCR register.

• Enable the captures: write the CC1E and CC2E bits to ‘1’ in the TIMx_CCER register.

Figure 79. PWM input mode timing

14.3.8 Forced output mode

In output mode (CCxS bits = 00 in the TIMx_CCMRx register), each output compare signal
(OCxREF and then OCx/OCxN) can be forced to active or inactive level directly by software,
independently of any comparison between the output compare register and the counter.

TI1

TIMx_CNT 0000 0001 0002 0003 0004 00000004

TIMx_CCR1

TIMx_CCR2

0004

0002

IC1 capture

IC2 capture

reset counter

IC2 capture
pulse width

IC1 capture
period
measurementmeasurement

ai15413

Advanced-control timers (TIM1) RM0401

292/771 RM0401 Rev 3

To force an output compare signal (OCXREF/OCx) to its active level, one just needs to write
101 in the OCxM bits in the corresponding TIMx_CCMRx register. Thus OCXREF is forced
high (OCxREF is always active high) and OCx get opposite value to CCxP polarity bit.

For example: CCxP=0 (OCx active high) => OCx is forced to high level.

The OCxREF signal can be forced low by writing the OCxM bits to 100 in the TIMx_CCMRx
register.

Anyway, the comparison between the TIMx_CCRx shadow register and the counter is still
performed and allows the flag to be set. Interrupt and DMA requests can be sent
accordingly. This is described in the output compare mode section below.

14.3.9 Output compare mode

This function is used to control an output waveform or indicating when a period of time has
elapsed.

When a match is found between the capture/compare register and the counter, the output
compare function:

• Assigns the corresponding output pin to a programmable value defined by the output
compare mode (OCxM bits in the TIMx_CCMRx register) and the output polarity (CCxP
bit in the TIMx_CCER register). The output pin can keep its level (OCXM=000), be set
active (OCxM=001), be set inactive (OCxM=010) or can toggle (OCxM=011) on match.

• Sets a flag in the interrupt status register (CCxIF bit in the TIMx_SR register).

• Generates an interrupt if the corresponding interrupt mask is set (CCXIE bit in the
TIMx_DIER register).

• Sends a DMA request if the corresponding enable bit is set (CCxDE bit in the
TIMx_DIER register, CCDS bit in the TIMx_CR2 register for the DMA request
selection).

The TIMx_CCRx registers can be programmed with or without preload registers using the
OCxPE bit in the TIMx_CCMRx register.

In output compare mode, the update event UEV has no effect on OCxREF and OCx output.
The timing resolution is one count of the counter. Output compare mode can also be used to
output a single pulse (in One Pulse mode).

Procedure:

1. Select the counter clock (internal, external, prescaler).

2. Write the desired data in the TIMx_ARR and TIMx_CCRx registers.

3. Set the CCxIE bit if an interrupt request is to be generated.

4. Select the output mode. For example:

– Write OCxM = 011 to toggle OCx output pin when CNT matches CCRx

– Write OCxPE = 0 to disable preload register

– Write CCxP = 0 to select active high polarity

– Write CCxE = 1 to enable the output

5. Enable the counter by setting the CEN bit in the TIMx_CR1 register.

The TIMx_CCRx register can be updated at any time by software to control the output
waveform, provided that the preload register is not enabled (OCxPE=’0’, else TIMx_CCRx
shadow register is updated only at the next update event UEV). An example is given in
Figure 80.

RM0401 Rev 3 293/771

RM0401 Advanced-control timers (TIM1)

339

Figure 80. Output compare mode, toggle on OC1.

14.3.10 PWM mode

Pulse Width Modulation mode allows to generate a signal with a frequency determined by
the value of the TIMx_ARR register and a duty cycle determined by the value of the
TIMx_CCRx register.

The PWM mode can be selected independently on each channel (one PWM per OCx
output) by writing ‘110’ (PWM mode 1) or ‘111’ (PWM mode 2) in the OCxM bits in the
TIMx_CCMRx register. The corresponding preload register must be enabled by setting the
OCxPE bit in the TIMx_CCMRx register, and eventually the auto-reload preload register (in
upcounting or center-aligned modes) by setting the ARPE bit in the TIMx_CR1 register.

As the preload registers are transferred to the shadow registers only when an update event
occurs, before starting the counter, all registers must be initialized by setting the UG bit in
the TIMx_EGR register.

OCx polarity is software programmable using the CCxP bit in the TIMx_CCER register. It
can be programmed as active high or active low. OCx output is enabled by a combination of
the CCxE, CCxNE, MOE, OSSI and OSSR bits (TIMx_CCER and TIMx_BDTR registers).
Refer to the TIMx_CCER register description for more details.

In PWM mode (1 or 2), TIMx_CNT and TIMx_CCRx are always compared to determine
whether TIMx_CCRx ≤ TIMx_CNT or TIMx_CNT ≤ TIMx_CCRx (depending on the direction
of the counter).

The timer is able to generate PWM in edge-aligned mode or center-aligned mode
depending on the CMS bits in the TIMx_CR1 register.

Advanced-control timers (TIM1) RM0401

294/771 RM0401 Rev 3

PWM edge-aligned mode

• Upcounting configuration

Upcounting is active when the DIR bit in the TIMx_CR1 register is low. Refer to
Upcounting mode.

In the following example, we consider PWM mode 1. The reference PWM signal
OCxREF is high as long as TIMx_CNT < TIMx_CCRx else it becomes low. If the
compare value in TIMx_CCRx is greater than the auto-reload value (in TIMx_ARR)
then OCxREF is held at ‘1’. If the compare value is 0 then OCxRef is held at ‘0’.
Figure 81 shows some edge-aligned PWM waveforms in an example where
TIMx_ARR=8.

Figure 81. Edge-aligned PWM waveforms (ARR=8)

• Downcounting configuration

Downcounting is active when DIR bit in TIMx_CR1 register is high. Refer to
Downcounting mode.

In PWM mode 1, the reference signal OCxRef is low as long as
TIMx_CNT > TIMx_CCRx else it becomes high. If the compare value in TIMx_CCRx is
greater than the auto-reload value in TIMx_ARR, then OCxREF is held at ‘1’. 0% PWM
is not possible in this mode.

PWM center-aligned mode

Center-aligned mode is active when the CMS bits in TIMx_CR1 register are different from
‘00’ (all the remaining configurations having the same effect on the OCxRef/OCx signals).
The compare flag is set when the counter counts up, when it counts down or both when it
counts up and down depending on the CMS bits configuration. The direction bit (DIR) in the
TIMx_CR1 register is updated by hardware and must not be changed by software. Refer to
Center-aligned mode (up/down counting).

RM0401 Rev 3 295/771

RM0401 Advanced-control timers (TIM1)

339

Figure 82 shows some center-aligned PWM waveforms in an example where:

• TIMx_ARR=8,

• PWM mode is the PWM mode 1,

• The flag is set when the counter counts down corresponding to the center-aligned
mode 1 selected for CMS=01 in TIMx_CR1 register.

Figure 82. Center-aligned PWM waveforms (ARR=8)

Advanced-control timers (TIM1) RM0401

296/771 RM0401 Rev 3

Hints on using center-aligned mode:

• When starting in center-aligned mode, the current up-down configuration is used. It
means that the counter counts up or down depending on the value written in the DIR bit
in the TIMx_CR1 register. Moreover, the DIR and CMS bits must not be changed at the
same time by the software.

• Writing to the counter while running in center-aligned mode is not recommended as it
can lead to unexpected results. In particular:

– The direction is not updated if a value greater than the auto-reload value is written
in the counter (TIMx_CNT>TIMx_ARR). For example, if the counter was counting
up, it continues to count up.

– The direction is updated if 0 or the TIMx_ARR value is written in the counter but no
Update Event UEV is generated.

• The safest way to use center-aligned mode is to generate an update by software
(setting the UG bit in the TIMx_EGR register) just before starting the counter and not to
write the counter while it is running.

14.3.11 Complementary outputs and dead-time insertion

The advanced-control timers (TIM1) can output two complementary signals and manage the
switching-off and the switching-on instants of the outputs.

This time is generally known as dead-time and it has to be adjusted depending on the
devices that are connected to the outputs and their characteristics (intrinsic delays of level-
shifters, delays due to power switches...)

The polarity of the outputs (main output OCx or complementary OCxN) can be selected
independently for each output. This is done by writing to the CCxP and CCxNP bits in the
TIMx_CCER register.

The complementary signals OCx and OCxN are activated by a combination of several
control bits: the CCxE and CCxNE bits in the TIMx_CCER register and the MOE, OISx,
OISxN, OSSI and OSSR bits in the TIMx_BDTR and TIMx_CR2 registers. Refer to Table 59
for more details. In particular, the dead-time is activated when switching to the IDLE state
(MOE falling down to 0).

Dead-time insertion is enabled by setting both CCxE and CCxNE bits, and the MOE bit if the
break circuit is present. DTG[7:0] bits of the TIMx_BDTR register are used to control the
dead-time generation for all channels. From a reference waveform OCxREF, it generates 2
outputs OCx and OCxN. If OCx and OCxN are active high:

• The OCx output signal is the same as the reference signal except for the rising edge,
which is delayed relative to the reference rising edge.

• The OCxN output signal is the opposite of the reference signal except for the rising
edge, which is delayed relative to the reference falling edge.

If the delay is greater than the width of the active output (OCx or OCxN) then the
corresponding pulse is not generated.

The following figures show the relationships between the output signals of the dead-time
generator and the reference signal OCxREF. (we suppose CCxP=0, CCxNP=0, MOE=1,
CCxE=1 and CCxNE=1 in these examples).

RM0401 Rev 3 297/771

RM0401 Advanced-control timers (TIM1)

339

Figure 83. Complementary output with dead-time insertion.

Figure 84. Dead-time waveforms with delay greater than the negative pulse.

Figure 85. Dead-time waveforms with delay greater than the positive pulse.

The dead-time delay is the same for each of the channels and is programmable with the
DTG bits in the TIMx_BDTR register. Refer to Section 14.4.18: TIM1 break and dead-time
register (TIMx_BDTR) for delay calculation.

Re-directing OCxREF to OCx or OCxN

In output mode (forced, output compare or PWM), OCxREF can be re-directed to the OCx
output or to OCxN output by configuring the CCxE and CCxNE bits in the TIMx_CCER
register.

This allows to send a specific waveform (such as PWM or static active level) on one output
while the complementary remains at its inactive level. Other alternative possibilities are to

Advanced-control timers (TIM1) RM0401

298/771 RM0401 Rev 3

have both outputs at inactive level or both outputs active and complementary with dead-
time.

Note: When only OCxN is enabled (CCxE=0, CCxNE=1), it is not complemented and becomes
active as soon as OCxREF is high. For example, if CCxNP=0 then OCxN=OCxRef. On the
other hand, when both OCx and OCxN are enabled (CCxE=CCxNE=1) OCx becomes
active when OCxREF is high whereas OCxN is complemented and becomes active when
OCxREF is low.

14.3.12 Using the break function

When using the break function, the output enable signals and inactive levels are modified
according to additional control bits (MOE, OSSI and OSSR bits in the TIMx_BDTR register,
OISx and OISxN bits in the TIMx_CR2 register). In any case, the OCx and OCxN outputs
cannot be set both to active level at a given time. Refer to Table 59 for more details.

The break source can be either the break input pin or a clock failure event, generated by the
Clock Security System (CSS), from the Reset Clock Controller. For further information on
the Clock Security System, refer to Section 6.2.7: Clock security system (CSS).

When exiting from reset, the break circuit is disabled and the MOE bit is low. The break
function can be enabled by setting the BKE bit in the TIMx_BDTR register. The break input
polarity can be selected by configuring the BKP bit in the same register. BKE and BKP can
be modified at the same time. When the BKE and BKP bits are written, a delay of 1 APB
clock cycle is applied before the writing is effective. Consequently, it is necessary to wait 1
APB clock period to correctly read back the bit after the write operation.

Because MOE falling edge can be asynchronous, a resynchronization circuit has been
inserted between the actual signal (acting on the outputs) and the synchronous control bit
(accessed in the TIMx_BDTR register). It results in some delays between the asynchronous
and the synchronous signals. In particular, when writing MOE to 1 whereas it was low, user
must insert a delay (dummy instruction) before reading it correctly. This is because user
writes the asynchronous signal and reads the synchronous signal.

When a break occurs (selected level on the break input):

• The MOE bit is cleared asynchronously, putting the outputs in inactive state, idle state
or in reset state (selected by the OSSI bit). This feature functions even if the MCU
oscillator is off.

• Each output channel is driven with the level programmed in the OISx bit in the
TIMx_CR2 register as soon as MOE=0. If OSSI=0 then the timer releases the enable
output else the enable output remains high.

• When complementary outputs are used:

– The outputs are first put in reset state inactive state (depending on the polarity).
This is done asynchronously so that it works even if no clock is provided to the
timer.

– If the timer clock is still present, then the dead-time generator is reactivated in
order to drive the outputs with the level programmed in the OISx and OISxN bits
after a dead-time. Even in this case, OCx and OCxN cannot be driven to their

RM0401 Rev 3 299/771

RM0401 Advanced-control timers (TIM1)

339

active level together. Note that because of the resynchronization on MOE, the
dead-time duration is a bit longer than usual (around 2 ck_tim clock cycles).

– If OSSI=0 then the timer releases the enable outputs else the enable outputs
remain or become high as soon as one of the CCxE or CCxNE bits is high.

• The break status flag (BIF bit in the TIMx_SR register) is set. An interrupt can be
generated if the BIE bit in the TIMx_DIER register is set. A DMA request can be sent if
the BDE bit in the TIMx_DIER register is set.

• If the AOE bit in the TIMx_BDTR register is set, the MOE bit is automatically set again
at the next update event UEV. This can be used to perform a regulation, for instance.
Else, MOE remains low until it is written with 1 again. In this case, it can be used for
security and the break input can be connected to an alarm from power drivers, thermal
sensors or any security components.

Note: The break inputs is acting on level. Thus, the MOE cannot be set while the break input is
active (neither automatically nor by software). In the meantime, the status flag BIF cannot
be cleared.

The break can be generated by the BRK input which has a programmable polarity and an
enable bit BKE in the TIMx_BDTR Register.

There are two solutions to generate a break:

• By using the BRK input which has a programmable polarity and an enable bit BKE in
the TIMx_BDTR register

• By software through the BG bit of the TIMx_EGR register.

In addition to the break input and the output management, a write protection has been
implemented inside the break circuit to safeguard the application. It allows to freeze the
configuration of several parameters (dead-time duration, OCx/OCxN polarities and state
when disabled, OCxM configurations, break enable and polarity). The protection can be
selected among 3 levels with the LOCK bits in the TIMx_BDTR register. Refer to
Section 14.4.18: TIM1 break and dead-time register (TIMx_BDTR). The LOCK bits can be
written only once after an MCU reset.

Figure 86 shows an example of behavior of the outputs in response to a break.

Advanced-control timers (TIM1) RM0401

300/771 RM0401 Rev 3

Figure 86. Output behavior in response to a break.

RM0401 Rev 3 301/771

RM0401 Advanced-control timers (TIM1)

339

14.3.13 Clearing the OCxREF signal on an external event

The OCxREF signal for a given channel can be driven Low by applying a High level to the
ETRF input (OCxCE enable bit of the corresponding TIMx_CCMRx register set to ‘1’). The
OCxREF signal remains Low until the next update event, UEV, occurs.

This function can only be used in output compare and PWM modes, and does not work in
forced mode.

For example, the ETR signal can be connected to the output of a comparator to be used for
current handling. In this case, the ETR must be configured as follow:

1. The External Trigger Prescaler should be kept off: bits ETPS[1:0] of the TIMx_SMCR
register set to ‘00’.

2. The external clock mode 2 must be disabled: bit ECE of the TIMx_SMCR register set to
‘0’.

3. The External Trigger Polarity (ETP) and the External Trigger Filter (ETF) can be
configured according to the user needs.

Figure 87 shows the behavior of the OCxREF signal when the ETRF Input becomes High,
for both values of the enable bit OCxCE. In this example, the timer TIMx is programmed in
PWM mode.

Figure 87. Clearing TIMx OCxREF

Note: In case of a PWM with a 100% duty cycle (if CCRx>ARR), then OCxREF is enabled again at
the next counter overflow.

Advanced-control timers (TIM1) RM0401

302/771 RM0401 Rev 3

14.3.14 6-step PWM generation

When complementary outputs are used on a channel, preload bits are available on the
OCxM, CCxE and CCxNE bits. The preload bits are transferred to the shadow bits at the
COM commutation event. Thus one can program in advance the configuration for the next
step and change the configuration of all the channels at the same time. COM can be
generated by software by setting the COM bit in the TIMx_EGR register or by hardware (on
TRGI rising edge).

A flag is set when the COM event occurs (COMIF bit in the TIMx_SR register), which can
generate an interrupt (if the COMIE bit is set in the TIMx_DIER register) or a DMA request
(if the COMDE bit is set in the TIMx_DIER register).

Figure 88 describes the behavior of the OCx and OCxN outputs when a COM event occurs,
in 3 different examples of programmed configurations.

Figure 88. 6-step generation, COM example (OSSR=1)

(CCRx)

OCx

OCxN

Write COM to 1

counter (CNT)

OCxREF

COM event

CCxE=1
CCxNE=0
OCxM=100

OCx

OCxN

CCxE=0
CCxNE=1
OCxM=101

OCx

OCxN

CCxE=1
CCxNE=0
OCxM=100

Example 1

Example 2

Example 3

write OCxM to 100CCxE=1
CCxNE=0
OCxM=100 (forced inactive)

CCxE=1
CCxNE=0
OCxM=100 (forced inactive)

Write CCxNE to 1
and OCxM to 101

write CCxNE to 0
and OCxM to 100

CCxE=1
CCxNE=0
OCxM=100 (forced inactive)

ai14910

RM0401 Rev 3 303/771

RM0401 Advanced-control timers (TIM1)

339

14.3.15 One-pulse mode

One-pulse mode (OPM) is a particular case of the previous modes. It allows the counter to
be started in response to a stimulus and to generate a pulse with a programmable length
after a programmable delay.

Starting the counter can be controlled through the slave mode controller. Generating the
waveform can be done in output compare mode or PWM mode. One-pulse mode is selected
by setting the OPM bit in the TIMx_CR1 register. This makes the counter stop automatically
at the next update event UEV.

A pulse can be correctly generated only if the compare value is different from the counter
initial value. Before starting (when the timer is waiting for the trigger), the configuration must
be:

• In upcounting: CNT < CCRx ≤ ARR (in particular, 0 < CCRx)

• In downcounting: CNT > CCRx

Figure 89. Example of one pulse mode.

For example one may want to generate a positive pulse on OC1 with a length of tPULSE and
after a delay of tDELAY as soon as a positive edge is detected on the TI2 input pin.

Let’s use TI2FP2 as trigger 1:

• Map TI2FP2 to TI2 by writing CC2S=’01’ in the TIMx_CCMR1 register.

• TI2FP2 must detect a rising edge, write CC2P=’0’ and CC2NP=’0’ in the TIMx_CCER
register.

• Configure TI2FP2 as trigger for the slave mode controller (TRGI) by writing TS=’110’ in
the TIMx_SMCR register.

• TI2FP2 is used to start the counter by writing SMS to ‘110’ in the TIMx_SMCR register
(trigger mode).

Advanced-control timers (TIM1) RM0401

304/771 RM0401 Rev 3

The OPM waveform is defined by writing the compare registers (taking into account the
clock frequency and the counter prescaler).

• The tDELAY is defined by the value written in the TIMx_CCR1 register.

• The tPULSE is defined by the difference between the auto-reload value and the compare
value (TIMx_ARR - TIMx_CCR1).

• Let’s say one want to build a waveform with a transition from ‘0’ to ‘1’ when a compare
match occurs and a transition from ‘1’ to ‘0’ when the counter reaches the auto-reload
value. To do this PWM mode 2 must be enabled by writing OC1M=111 in the
TIMx_CCMR1 register. Optionally the preload registers can be enabled by writing
OC1PE=’1’ in the TIMx_CCMR1 register and ARPE in the TIMx_CR1 register. In this
case one has to write the compare value in the TIMx_CCR1 register, the auto-reload
value in the TIMx_ARR register, generate an update by setting the UG bit and wait for
external trigger event on TI2. CC1P is written to ‘0’ in this example.

In our example, the DIR and CMS bits in the TIMx_CR1 register should be low.

Since only 1 pulse (Single mode) is needed, a 1 must be written in the OPM bit in the
TIMx_CR1 register to stop the counter at the next update event (when the counter rolls over
from the auto-reload value back to 0). When OPM bit in the TIMx_CR1 register is set to '0',
so the Repetitive Mode is selected.

Particular case: OCx fast enable:

In One-pulse mode, the edge detection on TIx input set the CEN bit which enables the
counter. Then the comparison between the counter and the compare value makes the
output toggle. But several clock cycles are needed for these operations and it limits the
minimum delay tDELAY min we can get.

If one wants to output a waveform with the minimum delay, the OCxFE bit can be set in the
TIMx_CCMRx register. Then OCxRef (and OCx) are forced in response to the stimulus,
without taking in account the comparison. Its new level is the same as if a compare match
had occurred. OCxFE acts only if the channel is configured in PWM1 or PWM2 mode.

14.3.16 Encoder interface mode

To select Encoder Interface mode write SMS=‘001’ in the TIMx_SMCR register if the
counter is counting on TI2 edges only, SMS=’010’ if it is counting on TI1 edges only and
SMS=’011’ if it is counting on both TI1 and TI2 edges.

Select the TI1 and TI2 polarity by programming the CC1P and CC2P bits in the TIMx_CCER
register. When needed, the input filter can be programmed as well. CC1NP and CC2NP
must be kept low.

The two inputs TI1 and TI2 are used to interface to an incremental encoder. Refer to
Table 57. The counter is clocked by each valid transition on TI1FP1 or TI2FP2 (TI1 and TI2
after input filter and polarity selection, TI1FP1=TI1 if not filtered and not inverted,
TI2FP2=TI2 if not filtered and not inverted) assuming that it is enabled (CEN bit in
TIMx_CR1 register written to ‘1’). The sequence of transitions of the two inputs is evaluated
and generates count pulses as well as the direction signal. Depending on the sequence the
counter counts up or down, the DIR bit in the TIMx_CR1 register is modified by hardware
accordingly. The DIR bit is calculated at each transition on any input (TI1 or TI2), whatever
the counter is counting on TI1 only, TI2 only or both TI1 and TI2.

Encoder interface mode acts simply as an external clock with direction selection. This
means that the counter just counts continuously between 0 and the auto-reload value in the
TIMx_ARR register (0 to ARR or ARR down to 0 depending on the direction). So the

RM0401 Rev 3 305/771

RM0401 Advanced-control timers (TIM1)

339

TIMx_ARR must be configured before starting. In the same way, the capture, compare,
prescaler, repetition counter, trigger output features continue to work as normal. Encoder
mode and External clock mode 2 are not compatible and must not be selected together.

In this mode, the counter is modified automatically following the speed and the direction of
the incremental encoder and its content, therefore, always represents the encoder’s
position. The count direction correspond to the rotation direction of the connected sensor.
Table 57 summarizes the possible combinations, assuming TI1 and TI2 do not switch at the
same time.

An external incremental encoder can be connected directly to the MCU without external
interface logic. However, comparators are normally be used to convert the encoder’s
differential outputs to digital signals. This greatly increases noise immunity. The third
encoder output which indicate the mechanical zero position, may be connected to an
external interrupt input and trigger a counter reset.

Figure 90 gives an example of counter operation, showing count signal generation and
direction control. It also shows how input jitter is compensated where both edges are
selected. This might occur if the sensor is positioned near to one of the switching points. For
this example we assume that the configuration is the following:

• CC1S=’01’ (TIMx_CCMR1 register, TI1FP1 mapped on TI1).

• CC2S=’01’ (TIMx_CCMR2 register, TI1FP2 mapped on TI2).

• CC1P=’0’, CC1NP=’0’, and IC1F = ‘0000’ (TIMx_CCER register, TI1FP1 non-inverted,
TI1FP1=TI1).

• CC2P=’0’, CC2NP=’0’, and IC2F = ‘0000’ (TIMx_CCER register, TI1FP2 non-inverted,
TI1FP2= TI2).

• SMS=’011’ (TIMx_SMCR register, both inputs are active on both rising and falling
edges).

• CEN=’1’ (TIMx_CR1 register, Counter enabled).

Table 57. Counting direction versus encoder signals

Active edge
Level on opposite signal

(TI1FP1 for TI2,
TI2FP2 for TI1)

TI1FP1 signal TI2FP2 signal

Rising Falling Rising Falling

Counting on
TI1 only

High Down Up No Count No Count

Low Up Down No Count No Count

Counting on
TI2 only

High No Count No Count Up Down

Low No Count No Count Down Up

Counting on
TI1 and TI2

High Down Up Up Down

Low Up Down Down Up

Advanced-control timers (TIM1) RM0401

306/771 RM0401 Rev 3

Figure 90. Example of counter operation in encoder interface mode.

Figure 91 gives an example of counter behavior when TI1FP1 polarity is inverted (same
configuration as above except CC1P=’1’).

Figure 91. Example of encoder interface mode with TI1FP1 polarity inverted.

The timer, when configured in Encoder Interface mode provides information on the sensor’s
current position. Dynamic information can be obtained (speed, acceleration, deceleration)
by measuring the period between two encoder events using a second timer configured in
capture mode. The output of the encoder which indicates the mechanical zero can be used
for this purpose. Depending on the time between two events, the counter can also be read
at regular times. This can be done by latching the counter value into a third input capture
register if available (then the capture signal must be periodic and can be generated by
another timer). when available, it is also possible to read its value through a DMA request
generated by a real-time clock.

RM0401 Rev 3 307/771

RM0401 Advanced-control timers (TIM1)

339

14.3.17 Timer input XOR function

The TI1S bit in the TIMx_CR2 register allows the input filter of channel 1 to be connected to
the output of a XOR gate, combining the three input pins TIMx_CH1, TIMx_CH2 and
TIMx_CH3.

The XOR output can be used with all the timer input functions such as trigger or input
capture. An example of this feature used to interface Hall sensors is given in
Section 14.3.18 below.

14.3.18 Interfacing with Hall sensors

This is done using the advanced-control timers (TIM1) to generate PWM signals to drive
the motor and another timer TIMx (TIM5) referred to as “interfacing timer” in Figure 92. The
“interfacing timer” captures the 3 timer input pins (TIMx_CH1, TIMx_CH2, and TIMx_CH3)
connected through a XOR to the TI1 input channel (selected by setting the TI1S bit in the
TIMx_CR2 register).

The slave mode controller is configured in reset mode; the slave input is TI1F_ED. Thus,
each time one of the 3 inputs toggles, the counter restarts counting from 0. This creates a
time base triggered by any change on the Hall inputs.

On the “interfacing timer”, capture/compare channel 1 is configured in capture mode,
capture signal is TRC (see Figure 75). The captured value, which corresponds to the time
elapsed between 2 changes on the inputs, gives information about motor speed.

The “interfacing timer” can be used in output mode to generate a pulse which changes the
configuration of the channels of the advanced-control timer (TIM1) (by triggering a COM
event). The TIM1 timer is used to generate PWM signals to drive the motor. To do this, the
interfacing timer channel must be programmed so that a positive pulse is generated after a
programmed delay (in output compare or PWM mode). This pulse is sent to the advanced-
control timer (TIM1) through the TRGO output.

Example: one wants to change the PWM configuration of the advanced-control timer TIM1
after a programmed delay each time a change occurs on the Hall inputs connected to one of
the TIMx timers.

• Configure 3 timer inputs ORed to the TI1 input channel by writing the TI1S bit in the
TIMx_CR2 register to ‘1’,

• Program the time base: write the TIMx_ARR to the max value (the counter must be
cleared by the TI1 change. Set the prescaler to get a maximum counter period longer
than the time between 2 changes on the sensors,

• Program channel 1 in capture mode (TRC selected): write the CC1S bits in the
TIMx_CCMR1 register to ‘11’. The digital filter can also be programmed if needed,

• Program channel 2 in PWM 2 mode with the desired delay: write the OC2M bits to ‘111’
and the CC2S bits to ‘00’ in the TIMx_CCMR1 register,

• Select OC2REF as trigger output on TRGO: write the MMS bits in the TIMx_CR2
register to ‘101’,

In the advanced-control timer TIM1, the right ITR input must be selected as trigger input, the
timer is programmed to generate PWM signals, the capture/compare control signals are
preloaded (CCPC=1 in the TIMx_CR2 register) and the COM event is controlled by the
trigger input (CCUS=1 in the TIMx_CR2 register). The PWM control bits (CCxE, OCxM) are
written after a COM event for the next step (this can be done in an interrupt subroutine
generated by the rising edge of OC2REF).

Advanced-control timers (TIM1) RM0401

308/771 RM0401 Rev 3

Figure 92 describes this example.

Figure 92. Example of Hall sensor interface

RM0401 Rev 3 309/771

RM0401 Advanced-control timers (TIM1)

339

14.3.19 TIMx and external trigger synchronization

The TIMx timer can be synchronized with an external trigger in several modes: Reset mode,
Gated mode and Trigger mode.

Slave mode: Reset mode

The counter and its prescaler can be reinitialized in response to an event on a trigger input.
Moreover, if the URS bit from the TIMx_CR1 register is low, an update event UEV is
generated. Then all the preloaded registers (TIMx_ARR, TIMx_CCRx) are updated.

In the following example, the upcounter is cleared in response to a rising edge on TI1 input:

• Configure the channel 1 to detect rising edges on TI1. Configure the input filter duration
(in this example, we do not need any filter, so we keep IC1F=0000). The capture
prescaler is not used for triggering, so it does not need to be configured. The CC1S bits
select the input capture source only, CC1S = 01 in the TIMx_CCMR1 register. Write
CC1P=0 and CC1NP=’0’ in TIMx_CCER register to validate the polarity (and detect
rising edges only).

• Configure the timer in reset mode by writing SMS=100 in TIMx_SMCR register. Select
TI1 as the input source by writing TS=101 in TIMx_SMCR register.

• Start the counter by writing CEN=1 in the TIMx_CR1 register.

The counter starts counting on the internal clock, then behaves normally until TI1 rising
edge. When TI1 rises, the counter is cleared and restarts from 0. In the meantime, the
trigger flag is set (TIF bit in the TIMx_SR register) and an interrupt request, or a DMA
request can be sent if enabled (depending on the TIE and TDE bits in TIMx_DIER register).

The following figure shows this behavior when the auto-reload register TIMx_ARR=0x36.
The delay between the rising edge on TI1 and the actual reset of the counter is due to the
resynchronization circuit on TI1 input.

Figure 93. Control circuit in reset mode

Advanced-control timers (TIM1) RM0401

310/771 RM0401 Rev 3

Slave mode: Gated mode

The counter can be enabled depending on the level of a selected input.

In the following example, the upcounter counts only when TI1 input is low:

• Configure the channel 1 to detect low levels on TI1. Configure the input filter duration
(in this example, we do not need any filter, so we keep IC1F=0000). The capture
prescaler is not used for triggering, so it does not need to be configured. The CC1S bits
select the input capture source only, CC1S=01 in TIMx_CCMR1 register. Write
CC1P=1 and CC1NP=’0’ in TIMx_CCER register to validate the polarity (and detect
low level only).

• Configure the timer in gated mode by writing SMS=101 in TIMx_SMCR register. Select
TI1 as the input source by writing TS=101 in TIMx_SMCR register.

• Enable the counter by writing CEN=1 in the TIMx_CR1 register (in gated mode, the
counter doesn’t start if CEN=0, whatever is the trigger input level).

The counter starts counting on the internal clock as long as TI1 is low and stops as soon as
TI1 becomes high. The TIF flag in the TIMx_SR register is set both when the counter starts
or stops.

The delay between the rising edge on TI1 and the actual stop of the counter is due to the
resynchronization circuit on TI1 input.

Figure 94. Control circuit in gated mode

RM0401 Rev 3 311/771

RM0401 Advanced-control timers (TIM1)

339

Slave mode: Trigger mode

The counter can start in response to an event on a selected input.

In the following example, the upcounter starts in response to a rising edge on TI2 input:

• Configure the channel 2 to detect rising edges on TI2. Configure the input filter duration
(in this example, we do not need any filter, so we keep IC2F=0000). The capture
prescaler is not used for triggering, so it does not need to be configured. The CC2S bits
are configured to select the input capture source only, CC2S=01 in TIMx_CCMR1
register. Write CC2P=1 and CC2NP=0 in TIMx_CCER register to validate the polarity
(and detect low level only).

• Configure the timer in trigger mode by writing SMS=110 in TIMx_SMCR register. Select
TI2 as the input source by writing TS=110 in TIMx_SMCR register.

When a rising edge occurs on TI2, the counter starts counting on the internal clock and the
TIF flag is set.

The delay between the rising edge on TI2 and the actual start of the counter is due to the
resynchronization circuit on TI2 input.

Figure 95. Control circuit in trigger mode

Slave mode: external clock mode 2 + trigger mode

The external clock mode 2 can be used in addition to another slave mode (except external
clock mode 1 and encoder mode). In this case, the ETR signal is used as external clock
input, and another input can be selected as trigger input (in reset mode, gated mode or
trigger mode). It is recommended not to select ETR as TRGI through the TS bits of
TIMx_SMCR register.

In the following example, the upcounter is incremented at each rising edge of the ETR
signal as soon as a rising edge of TI1 occurs:

1. Configure the external trigger input circuit by programming the TIMx_SMCR register as
follows:

– ETF = 0000: no filter

– ETPS = 00: prescaler disabled

– ETP = 0: detection of rising edges on ETR and ECE=1 to enable the external clock
mode 2.

Advanced-control timers (TIM1) RM0401

312/771 RM0401 Rev 3

2. Configure the channel 1 as follows, to detect rising edges on TI:

– IC1F=0000: no filter.

– The capture prescaler is not used for triggering and does not need to be
configured.

– CC1S=01 in TIMx_CCMR1 register to select only the input capture source

– CC1P=0 and CC1NP=’0’ in TIMx_CCER register to validate the polarity (and
detect rising edge only).

3. Configure the timer in trigger mode by writing SMS=110 in TIMx_SMCR register. Select
TI1 as the input source by writing TS=101 in TIMx_SMCR register.

A rising edge on TI1 enables the counter and sets the TIF flag. The counter then counts on
ETR rising edges.

The delay between the rising edge of the ETR signal and the actual reset of the counter is
due to the resynchronization circuit on ETRP input.

Figure 96. Control circuit in external clock mode 2 + trigger mode

14.3.20 Debug mode

When the microcontroller enters debug mode (Cortex®-M4 with FPU core halted), the TIMx
counter either continues to work normally or stops, depending on DBG_TIMx_STOP
configuration bit in DBGMCU module. For more details, refer to Section 26.16.2: Debug
support for timers, watchdog, and I2C.

RM0401 Rev 3 313/771

RM0401 Advanced-control timers (TIM1)

339

14.4 TIM1 registers

Refer to Section 1.2: List of abbreviations for registers for a list of abbreviations used in
register descriptions.

The peripheral registers must be written by half-words (16 bits) or words (32 bits). Read
accesses can be done by bytes (8 bits), half-word (16 bits) or words (32 bits).

14.4.1 TIM1 control register 1 (TIMx_CR1)

Address offset: 0x00

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. CKD[1:0] ARPE CMS[1:0] DIR OPM URS UDIS CEN

rw rw rw rw rw rw rw rw rw rw

Bits 15:10 Reserved, must be kept at reset value.

Bits 9:8 CKD[1:0]: Clock division

This bit-field indicates the division ratio between the timer clock (CK_INT) frequency and the
dead-time and sampling clock (tDTS)used by the dead-time generators and the digital filters

(ETR, TIx),

00: tDTS=tCK_INT

01: tDTS=2*tCK_INT

10: tDTS=4*tCK_INT

11: Reserved, do not program this value

Bit 7 ARPE: Auto-reload preload enable

0: TIMx_ARR register is not buffered
1: TIMx_ARR register is buffered

Bits 6:5 CMS[1:0]: Center-aligned mode selection

00: Edge-aligned mode. The counter counts up or down depending on the direction bit
(DIR).
01: Center-aligned mode 1. The counter counts up and down alternatively. Output compare
interrupt flags of channels configured in output (CCxS=00 in TIMx_CCMRx register) are set
only when the counter is counting down.
10: Center-aligned mode 2. The counter counts up and down alternatively. Output compare
interrupt flags of channels configured in output (CCxS=00 in TIMx_CCMRx register) are set
only when the counter is counting up.
11: Center-aligned mode 3. The counter counts up and down alternatively. Output compare
interrupt flags of channels configured in output (CCxS=00 in TIMx_CCMRx register) are set
both when the counter is counting up or down.

Note: It is not allowed to switch from edge-aligned mode to center-aligned mode as long as
the counter is enabled (CEN=1)

Bit 4 DIR: Direction

0: Counter used as upcounter
1: Counter used as downcounter

Note: This bit is read only when the timer is configured in Center-aligned mode or Encoder
mode.

Advanced-control timers (TIM1) RM0401

314/771 RM0401 Rev 3

14.4.2 TIM1 control register 2 (TIMx_CR2)

Address offset: 0x04

Reset value: 0x0000

Bit 3 OPM: One pulse mode

0: Counter is not stopped at update event
1: Counter stops counting at the next update event (clearing the bit CEN)

Bit 2 URS: Update request source

This bit is set and cleared by software to select the UEV event sources.

0: Any of the following events generate an update interrupt or DMA request if enabled.
These events can be:

– Counter overflow/underflow

– Setting the UG bit

– Update generation through the slave mode controller

1: Only counter overflow/underflow generates an update interrupt or DMA request if
enabled.

Bit 1 UDIS: Update disable

This bit is set and cleared by software to enable/disable UEV event generation.

0: UEV enabled. The Update (UEV) event is generated by one of the following events:

– Counter overflow/underflow

– Setting the UG bit

– Update generation through the slave mode controller

Buffered registers are then loaded with their preload values.

1: UEV disabled. The Update event is not generated, shadow registers keep their value
(ARR, PSC, CCRx). However the counter and the prescaler are reinitialized if the UG bit is
set or if a hardware reset is received from the slave mode controller.

Bit 0 CEN: Counter enable

0: Counter disabled
1: Counter enabled

Note: External clock, gated mode and encoder mode can work only if the CEN bit has been
previously set by software. However trigger mode can set the CEN bit automatically by
hardware.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. OIS4 OIS3N OIS3 OIS2N OIS2 OIS1N OIS1 TI1S MMS[2:0] CCDS CCUS Res. CCPC

rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 15 Reserved, must be kept at reset value.

Bit 14 OIS4: Output Idle state 4 (OC4 output)

refer to OIS1 bit

Bit 13 OIS3N: Output Idle state 3 (OC3N output)

refer to OIS1N bit

Bit 12 OIS3: Output Idle state 3 (OC3 output)

refer to OIS1 bit

RM0401 Rev 3 315/771

RM0401 Advanced-control timers (TIM1)

339

Bit 11 OIS2N: Output Idle state 2 (OC2N output)

refer to OIS1N bit

Bit 10 OIS2: Output Idle state 2 (OC2 output)

refer to OIS1 bit

Bit 9 OIS1N: Output Idle state 1 (OC1N output)

0: OC1N=0 after a dead-time when MOE=0
1: OC1N=1 after a dead-time when MOE=0

Note: This bit can not be modified as long as LOCK level 1, 2 or 3 has been programmed
(LOCK bits in TIMx_BDTR register).

Bit 8 OIS1: Output Idle state 1 (OC1 output)

0: OC1=0 (after a dead-time if OC1N is implemented) when MOE=0
1: OC1=1 (after a dead-time if OC1N is implemented) when MOE=0

Note: This bit can not be modified as long as LOCK level 1, 2 or 3 has been programmed
(LOCK bits in TIMx_BDTR register).

Bit 7 TI1S: TI1 selection

0: The TIMx_CH1 pin is connected to TI1 input
1: The TIMx_CH1, CH2 and CH3 pins are connected to the TI1 input (XOR combination)

Bits 6:4 MMS[2:0]: Master mode selection

These bits allow to select the information to be sent in master mode to slave timers for
synchronization (TRGO). The combination is as follows:
000: Reset - the UG bit from the TIMx_EGR register is used as trigger output (TRGO). If the
reset is generated by the trigger input (slave mode controller configured in reset mode) then
the signal on TRGO is delayed compared to the actual reset.
001: Enable - the Counter Enable signal CNT_EN is used as trigger output (TRGO). It is
useful to start several timers at the same time or to control a window in which a slave timer is
enable. The Counter Enable signal is generated by a logic OR between CEN control bit and
the trigger input when configured in gated mode. When the Counter Enable signal is
controlled by the trigger input, there is a delay on TRGO, except if the master/slave mode is
selected (see the MSM bit description in TIMx_SMCR register).
010: Update - The update event is selected as trigger output (TRGO). For instance a master
timer can then be used as a prescaler for a slave timer.
011: Compare Pulse - The trigger output send a positive pulse when the CC1IF flag is to be
set (even if it was already high), as soon as a capture or a compare match occurred.
(TRGO).
100: Compare - OC1REF signal is used as trigger output (TRGO)
101: Compare - OC2REF signal is used as trigger output (TRGO)
110: Compare - OC3REF signal is used as trigger output (TRGO)
111: Compare - OC4REF signal is used as trigger output (TRGO)

Bit 3 CCDS: Capture/compare DMA selection

0: CCx DMA request sent when CCx event occurs
1: CCx DMA requests sent when update event occurs

Bit 2 CCUS: Capture/compare control update selection

0: When capture/compare control bits are preloaded (CCPC=1), they are updated by setting
the COMG bit only
1: When capture/compare control bits are preloaded (CCPC=1), they are updated by setting
the COMG bit or when an rising edge occurs on TRGI

Note: This bit acts only on channels that have a complementary output.

Advanced-control timers (TIM1) RM0401

316/771 RM0401 Rev 3

14.4.3 TIM1 slave mode control register (TIMx_SMCR)

Address offset: 0x08

Reset value: 0x0000

Bit 1 Reserved, must be kept at reset value.

Bit 0 CCPC: Capture/compare preloaded control

0: CCxE, CCxNE and OCxM bits are not preloaded

1: CCxE, CCxNE and OCxM bits are preloaded, after having been written, they are updated
only when a commutation event (COM) occurs (COMG bit set or rising edge detected on
TRGI, depending on the CCUS bit).

Note: This bit acts only on channels that have a complementary output.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ETP ECE ETPS[1:0] ETF[3:0] MSM TS[2:0] Res. SMS[2:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 15 ETP: External trigger polarity

This bit selects whether ETR or ETR is used for trigger operations
0: ETR is non-inverted, active at high level or rising edge.
1: ETR is inverted, active at low level or falling edge.

Bit 14 ECE: External clock enable

This bit enables External clock mode 2.
0: External clock mode 2 disabled
1: External clock mode 2 enabled. The counter is clocked by any active edge on the ETRF
signal.

Note: 1: Setting the ECE bit has the same effect as selecting external clock mode 1 with
TRGI connected to ETRF (SMS=111 and TS=111).

2: It is possible to simultaneously use external clock mode 2 with the following slave
modes: reset mode, gated mode and trigger mode. Nevertheless, TRGI must not be
connected to ETRF in this case (TS bits must not be 111).
3: If external clock mode 1 and external clock mode 2 are enabled at the same time,
the external clock input is ETRF.

Bits 13:12 ETPS[1:0]: External trigger prescaler

External trigger signal ETRP frequency must be at most 1/4 of TIMxCLK frequency. A
prescaler can be enabled to reduce ETRP frequency. It is useful when inputting fast external
clocks.

00: Prescaler OFF
01: ETRP frequency divided by 2
10: ETRP frequency divided by 4
11: ETRP frequency divided by 8

RM0401 Rev 3 317/771

RM0401 Advanced-control timers (TIM1)

339

Bits 11:8 ETF[3:0]: External trigger filter

This bit-field then defines the frequency used to sample ETRP signal and the length of the
digital filter applied to ETRP. The digital filter is made of an event counter in which N
consecutive events are needed to validate a transition on the output:

0000: No filter, sampling is done at fDTS

0001: fSAMPLING=fCK_INT, N=2

0010: fSAMPLING=fCK_INT, N=4

0011: fSAMPLING=fCK_INT, N=8

0100: fSAMPLING=fDTS/2, N=6

0101: fSAMPLING=fDTS/2, N=8

0110: fSAMPLING=fDTS/4, N=6

0111: fSAMPLING=fDTS/4, N=8

1000: fSAMPLING=fDTS/8, N=6

1001: fSAMPLING=fDTS/8, N=8

1010: fSAMPLING=fDTS/16, N=5

1011: fSAMPLING=fDTS/16, N=6

1100: fSAMPLING=fDTS/16, N=8

1101: fSAMPLING=fDTS/32, N=5

1110: fSAMPLING=fDTS/32, N=6

1111: fSAMPLING=fDTS/32, N=8

Bit 7 MSM: Master/slave mode

0: No action
1: The effect of an event on the trigger input (TRGI) is delayed to allow a perfect
synchronization between the current timer and its slaves (through TRGO). It is useful if we
want to synchronize several timers on a single external event.

Bits 6:4 TS[2:0]: Trigger selection

This bit-field selects the trigger input to be used to synchronize the counter.
000: Internal Trigger 0 (ITR0)
001: Internal Trigger 1 (ITR1)
010: Internal Trigger 2 (ITR2)
011: Internal Trigger 3 (ITR3)
100: TI1 Edge Detector (TI1F_ED)
101: Filtered Timer Input 1 (TI1FP1)
110: Filtered Timer Input 2 (TI2FP2)
111: External Trigger input (ETRF)

See Table 62: TIMx internal trigger connection for more details on ITRx meaning for each
Timer.

Note: These bits must be changed only when they are not used (e.g. when SMS=000) to
avoid wrong edge detections at the transition.

Bit 3 Reserved, must be kept at reset value.

Advanced-control timers (TIM1) RM0401

318/771 RM0401 Rev 3

14.4.4 TIM1 DMA/interrupt enable register (TIMx_DIER)

Address offset: 0x0C

Reset value: 0x0000

Bits 2:0 SMS: Slave mode selection

When external signals are selected the active edge of the trigger signal (TRGI) is linked to
the polarity selected on the external input (see Input Control register and Control Register
description.
000: Slave mode disabled - if CEN = ‘1’ then the prescaler is clocked directly by the internal
clock.
001: Encoder mode 1 - Counter counts up/down on TI2FP2 edge depending on TI1FP1
level.
010: Encoder mode 2 - Counter counts up/down on TI1FP1 edge depending on TI2FP2
level.
011: Encoder mode 3 - Counter counts up/down on both TI1FP1 and TI2FP2 edges
depending on the level of the other input.
100: Reset Mode - Rising edge of the selected trigger input (TRGI) reinitializes the counter
and generates an update of the registers.
101: Gated Mode - The counter clock is enabled when the trigger input (TRGI) is high. The
counter stops (but is not reset) as soon as the trigger becomes low. Both start and stop of
the counter are controlled.
110: Trigger Mode - The counter starts at a rising edge of the trigger TRGI (but it is not
reset). Only the start of the counter is controlled.
111: External Clock Mode 1 - Rising edges of the selected trigger (TRGI) clock the counter.

Note: The gated mode must not be used if TI1F_ED is selected as the trigger input
(TS=’100’). Indeed, TI1F_ED outputs 1 pulse for each transition on TI1F, whereas the
gated mode checks the level of the trigger signal.

Table 58. TIMx Internal trigger connection

Slave TIM ITR0 (TS = 000) ITR1 (TS = 001) ITR2 (TS = 010) ITR3 (TS = 011)

TIM1 TIM5 Reserved Reserved Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. TDE COMDE CC4DE CC3DE CC2DE CC1DE UDE BIE TIE COMIE CC4IE CC3IE CC2IE CC1IE UIE

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 15 Reserved, must be kept at reset value.

Bit 14 TDE: Trigger DMA request enable

0: Trigger DMA request disabled
1: Trigger DMA request enabled

Bit 13 COMDE: COM DMA request enable

0: COM DMA request disabled
1: COM DMA request enabled

Bit 12 CC4DE: Capture/Compare 4 DMA request enable

0: CC4 DMA request disabled
1: CC4 DMA request enabled

RM0401 Rev 3 319/771

RM0401 Advanced-control timers (TIM1)

339

Bit 11 CC3DE: Capture/Compare 3 DMA request enable

0: CC3 DMA request disabled
1: CC3 DMA request enabled

Bit 10 CC2DE: Capture/Compare 2 DMA request enable

0: CC2 DMA request disabled
1: CC2 DMA request enabled

Bit 9 CC1DE: Capture/Compare 1 DMA request enable

0: CC1 DMA request disabled
1: CC1 DMA request enabled

Bit 8 UDE: Update DMA request enable

0: Update DMA request disabled
1: Update DMA request enabled

Bit 7 BIE: Break interrupt enable

0: Break interrupt disabled
1: Break interrupt enabled

Bit 6 TIE: Trigger interrupt enable

0: Trigger interrupt disabled
1: Trigger interrupt enabled

Bit 5 COMIE: COM interrupt enable

0: COM interrupt disabled
1: COM interrupt enabled

Bit 4 CC4IE: Capture/Compare 4 interrupt enable

0: CC4 interrupt disabled
1: CC4 interrupt enabled

Bit 3 CC3IE: Capture/Compare 3 interrupt enable

0: CC3 interrupt disabled
1: CC3 interrupt enabled

Bit 2 CC2IE: Capture/Compare 2 interrupt enable

0: CC2 interrupt disabled
1: CC2 interrupt enabled

Bit 1 CC1IE: Capture/Compare 1 interrupt enable

0: CC1 interrupt disabled
1: CC1 interrupt enabled

Bit 0 UIE: Update interrupt enable

0: Update interrupt disabled
1: Update interrupt enabled

Advanced-control timers (TIM1) RM0401

320/771 RM0401 Rev 3

14.4.5 TIM1 status register (TIMx_SR)

Address offset: 0x10

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. CC4OF CC3OF CC2OF CC1OF Res. BIF TIF COMIF CC4IF CC3IF CC2IF CC1IF UIF

rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0

Bits 15:13 Reserved, must be kept at reset value.

Bit 12 CC4OF: Capture/Compare 4 overcapture flag

refer to CC1OF description

Bit 11 CC3OF: Capture/Compare 3 overcapture flag

refer to CC1OF description

Bit 10 CC2OF: Capture/Compare 2 overcapture flag

refer to CC1OF description

Bit 9 CC1OF: Capture/Compare 1 overcapture flag

This flag is set by hardware only when the corresponding channel is configured in input
capture mode. It is cleared by software by writing it to ‘0’.
0: No overcapture has been detected.
1: The counter value has been captured in TIMx_CCR1 register while CC1IF flag was
already set

Bit 8 Reserved, must be kept at reset value.

Bit 7 BIF: Break interrupt flag

This flag is set by hardware as soon as the break input goes active. It can be cleared by
software if the break input is not active.
0: No break event occurred.
1: An active level has been detected on the break input.

Bit 6 TIF: Trigger interrupt flag

This flag is set by hardware on trigger event (active edge detected on TRGI input when the
slave mode controller is enabled in all modes but gated mode. It is set when the counter
starts or stops when gated mode is selected. It is cleared by software.
0: No trigger event occurred.
1: Trigger interrupt pending.

Bit 5 COMIF: COM interrupt flag

This flag is set by hardware on COM event (when Capture/compare Control bits - CCxE,
CCxNE, OCxM - have been updated). It is cleared by software.
0: No COM event occurred.
1: COM interrupt pending.

Bit 4 CC4IF: Capture/Compare 4 interrupt flag

refer to CC1IF description

Bit 3 CC3IF: Capture/Compare 3 interrupt flag

refer to CC1IF description

RM0401 Rev 3 321/771

RM0401 Advanced-control timers (TIM1)

339

14.4.6 TIM1 event generation register (TIMx_EGR)

Address offset: 0x14

Reset value: 0x0000

Bit 2 CC2IF: Capture/Compare 2 interrupt flag

refer to CC1IF description

Bit 1 CC1IF: Capture/Compare 1 interrupt flag

If channel CC1 is configured as output:
This flag is set by hardware when the counter matches the compare value, with some
exception in center-aligned mode (refer to the CMS bits in the TIMx_CR1 register
description). It is cleared by software.
0: No match.
1: The content of the counter TIMx_CNT matches the content of the TIMx_CCR1 register.
When the contents of TIMx_CCR1 are greater than the contents of TIMx_ARR, the CC1IF
bit goes high on the counter overflow (in upcounting and up/down-counting modes) or
underflow (in downcounting mode)

If channel CC1 is configured as input:
This bit is set by hardware on a capture. It is cleared by software or by reading the
TIMx_CCR1 register.
0: No input capture occurred
1: The counter value has been captured in TIMx_CCR1 register (An edge has been
detected on IC1 which matches the selected polarity)

Bit 0 UIF: Update interrupt flag

This bit is set by hardware on an update event. It is cleared by software.
0: No update occurred.
1: Update interrupt pending. This bit is set by hardware when the registers are updated:

–At overflow or underflow regarding the repetition counter value (update if repetition
counter = 0) and if the UDIS=0 in the TIMx_CR1 register.

–When CNT is reinitialized by software using the UG bit in TIMx_EGR register, if URS=0
and UDIS=0 in the TIMx_CR1 register.

–When CNT is reinitialized by a trigger event (refer to Section 14.4.3: TIM1 slave mode
control register (TIMx_SMCR)), if URS=0 and UDIS=0 in the TIMx_CR1 register.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. BG TG COMG CC4G CC3G CC2G CC1G UG

w w w w w w w w

Bits 15:8 Reserved, must be kept at reset value.

Bit 7 BG: Break generation

This bit is set by software in order to generate an event, it is automatically cleared by
hardware.
0: No action
1: A break event is generated. MOE bit is cleared and BIF flag is set. Related interrupt or
DMA transfer can occur if enabled.

Bit 6 TG: Trigger generation

This bit is set by software in order to generate an event, it is automatically cleared by
hardware.
0: No action
1: The TIF flag is set in TIMx_SR register. Related interrupt or DMA transfer can occur if
enabled.

Advanced-control timers (TIM1) RM0401

322/771 RM0401 Rev 3

Bit 5 COMG: Capture/Compare control update generation

This bit can be set by software, it is automatically cleared by hardware
0: No action
1: When CCPC bit is set, it allows to update CCxE, CCxNE and OCxM bits

Note: This bit acts only on channels having a complementary output.

Bit 4 CC4G: Capture/Compare 4 generation

refer to CC1G description

Bit 3 CC3G: Capture/Compare 3 generation

refer to CC1G description

Bit 2 CC2G: Capture/Compare 2 generation

refer to CC1G description

Bit 1 CC1G: Capture/Compare 1 generation

This bit is set by software in order to generate an event, it is automatically cleared by
hardware.
0: No action
1: A capture/compare event is generated on channel 1:
If channel CC1 is configured as output:
CC1IF flag is set, Corresponding interrupt or DMA request is sent if enabled.
If channel CC1 is configured as input:
The current value of the counter is captured in TIMx_CCR1 register. The CC1IF flag is set,
the corresponding interrupt or DMA request is sent if enabled. The CC1OF flag is set if the
CC1IF flag was already high.

Bit 0 UG: Update generation

This bit can be set by software, it is automatically cleared by hardware.
0: No action
1: Reinitialize the counter and generates an update of the registers. Note that the prescaler
counter is cleared too (anyway the prescaler ratio is not affected). The counter is cleared if
the center-aligned mode is selected or if DIR=0 (upcounting), else it takes the auto-reload
value (TIMx_ARR) if DIR=1 (downcounting).

RM0401 Rev 3 323/771

RM0401 Advanced-control timers (TIM1)

339

14.4.7 TIM1 capture/compare mode register 1 (TIMx_CCMR1)

Address offset: 0x18

Reset value: 0x0000

The channels can be used in input (capture mode) or in output (compare mode). The
direction of a channel is defined by configuring the corresponding CCxS bits. All the other
bits of this register have a different function in input and in output mode. For a given bit,
OCxx describes its function when the channel is configured in output, ICxx describes its
function when the channel is configured in input. So one must take care that the same bit
can have a different meaning for the input stage and for the output stage.

Output compare mode:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OC2
CE

OC2M[2:0]
OC2
PE

OC2
FE CC2S[1:0]

OC1
CE

OC1M[2:0]
OC1
PE

OC1
FE CC1S[1:0]

IC2F[3:0] IC2PSC[1:0] IC1F[3:0] IC1PSC[1:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 15 OC2CE: Output Compare 2 clear enable

Bits 14:12 OC2M[2:0]: Output Compare 2 mode

Bit 11 OC2PE: Output Compare 2 preload enable

Bit 10 OC2FE: Output Compare 2 fast enable

Bits 9:8 CC2S[1:0]: Capture/Compare 2 selection

This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC2 channel is configured as output
01: CC2 channel is configured as input, IC2 is mapped on TI2
10: CC2 channel is configured as input, IC2 is mapped on TI1
11: CC2 channel is configured as input, IC2 is mapped on TRC. This mode is working only if
an internal trigger input is selected through the TS bit (TIMx_SMCR register)

Note: CC2S bits are writable only when the channel is OFF (CC2E = ‘0’ in TIMx_CCER).

Bit 7 OC1CE: Output Compare 1 clear enable

OC1CE: Output Compare 1 Clear Enable
0: OC1Ref is not affected by the ETRF Input
1: OC1Ref is cleared as soon as a High level is detected on ETRF input

Advanced-control timers (TIM1) RM0401

324/771 RM0401 Rev 3

Bits 6:4 OC1M: Output Compare 1 mode

These bits define the behavior of the output reference signal OC1REF from which OC1 and
OC1N are derived. OC1REF is active high whereas OC1 and OC1N active level depends on
CC1P and CC1NP bits.
000: Frozen - The comparison between the output compare register TIMx_CCR1 and the
counter TIMx_CNT has no effect on the outputs.(this mode is used to generate a timing
base).
001: Set channel 1 to active level on match. OC1REF signal is forced high when the counter
TIMx_CNT matches the capture/compare register 1 (TIMx_CCR1).
010: Set channel 1 to inactive level on match. OC1REF signal is forced low when the counter
TIMx_CNT matches the capture/compare register 1 (TIMx_CCR1).
011: Toggle - OC1REF toggles when TIMx_CNT=TIMx_CCR1.
100: Force inactive level - OC1REF is forced low.
101: Force active level - OC1REF is forced high.
110: PWM mode 1 - In upcounting, channel 1 is active as long as TIMx_CNT<TIMx_CCR1
else inactive. In downcounting, channel 1 is inactive (OC1REF=‘0’) as long as
TIMx_CNT>TIMx_CCR1 else active (OC1REF=’1’).
111: PWM mode 2 - In upcounting, channel 1 is inactive as long as TIMx_CNT<TIMx_CCR1
else active. In downcounting, channel 1 is active as long as TIMx_CNT>TIMx_CCR1 else
inactive.

Note: 1: These bits can not be modified as long as LOCK level 3 has been programmed
(LOCK bits in TIMx_BDTR register) and CC1S=’00’ (the channel is configured in
output).

2: In PWM mode 1 or 2, the OCREF level changes only when the result of the
comparison changes or when the output compare mode switches from “frozen” mode to
“PWM” mode.
3: On channels having a complementary output, this bit field is preloaded. If the CCPC
bit is set in the TIMx_CR2 register then the OC1M active bits take the new value from
the preloaded bits only when a COM event is generated.

Bit 3 OC1PE: Output Compare 1 preload enable

0: Preload register on TIMx_CCR1 disabled. TIMx_CCR1 can be written at anytime, the new
value is taken in account immediately.
1: Preload register on TIMx_CCR1 enabled. Read/Write operations access the preload
register. TIMx_CCR1 preload value is loaded in the active register at each update event.

Note: 1: These bits can not be modified as long as LOCK level 3 has been programmed
(LOCK bits in TIMx_BDTR register) and CC1S=’00’ (the channel is configured in
output).

2: The PWM mode can be used without validating the preload register only in one pulse
mode (OPM bit set in TIMx_CR1 register). Else the behavior is not guaranteed.

Bit 2 OC1FE: Output Compare 1 fast enable

This bit is used to accelerate the effect of an event on the trigger in input on the CC output.
0: CC1 behaves normally depending on counter and CCR1 values even when the trigger is
ON. The minimum delay to activate CC1 output when an edge occurs on the trigger input is 5
clock cycles.
1: An active edge on the trigger input acts like a compare match on CC1 output. Then, OC is
set to the compare level independently from the result of the comparison. Delay to sample
the trigger input and to activate CC1 output is reduced to 3 clock cycles. OCFE acts only if
the channel is configured in PWM1 or PWM2 mode.

RM0401 Rev 3 325/771

RM0401 Advanced-control timers (TIM1)

339

Input capture mode

Bits 1:0 CC1S: Capture/Compare 1 selection

This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC1 channel is configured as output
01: CC1 channel is configured as input, IC1 is mapped on TI1
10: CC1 channel is configured as input, IC1 is mapped on TI2
11: CC1 channel is configured as input, IC1 is mapped on TRC. This mode is working only if
an internal trigger input is selected through TS bit (TIMx_SMCR register)

Note: CC1S bits are writable only when the channel is OFF (CC1E = ‘0’ in TIMx_CCER).

Bits 15:12 IC2F: Input capture 2 filter

Bits 11:10 IC2PSC[1:0]: Input capture 2 prescaler

Bits 9:8 CC2S: Capture/Compare 2 selection

This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC2 channel is configured as output
01: CC2 channel is configured as input, IC2 is mapped on TI2
10: CC2 channel is configured as input, IC2 is mapped on TI1
11: CC2 channel is configured as input, IC2 is mapped on TRC. This mode is working only if an
internal trigger input is selected through TS bit (TIMx_SMCR register)

Note: CC2S bits are writable only when the channel is OFF (CC2E = ‘0’ in TIMx_CCER).

Bits 7:4 IC1F[3:0]: Input capture 1 filter

This bit-field defines the frequency used to sample TI1 input and the length of the digital filter applied
to TI1. The digital filter is made of an event counter in which N consecutive events are needed to
validate a transition on the output:

0000: No filter, sampling is done at fDTS

0001: fSAMPLING=fCK_INT, N=2

0010: fSAMPLING=fCK_INT, N=4

0011: fSAMPLING=fCK_INT, N=8

0100: fSAMPLING=fDTS/2, N=6

0101: fSAMPLING=fDTS/2, N=8

0110: fSAMPLING=fDTS/4, N=6

0111: fSAMPLING=fDTS/4, N=8

1000: fSAMPLING=fDTS/8, N=6

1001: fSAMPLING=fDTS/8, N=8

1010: fSAMPLING=fDTS/16, N=5

1011: fSAMPLING=fDTS/16, N=6

1100: fSAMPLING=fDTS/16, N=8

1101: fSAMPLING=fDTS/32, N=5

1110: fSAMPLING=fDTS/32, N=6

1111: fSAMPLING=fDTS/32, N=8

Advanced-control timers (TIM1) RM0401

326/771 RM0401 Rev 3

14.4.8 TIM1 capture/compare mode register 2 (TIMx_CCMR2)

Address offset: 0x1C

Reset value: 0x0000

Refer to the above CCMR1 register description.

Output compare mode

Bits 3:2 IC1PSC: Input capture 1 prescaler

This bit-field defines the ratio of the prescaler acting on CC1 input (IC1).
The prescaler is reset as soon as CC1E=’0’ (TIMx_CCER register).
00: no prescaler, capture is done each time an edge is detected on the capture input
01: capture is done once every 2 events
10: capture is done once every 4 events
11: capture is done once every 8 events

Bits 1:0 CC1S: Capture/Compare 1 Selection

This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC1 channel is configured as output
01: CC1 channel is configured as input, IC1 is mapped on TI1
10: CC1 channel is configured as input, IC1 is mapped on TI2
11: CC1 channel is configured as input, IC1 is mapped on TRC. This mode is working only if an
internal trigger input is selected through TS bit (TIMx_SMCR register)

Note: CC1S bits are writable only when the channel is OFF (CC1E = ‘0’ in TIMx_CCER).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OC4
CE

OC4M[2:0]
OC4
PE

OC4
FE CC4S[1:0]

OC3
CE.

OC3M[2:0]
OC3
PE

OC3
FE CC3S[1:0]

IC4F[3:0] IC4PSC[1:0] IC3F[3:0] IC3PSC[1:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 15 OC4CE: Output compare 4 clear enable

Bits 14:12 OC4M: Output compare 4 mode

Bit 11 OC4PE: Output compare 4 preload enable

Bit 10 OC4FE: Output compare 4 fast enable

Bits 9:8 CC4S: Capture/Compare 4 selection

This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC4 channel is configured as output
01: CC4 channel is configured as input, IC4 is mapped on TI4
10: CC4 channel is configured as input, IC4 is mapped on TI3
11: CC4 channel is configured as input, IC4 is mapped on TRC. This mode is working only if
an internal trigger input is selected through TS bit (TIMx_SMCR register)

Note: CC4S bits are writable only when the channel is OFF (CC4E = ‘0’ in TIMx_CCER).

Bit 7 OC3CE: Output compare 3 clear enable

Bits 6:4 OC3M: Output compare 3 mode

RM0401 Rev 3 327/771

RM0401 Advanced-control timers (TIM1)

339

Input capture mode

14.4.9 TIM1 capture/compare enable register (TIMx_CCER)

Address offset: 0x20

Reset value: 0x0000

Bit 3 OC3PE: Output compare 3 preload enable

Bit 2 OC3FE: Output compare 3 fast enable

Bits 1:0 CC3S: Capture/Compare 3 selection

This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC3 channel is configured as output
01: CC3 channel is configured as input, IC3 is mapped on TI3
10: CC3 channel is configured as input, IC3 is mapped on TI4
11: CC3 channel is configured as input, IC3 is mapped on TRC. This mode is working only if
an internal trigger input is selected through TS bit (TIMx_SMCR register)

Note: CC3S bits are writable only when the channel is OFF (CC3E = ‘0’ in TIMx_CCER).

Bits 15:12 IC4F: Input capture 4 filter

Bits 11:10 IC4PSC: Input capture 4 prescaler

Bits 9:8 CC4S: Capture/Compare 4 selection

This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC4 channel is configured as output
01: CC4 channel is configured as input, IC4 is mapped on TI4
10: CC4 channel is configured as input, IC4 is mapped on TI3
11: CC4 channel is configured as input, IC4 is mapped on TRC. This mode is working only if
an internal trigger input is selected through TS bit (TIMx_SMCR register)

Note: CC4S bits are writable only when the channel is OFF (CC4E = ‘0’ in TIMx_CCER).

Bits 7:4 IC3F: Input capture 3 filter

Bits 3:2 IC3PSC: Input capture 3 prescaler

Bits 1:0 CC3S: Capture/compare 3 selection

This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC3 channel is configured as output
01: CC3 channel is configured as input, IC3 is mapped on TI3
10: CC3 channel is configured as input, IC3 is mapped on TI4
11: CC3 channel is configured as input, IC3 is mapped on TRC. This mode is working only if
an internal trigger input is selected through TS bit (TIMx_SMCR register)

Note: CC3S bits are writable only when the channel is OFF (CC3E = ‘0’ in TIMx_CCER).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. CC4P CC4E CC3NP CC3NE CC3P CC3E CC2NP CC2NE CC2P CC2E CC1NP CC1NE CC1P CC1E

rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:14 Reserved, must be kept at reset value.

Bit 13 CC4P: Capture/Compare 4 output polarity

refer to CC1P description

Advanced-control timers (TIM1) RM0401

328/771 RM0401 Rev 3

Bit 12 CC4E: Capture/Compare 4 output enable

refer to CC1E description

Bit 11 CC3NP: Capture/Compare 3 complementary output polarity

refer to CC1NP description

Bit 10 CC3NE: Capture/Compare 3 complementary output enable

refer to CC1NE description

Bit 9 CC3P: Capture/Compare 3 output polarity

refer to CC1P description

Bit 8 CC3E: Capture/Compare 3 output enable

refer to CC1E description

Bit 7 CC2NP: Capture/Compare 2 complementary output polarity

refer to CC1NP description

Bit 6 CC2NE: Capture/Compare 2 complementary output enable

refer to CC1NE description

Bit 5 CC2P: Capture/Compare 2 output polarity

refer to CC1P description

Bit 4 CC2E: Capture/Compare 2 output enable

refer to CC1E description

Bit 3 CC1NP: Capture/Compare 1 complementary output polarity

CC1 channel configured as output:
0: OC1N active high.
1: OC1N active low.
CC1 channel configured as input:
This bit is used in conjunction with CC1P to define the polarity of TI1FP1 and TI2FP1. Refer
to CC1P description.

Note: On channels having a complementary output, this bit is preloaded. If the CCPC bit is
set in the TIMx_CR2 register then the CC1NP active bit takes the new value from the
preloaded bit only when a Commutation event is generated.

Note: This bit is not writable as soon as LOCK level 2 or 3 has been programmed (LOCK bits
in TIMx_BDTR register) and CC1S=”00” (the channel is configured in output).

Bit 2 CC1NE: Capture/Compare 1 complementary output enable

0: Off - OC1N is not active. OC1N level is then function of MOE, OSSI, OSSR, OIS1, OIS1N
and CC1E bits.
1: On - OC1N signal is output on the corresponding output pin depending on MOE, OSSI,
OSSR, OIS1, OIS1N and CC1E bits.

Note: On channels having a complementary output, this bit is preloaded. If the CCPC bit is
set in the TIMx_CR2 register then the CC1NE active bit takes the new value from the
preloaded bit only when a Commutation event is generated.

RM0401 Rev 3 329/771

RM0401 Advanced-control timers (TIM1)

339

Bit 1 CC1P: Capture/Compare 1 output polarity

CC1 channel configured as output:
0: OC1 active high
1: OC1 active low
CC1 channel configured as input:
CC1NP/CC1P bits select the active polarity of TI1FP1 and TI2FP1 for trigger or capture
operations.
00: non-inverted/rising edge
The circuit is sensitive to TIxFP1 rising edge (capture or trigger operations in reset, external
clock or trigger mode), TIxFP1 is not inverted (trigger operation in gated mode or encoder
mode).
01: inverted/falling edge
The circuit is sensitive to TIxFP1 falling edge (capture or trigger operations in reset, external
clock or trigger mode), TIxFP1 is inverted (trigger operation in gated mode or encoder
mode).
10: reserved, do not use this configuration.
11: non-inverted/both edges
The circuit is sensitive to both TIxFP1 rising and falling edges (capture or trigger operations
in reset, external clock or trigger mode), TIxFP1 is not inverted (trigger operation in gated
mode). This configuration must not be used in encoder mode.

Note: On channels having a complementary output, this bit is preloaded. If the CCPC bit is
set in the TIMx_CR2 register then the CC1P active bit takes the new value from the
preloaded bit only when a Commutation event is generated.

Note: This bit is not writable as soon as LOCK level 2 or 3 has been programmed (LOCK bits
in TIMx_BDTR register).

Bit 0 CC1E: Capture/Compare 1 output enable

CC1 channel configured as output:
0: Off - OC1 is not active. OC1 level is then function of MOE, OSSI, OSSR, OIS1, OIS1N
and CC1NE bits.
1: On - OC1 signal is output on the corresponding output pin depending on MOE, OSSI,
OSSR, OIS1, OIS1N and CC1NE bits.

CC1 channel configured as input:
This bit determines if a capture of the counter value can actually be done into the input
capture/compare register 1 (TIMx_CCR1) or not.
0: Capture disabled.
1: Capture enabled.

Note: On channels having a complementary output, this bit is preloaded. If the CCPC bit is
set in the TIMx_CR2 register then the CC1E active bit takes the new value from the
preloaded bit only when a Commutation event is generated.

Advanced-control timers (TIM1) RM0401

330/771 RM0401 Rev 3

Table 59. Output control bits for complementary OCx and OCxN channels
 with break feature

Control bits Output states(1)

MOE
bit

OSSI
bit

OSSR
bit

CCxE
bit

CCxNE
bit

OCx output state OCxN output state

1 X

0

0

0
Output Disabled (not driven by
the timer)
OCx=0, OCx_EN=0

Output Disabled (not driven by the timer)
OCxN=0, OCxN_EN=0

1
Output Disabled (not driven by
the timer)
OCx=0, OCx_EN=0

OCxREF + Polarity OCxN=OCxREF xor
CCxNP, OCxN_EN=1

1

0
OCxREF + Polarity
OCx=OCxREF xor CCxP,
OCx_EN=1

Output Disabled (not driven by the timer)
OCxN=0, OCxN_EN=0

1
OCREF + Polarity + dead-time
OCx_EN=1

Complementary to OCREF (not
OCREF)
+ Polarity + dead-time
OCxN_EN=1

1

0

0
Output Disabled (not driven by
the timer)
OCx=CCxP, OCx_EN=0

Output Disabled (not driven by the timer)
OCxN=CCxNP, OCxN_EN=0

1
Off-State (output enabled with
inactive state)
OCx=CCxP, OCx_EN=1

OCxREF + Polarity
OCxN=OCxREF xor CCxNP,
OCxN_EN=1

1

0
OCxREF + Polarity
OCx=OCxREF xor CCxP,
OCx_EN=1

Off-State (output enabled with inactive
state)
OCxN=CCxNP, OCxN_EN=1

1
OCREF + Polarity + dead-time
OCx_EN=1

Complementary to OCREF (not
OCREF) + Polarity + dead-time
OCxN_EN=1

0

0

X

0
0

Output Disabled (not driven by
the timer)

OCx=CCxP, OCx_EN=0

Output Disabled (not driven by the timer)

OCxN=CCxNP, OCxN_EN=0

1 Output Disabled (not driven by the timer)

Asynchronously: OCx=CCxP, OCx_EN=0, OCxN=CCxNP, OCxN_EN=0

Then if the clock is present: OCx=OISx and OCxN=OISxN after a dead-
time, assuming that OISx and OISxN do not correspond to OCX and
OCxN both in active state.

1

0

1

1

0
0

Output Disabled (not driven by
the timer)

OCx=CCxP, OCx_EN=0

Output Disabled (not driven by the timer)

OCxN=CCxNP, OCxN_EN=0

1 Off-State (output enabled with inactive state)

Asynchronously: OCx=CCxP, OCx_EN=1, OCxN=CCxNP, OCxN_EN=1

Then if the clock is present: OCx=OISx and OCxN=OISxN after a dead-
time, assuming that OISx and OISxN do not correspond to OCX and
OCxN both in active state

1

0

1

1. When both outputs of a channel are not used (CCxE = CCxNE = 0), the OISx, OISxN, CCxP and CCxNP bits must be kept
cleared.

RM0401 Rev 3 331/771

RM0401 Advanced-control timers (TIM1)

339

Note: The state of the external I/O pins connected to the complementary OCx and OCxN channels
depends on the OCx and OCxN channel state and the GPIO registers.

14.4.10 TIM1 counter (TIMx_CNT)

Address offset: 0x24

Reset value: 0x0000

14.4.11 TIM1 prescaler (TIMx_PSC)

Address offset: 0x28

Reset value: 0x0000

14.4.12 TIM1 auto-reload register (TIMx_ARR)

Address offset: 0x2C

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CNT[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 CNT[15:0]: Counter value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PSC[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 PSC[15:0]: Prescaler value

The counter clock frequency (CK_CNT) is equal to fCK_PSC / (PSC[15:0] + 1).
PSC contains the value to be loaded in the active prescaler register at each update event
(including when the counter is cleared through UG bit of TIMx_EGR register or through
trigger controller when configured in “reset mode”).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ARR[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 ARR[15:0]: Auto-reload value

ARR is the value to be loaded in the actual auto-reload register.
Refer to Section 14.3.1: Time-base unit for more details about ARR update and behavior.
The counter is blocked while the auto-reload value is null.

Advanced-control timers (TIM1) RM0401

332/771 RM0401 Rev 3

14.4.13 TIM1 repetition counter register (TIMx_RCR)

Address offset: 0x30

Reset value: 0x0000

14.4.14 TIM1 capture/compare register 1 (TIMx_CCR1)

Address offset: 0x34

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. REP[7:0]

rw rw rw rw rw rw rw rw

Bits 15:8 Reserved, must be kept at reset value.

Bits 7:0 REP[7:0]: Repetition counter value

These bits allow the user to set-up the update rate of the compare registers (i.e. periodic
transfers from preload to active registers) when preload registers are enable, as well as the
update interrupt generation rate, if this interrupt is enable.
Each time the REP_CNT related downcounter reaches zero, an update event is generated
and it restarts counting from REP value. As REP_CNT is reloaded with REP value only at
the repetition update event U_RC, any write to the TIMx_RCR register is not taken in
account until the next repetition update event.
It means in PWM mode (REP+1) corresponds to:

– the number of PWM periods in edge-aligned mode

– the number of half PWM period in center-aligned mode.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CCR1[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 CCR1[15:0]: Capture/Compare 1 value

If channel CC1 is configured as output:
CCR1 is the value to be loaded in the actual capture/compare 1 register (preload value).
It is loaded permanently if the preload feature is not selected in the TIMx_CCMR1 register
(bit OC1PE). Else the preload value is copied in the active capture/compare 1 register when
an update event occurs.
The active capture/compare register contains the value to be compared to the counter
TIMx_CNT and signaled on OC1 output.

If channel CC1 is configured as input:
CCR1 is the counter value transferred by the last input capture 1 event (IC1).

RM0401 Rev 3 333/771

RM0401 Advanced-control timers (TIM1)

339

14.4.15 TIM1 capture/compare register 2 (TIMx_CCR2)

Address offset: 0x38

Reset value: 0x0000

14.4.16 TIM1 capture/compare register 3 (TIMx_CCR3)

Address offset: 0x3C

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CCR2[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 CCR2[15:0]: Capture/Compare 2 value

If channel CC2 is configured as output:
CCR2 is the value to be loaded in the actual capture/compare 2 register (preload value).
It is loaded permanently if the preload feature is not selected in the TIMx_CCMR2 register
(bit OC2PE). Else the preload value is copied in the active capture/compare 2 register when
an update event occurs.
The active capture/compare register contains the value to be compared to the counter
TIMx_CNT and signalled on OC2 output.
If channel CC2 is configured as input:
CCR2 is the counter value transferred by the last input capture 2 event (IC2).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CCR3[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 CCR3[15:0]: Capture/Compare value

If channel CC3 is configured as output:
CCR3 is the value to be loaded in the actual capture/compare 3 register (preload value).
It is loaded permanently if the preload feature is not selected in the TIMx_CCMR3 register
(bit OC3PE). Else the preload value is copied in the active capture/compare 3 register when
an update event occurs.
The active capture/compare register contains the value to be compared to the counter
TIMx_CNT and signalled on OC3 output.

If channel CC3 is configured as input:
CCR3 is the counter value transferred by the last input capture 3 event (IC3).

Advanced-control timers (TIM1) RM0401

334/771 RM0401 Rev 3

14.4.17 TIM1 capture/compare register 4 (TIMx_CCR4)

Address offset: 0x40

Reset value: 0x0000

14.4.18 TIM1 break and dead-time register (TIMx_BDTR)

Address offset: 0x44

Reset value: 0x0000

Note: As the bits AOE, BKP, BKE, OSSI, OSSR and DTG[7:0] can be write-locked depending on
the LOCK configuration, it can be necessary to configure all of them during the first write
access to the TIMx_BDTR register.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CCR4[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 CCR4[15:0]: Capture/Compare value

If channel CC4 is configured as output:
CCR4 is the value to be loaded in the actual capture/compare 4 register (preload value).
It is loaded permanently if the preload feature is not selected in the TIMx_CCMR4 register
(bit OC4PE). Else the preload value is copied in the active capture/compare 4 register when
an update event occurs.
The active capture/compare register contains the value to be compared to the counter
TIMx_CNT and signalled on OC4 output.
If channel CC4 is configured as input:
CCR4 is the counter value transferred by the last input capture 4 event (IC4).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MOE AOE BKP BKE OSSR OSSI LOCK[1:0] DTG[7:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 15 MOE: Main output enable

This bit is cleared asynchronously by hardware as soon as the break input is active. It is set
by software or automatically depending on the AOE bit. It is acting only on the channels
which are configured in output.
0: OC and OCN outputs are disabled or forced to idle state.
1: OC and OCN outputs are enabled if their respective enable bits are set (CCxE, CCxNE in
TIMx_CCER register).
See OC/OCN enable description for more details (Section 14.4.9: TIM1 capture/compare
enable register (TIMx_CCER) on page 327).

Bit 14 AOE: Automatic output enable

0: MOE can be set only by software
1: MOE can be set by software or automatically at the next update event (if the break input is
not be active)

Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits
in TIMx_BDTR register).

RM0401 Rev 3 335/771

RM0401 Advanced-control timers (TIM1)

339

Bit 13 BKP: Break polarity

0: Break input BRK is active low
1: Break input BRK is active high

Note: This bit can not be modified as long as LOCK level 1 has been programmed (LOCK bits
in TIMx_BDTR register).

Note: Any write operation to this bit takes a delay of 1 APB clock cycle to become effective.

Bit 12 BKE: Break enable

0: Break inputs (BRK and CSS clock failure event) disabled
1; Break inputs (BRK and CSS clock failure event) enabled

Note: This bit cannot be modified when LOCK level 1 has been programmed (LOCK bits in
TIMx_BDTR register).

Note: Any write operation to this bit takes a delay of 1 APB clock cycle to become effective.

Bit 11 OSSR: Off-state selection for Run mode

This bit is used when MOE=1 on channels having a complementary output which are
configured as outputs. OSSR is not implemented if no complementary output is implemented
in the timer.
See OC/OCN enable description for more details (Section 14.4.9: TIM1 capture/compare
enable register (TIMx_CCER) on page 327).
0: When inactive, OC/OCN outputs are disabled (OC/OCN enable output signal=0).
1: When inactive, OC/OCN outputs are enabled with their inactive level as soon as CCxE=1
or CCxNE=1. Then, OC/OCN enable output signal=1

Note: This bit can not be modified as soon as the LOCK level 2 has been programmed (LOCK
bits in TIMx_BDTR register).

Bit 10 OSSI: Off-state selection for Idle mode

This bit is used when MOE=0 on channels configured as outputs.
See OC/OCN enable description for more details (Section 14.4.9: TIM1 capture/compare
enable register (TIMx_CCER) on page 327).
0: When inactive, OC/OCN outputs are disabled (OC/OCN enable output signal=0).
1: When inactive, OC/OCN outputs are forced first with their idle level as soon as CCxE=1 or
CCxNE=1. OC/OCN enable output signal=1)

Note: This bit can not be modified as soon as the LOCK level 2 has been programmed (LOCK
bits in TIMx_BDTR register).

Bits 9:8 LOCK[1:0]: Lock configuration

These bits offer a write protection against software errors.
00: LOCK OFF - No bit is write protected.
01: LOCK Level 1 = DTG bits in TIMx_BDTR register, OISx and OISxN bits in TIMx_CR2
register and BKE/BKP/AOE bits in TIMx_BDTR register can no longer be written.
10: LOCK Level 2 = LOCK Level 1 + CC Polarity bits (CCxP/CCxNP bits in TIMx_CCER
register, as long as the related channel is configured in output through the CCxS bits) as well
as OSSR and OSSI bits can no longer be written.
11: LOCK Level 3 = LOCK Level 2 + CC Control bits (OCxM and OCxPE bits in
TIMx_CCMRx registers, as long as the related channel is configured in output through the
CCxS bits) can no longer be written.

Note: The LOCK bits can be written only once after the reset. Once the TIMx_BDTR register
has been written, their content is frozen until the next reset.

Advanced-control timers (TIM1) RM0401

336/771 RM0401 Rev 3

14.4.19 TIM1 DMA control register (TIMx_DCR)

Address offset: 0x48

Reset value: 0x0000

Bits 7:0 DTG[7:0]: Dead-time generator setup

This bit-field defines the duration of the dead-time inserted between the complementary
outputs. DT correspond to this duration.
DTG[7:5]=0xx => DT=DTG[7:0]x tdtg with tdtg=tDTS.

DTG[7:5]=10x => DT=(64+DTG[5:0])xtdtg with Tdtg=2xtDTS.

DTG[7:5]=110 => DT=(32+DTG[4:0])xtdtg with Tdtg=8xtDTS.

DTG[7:5]=111 => DT=(32+DTG[4:0])xtdtg with Tdtg=16xtDTS.

Example if TDTS=125ns (8MHz), dead-time possible values are:

0 to 15875 ns by 125 ns steps,
16 us to 31750 ns by 250 ns steps,
32 us to 63us by 1 us steps,
64 us to 126 us by 2 us steps

Note: This bit-field can not be modified as long as LOCK level 1, 2 or 3 has been programmed
(LOCK bits in TIMx_BDTR register).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. DBL[4:0] Res. Res. Res. DBA[4:0]

rw rw rw rw rw rw rw rw rw rw

Bits 15:13 Reserved, must be kept at reset value.

Bits 12:8 DBL[4:0]: DMA burst length

This 5-bit vector defines the number of DMA transfers (the timer detects a burst transfer
when a read or a write access to the TIMx_DMAR register address is performed).
the TIMx_DMAR address)
00000: 1 transfer
00001: 2 transfers
00010: 3 transfers
...
10001: 18 transfers

Bits 7:5 Reserved, must be kept at reset value.

Bits 4:0 DBA[4:0]: DMA base address

This 5-bits vector defines the base-address for DMA transfers (when read/write access are
done through the TIMx_DMAR address). DBA is defined as an offset starting from the
address of the TIMx_CR1 register.
Example:
00000: TIMx_CR1,
00001: TIMx_CR2,
00010: TIMx_SMCR,
...

Example: Let us consider the following transfer: DBL = 7 transfers and DBA = TIMx_CR1. In
this case the transfer is done to/from 7 registers starting from the TIMx_CR1 address.

RM0401 Rev 3 337/771

RM0401 Advanced-control timers (TIM1)

339

14.4.20 TIM1 DMA address for full transfer (TIMx_DMAR)

Address offset: 0x4C

Reset value: 0x0000

Example of how to use the DMA burst feature

In this example the timer DMA burst feature is used to update the contents of the CCRx
registers (x = 2, 3, 4) with the DMA transferring half words into the CCRx registers.

This is done in the following steps:

1. Configure the corresponding DMA channel as follows:

– DMA channel peripheral address is the DMAR register address

– DMA channel memory address is the address of the buffer in the RAM containing
the data to be transferred by DMA into CCRx registers.

– Number of data to transfer = 3 (See note below).

– Circular mode disabled.

2. Configure the DCR register by configuring the DBA and DBL bit fields as follows:
DBL = 3 transfers, DBA = 0xE.

3. Enable the TIMx update DMA request (set the UDE bit in the DIER register).

4. Enable TIMx

5. Enable the DMA channel

Note: This example is for the case where every CCRx register to be updated once. If every CCRx
register is to be updated twice for example, the number of data to transfer should be 6. Let's
take the example of a buffer in the RAM containing data1, data2, data3, data4, data5 and
data6. The data is transferred to the CCRx registers as follows: on the first update DMA
request, data1 is transferred to CCR2, data2 is transferred to CCR3, data3 is transferred to
CCR4 and on the second update DMA request, data4 is transferred to CCR2, data5 is
transferred to CCR3 and data6 is transferred to CCR4.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DMAB[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 DMAB[15:0]: DMA register for burst accesses

A read or write operation to the DMAR register accesses the register located at the address

(TIMx_CR1 address) + (DBA + DMA index) x 4

where TIMx_CR1 address is the address of the control register 1, DBA is the DMA base
address configured in TIMx_DCR register, DMA index is automatically controlled by the
DMA transfer, and ranges from 0 to DBL (DBL configured in TIMx_DCR).

Advanced-control timers (TIM1) RM0401

338/771 RM0401 Rev 3

14.4.21 TIM1 register map

TIM1 registers are mapped as 16-bit addressable registers as described in the table below:

Table 60. TIM1 register map and reset values

Offset Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

0x00
TIMx_CR1

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

. CKD
[1:0]

A
R

P
E CMS

[1:0] D
IR

O
P

M

U
R

S

U
D

IS

C
E

N

Reset value 0 0 0 0 0 0 0 0 0 0

0x04
TIMx_CR2

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

O
IS

4

O
IS

3N

O
IS

3

O
IS

2N

O
IS

2

O
IS

1N

O
IS

1

T
I1

S

MMS[2:0]

C
C

D
S

C
C

U
S

R
es

.

C
C

P
C

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x08
TIMx_SMCR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

E
T

P

E
C

E ETPS
[1:0]

ETF[3:0]

M
S

M TS[2:0]

R
es

.

SMS[2:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x0C
TIMx_DIER

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

T
D

E

C
O

M
D

E

C
C

4
D

E

C
C

3
D

E

C
C

2
D

E

C
C

1
D

E

U
D

E

B
IE

T
IE

C
O

M
IE

C
C

4I
E

C
C

3I
E

C
C

2I
E

C
C

1I
E

U
IE

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x10
TIMx_SR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

C
C

4O
F

C
C

3O
F

C
C

2O
F

C
C

1O
F

R
es

.

B
IF

T
IF

C
O

M
IF

C
C

4I
F

C
C

3I
F

C
C

2I
F

C
C

1I
F

U
IF

Reset value 0 0 0 0 0 0 0 0 0 0 0 0

0x14
TIMx_EGR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

B
G

T
G

C
O

M
G

C
C

4
G

C
C

3
G

C
C

2
G

C
C

1
G

U
G

Reset value 0 0 0 0 0 0 0 0

0x18

TIMx_CCMR1
Output Compare

mode R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

O
C

2
C

E

OC2M
[2:0]

O
C

2
P

E

O
C

2
F

E
CC2S
[1:0]

O
C

1
C

E

OC1M
[2:0]

O
C

1
P

E

O
C

1
F

E

CC1S
[1:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TIMx_CCMR1
Input Capture

mode R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

IC2F[3:0]
IC2
PSC
[1:0]

CC2S
[1:0]

IC1F[3:0]
IC1
PSC
[1:0]

CC1S
[1:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x1C

TIMx_CCMR2
Output Compare

mode R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

O
2

4
C

E

OC4M
[2:0]

O
C

4
P

E

O
C

4
F

E

CC4S
[1:0]

O
C

3
C

E

OC3M
[2:0]

O
C

3
P

E

O
C

3
F

E

CC3S
[1:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TIMx_CCMR2
Input Capture

mode R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

IC4F[3:0]
IC4
PSC
[1:0]

CC4S
[1:0]

IC3F[3:0]
IC3
PSC
[1:0]

CC3S
[1:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x20
TIMx_CCER

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

C
C

4
P

C
C

4
E

C
C

3
N

P

C
C

3
N

E

C
C

3
P

C
C

3
E

C
C

2
N

P

C
C

2
N

E

C
C

2
P

C
C

2
E

C
C

1
N

P

C
C

1
N

E

C
C

1
P

C
C

1
E

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x24
TIMx_CNT

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

CNT[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x28
TIMx_PSC

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

PSC[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x2C
TIMx_ARR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

ARR[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x30
TIMx_RCR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

REP[7:0]

Reset value 0 0 0 0 0 0 0 0

RM0401 Rev 3 339/771

RM0401 Advanced-control timers (TIM1)

339

Refer to Section 2.2 on page 41 for the register boundary addresses.

0x34
TIMx_CCR1 CCR1[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x38
TIMx_CCR2

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

CCR2[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x3C
TIMx_CCR3

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

CCR3[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x40
TIMx_CCR4

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

CCR4[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x44
TIMx_BDTR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

M
O

E

A
O

E

B
K

P

B
K

E

O
S

S
R

O
S

S
I LOCK

[1:0]
DT[7:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x48
TIMx_DCR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

DBL[4:0]

R
es

.

R
es

.

R
es

.

DBA[4:0]

Reset value 0 0 0 0 0 0 0 0 0 0

0x4C
TIMx_DMAR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

DMAB[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 60. TIM1 register map and reset values (continued)

Offset Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

General-purpose timers (TIM5) RM0401

340/771 RM0401 Rev 3

15 General-purpose timers (TIM5)

15.1 TIM5 introduction

The general-purpose timer consists of a 32-bit auto-reload counter driven by a
programmable prescaler.

It can be used for a variety of purposes, including measuring the pulse lengths of input
signals (input capture) or generating output waveforms (output compare and PWM).

Pulse lengths and waveform periods can be modulated from a few microseconds to several
milliseconds using the timer prescaler and the RCC clock controller prescalers.

The timer is completely independent, and do not share any resources.

15.2 TIM5 main features

General-purpose TIMx timer features include:

• 32-bit up, down, up/down auto-reload counter.

• 16-bit programmable prescaler used to divide (also “on the fly”) the counter clock
frequency by any factor between 1 and 65536.

• Up to 4 independent channels for:

– Input capture

– Output compare

– PWM generation (Edge- and Center-aligned modes)

– One-pulse mode output

• Synchronization circuit to control the timer with external signals and to interconnect
several timers.

• Interrupt/DMA generation on the following events:

– Update: counter overflow/underflow, counter initialization (by software or
internal/external trigger)

– Trigger event (counter start, stop, initialization or count by internal/external trigger)

– Input capture

– Output compare

• Supports incremental (quadrature) encoder and hall-sensor circuitry for positioning
purposes

• Trigger input for external clock or cycle-by-cycle current management

RM0401 Rev 3 341/771

RM0401 General-purpose timers (TIM5)

389

Figure 97. General-purpose timer block diagram

15.3 TIM5 functional description

15.3.1 Time-base unit

The main block of the programmable timer is a 32-bit counter with its related auto-reload
register. The counter can count up. The counter clock can be divided by a prescaler.

The counter, the auto-reload register and the prescaler register can be written or read by
software. This is true even when the counter is running.

The time-base unit includes:

• Counter Register (TIMx_CNT)

• Prescaler Register (TIMx_PSC):

• Auto-Reload Register (TIMx_ARR)

The auto-reload register is preloaded. Writing to or reading from the auto-reload register
accesses the preload register. The content of the preload register are transferred into the
shadow register permanently or at each update event (UEV), depending on the auto-reload
preload enable bit (ARPE) in TIMx_CR1 register. The update event is sent when the counter
reaches the overflow (or underflow when downcounting) and if the UDIS bit equals 0 in the
TIMx_CR1 register. It can also be generated by software. The generation of the update
event is described in detail for each configuration.

General-purpose timers (TIM5) RM0401

342/771 RM0401 Rev 3

The counter is clocked by the prescaler output CK_CNT, which is enabled only when the
counter enable bit (CEN) in TIMx_CR1 register is set (refer also to the slave mode controller
description to get more details on counter enabling).

Note that the actual counter enable signal CNT_EN is set 1 clock cycle after CEN.

Prescaler description

The prescaler can divide the counter clock frequency by any factor between 1 and 65536. It
is based on a 16-bit counter controlled through a 32-bit register (in the TIMx_PSC register).
It can be changed on the fly as this control register is buffered. The new prescaler ratio is
taken into account at the next update event.

Figure 98 and Figure 99 give some examples of the counter behavior when the prescaler
ratio is changed on the fly:

Figure 98. Counter timing diagram with prescaler division change from 1 to 2

RM0401 Rev 3 343/771

RM0401 General-purpose timers (TIM5)

389

Figure 99. Counter timing diagram with prescaler division change from 1 to 4

15.3.2 Counter modes

Upcounting mode

In upcounting mode, the counter counts from 0 to the auto-reload value (content of the
TIMx_ARR register), then restarts from 0 and generates a counter overflow event.

An Update event can be generated at each counter overflow or by setting the UG bit in the
TIMx_EGR register (by software or by using the slave mode controller).

The UEV event can be disabled by software by setting the UDIS bit in TIMx_CR1 register.
This is to avoid updating the shadow registers while writing new values in the preload
registers. Then no update event occurs until the UDIS bit has been written to 0. However,
the counter restarts from 0, as well as the counter of the prescaler (but the prescale rate
does not change). In addition, if the URS bit (update request selection) in TIMx_CR1
register is set, setting the UG bit generates an update event UEV but without setting the UIF
flag (thus no interrupt or DMA request is sent). This is to avoid generating both update and
capture interrupts when clearing the counter on the capture event.

When an update event occurs, all the registers are updated and the update flag (UIF bit in
TIMx_SR register) is set (depending on the URS bit):

• The buffer of the prescaler is reloaded with the preload value (content of the TIMx_PSC
register)

• The auto-reload shadow register is updated with the preload value (TIMx_ARR)

The following figures show some examples of the counter behavior for different clock
frequencies when TIMx_ARR=0x36.

General-purpose timers (TIM5) RM0401

344/771 RM0401 Rev 3

Figure 100. Counter timing diagram, internal clock divided by 1

Figure 101. Counter timing diagram, internal clock divided by 2

Figure 102. Counter timing diagram, internal clock divided by 4

RM0401 Rev 3 345/771

RM0401 General-purpose timers (TIM5)

389

Figure 103. Counter timing diagram, internal clock divided by N

Figure 104. Counter timing diagram, Update event when ARPE=0 (TIMx_ARR not
preloaded)

General-purpose timers (TIM5) RM0401

346/771 RM0401 Rev 3

Figure 105. Counter timing diagram, Update event when ARPE=1 (TIMx_ARR
preloaded)

Downcounting mode

In downcounting mode, the counter counts from the auto-reload value (content of the
TIMx_ARR register) down to 0, then restarts from the auto-reload value and generates a
counter underflow event.

An Update event can be generate at each counter underflow or by setting the UG bit in the
TIMx_EGR register (by software or by using the slave mode controller)

The UEV update event can be disabled by software by setting the UDIS bit in TIMx_CR1
register. This is to avoid updating the shadow registers while writing new values in the
preload registers. Then no update event occurs until UDIS bit has been written to 0.
However, the counter restarts from the current auto-reload value, whereas the counter of the
prescaler restarts from 0 (but the prescale rate doesn’t change).

In addition, if the URS bit (update request selection) in TIMx_CR1 register is set, setting the
UG bit generates an update event UEV but without setting the UIF flag (thus no interrupt or
DMA request is sent). This is to avoid generating both update and capture interrupts when
clearing the counter on the capture event.

When an update event occurs, all the registers are updated and the update flag (UIF bit in
TIMx_SR register) is set (depending on the URS bit):

• The buffer of the prescaler is reloaded with the preload value (content of the TIMx_PSC
register).

• The auto-reload active register is updated with the preload value (content of the
TIMx_ARR register). Note that the auto-reload is updated before the counter is
reloaded, so that the next period is the expected one.

The following figures show some examples of the counter behavior for different clock
frequencies when TIMx_ARR=0x36.

RM0401 Rev 3 347/771

RM0401 General-purpose timers (TIM5)

389

Figure 106. Counter timing diagram, internal clock divided by 1

Figure 107. Counter timing diagram, internal clock divided by 2

Figure 108. Counter timing diagram, internal clock divided by 4

General-purpose timers (TIM5) RM0401

348/771 RM0401 Rev 3

Figure 109. Counter timing diagram, internal clock divided by N

Figure 110. Counter timing diagram, Update event

Center-aligned mode (up/down counting)

In center-aligned mode, the counter counts from 0 to the auto-reload value (content of the
TIMx_ARR register) – 1, generates a counter overflow event, then counts from the auto-
reload value down to 1 and generates a counter underflow event. Then it restarts counting
from 0.

Center-aligned mode is active when the CMS bits in TIMx_CR1 register are not equal to
'00'. The Output compare interrupt flag of channels configured in output is set when: the
counter counts down (Center aligned mode 1, CMS = "01"), the counter counts up (Center
aligned mode 2, CMS = "10") the counter counts up and down (Center aligned mode 3,
CMS = "11").

RM0401 Rev 3 349/771

RM0401 General-purpose timers (TIM5)

389

In this mode, the direction bit (DIR from TIMx_CR1 register) cannot be written. It is updated
by hardware and gives the current direction of the counter.

The update event can be generated at each counter overflow and at each counter underflow
or by setting the UG bit in the TIMx_EGR register (by software or by using the slave mode
controller) also generates an update event. In this case, the counter restarts counting from
0, as well as the counter of the prescaler.

The UEV update event can be disabled by software by setting the UDIS bit in TIMx_CR1
register. This is to avoid updating the shadow registers while writing new values in the
preload registers. Then no update event occurs until the UDIS bit has been written to 0.
However, the counter continues counting up and down, based on the current auto-reload
value.

In addition, if the URS bit (update request selection) in TIMx_CR1 register is set, setting the
UG bit generates an update event UEV but without setting the UIF flag (thus no interrupt or
DMA request is sent). This is to avoid generating both update and capture interrupt when
clearing the counter on the capture event.

When an update event occurs, all the registers are updated and the update flag (UIF bit in
TIMx_SR register) is set (depending on the URS bit):

• The buffer of the prescaler is reloaded with the preload value (content of the TIMx_PSC
register).

• The auto-reload active register is updated with the preload value (content of the
TIMx_ARR register). Note that if the update source is a counter overflow, the auto-
reload is updated before the counter is reloaded, so that the next period is the expected
one (the counter is loaded with the new value).

The following figures show some examples of the counter behavior for different clock
frequencies.

Figure 111. Counter timing diagram, internal clock divided by 1, TIMx_ARR=0x6

1. Here, center-aligned mode 1 is used (for more details refer to Section 15.4.1: TIMx control register 1 (TIMx_CR1)
on page 369).

General-purpose timers (TIM5) RM0401

350/771 RM0401 Rev 3

Figure 112. Counter timing diagram, internal clock divided by 2

Figure 113. Counter timing diagram, internal clock divided by 4, TIMx_ARR=0x36

1. Center-aligned mode 2 or 3 is used with an UIF on overflow.

Figure 114. Counter timing diagram, internal clock divided by N

RM0401 Rev 3 351/771

RM0401 General-purpose timers (TIM5)

389

Figure 115. Counter timing diagram, Update event with ARPE=1 (counter underflow)

Figure 116. Counter timing diagram, Update event with ARPE=1 (counter overflow)

15.3.3 Clock selection

The counter clock can be provided by the following clock sources:

• Internal clock (CK_INT)

• External clock mode1: external input pin (TIx)

• Internal trigger inputs (ITRx): using one timer as prescaler for another timer.

General-purpose timers (TIM5) RM0401

352/771 RM0401 Rev 3

Internal clock source (CK_INT)

If the slave mode controller is disabled (SMS=000 in the TIMx_SMCR register), then the
CEN, DIR (in the TIMx_CR1 register) and UG bits (in the TIMx_EGR register) are actual
control bits and can be changed only by software (except UG which remains cleared
automatically). As soon as the CEN bit is written to 1, the prescaler is clocked by the internal
clock CK_INT.

Figure 117 shows the behavior of the control circuit and the upcounter in normal mode,
without prescaler.

Figure 117. Control circuit in normal mode, internal clock divided by 1

External clock source mode 1

This mode is selected when SMS=111 in the TIMx_SMCR register. The counter can count at
each rising or falling edge on a selected input.

Figure 118. TI2 external clock connection example

RM0401 Rev 3 353/771

RM0401 General-purpose timers (TIM5)

389

For example, to configure the upcounter to count in response to a rising edge on the TI2
input, use the following procedure:

1. Configure channel 2 to detect rising edges on the TI2 input by writing CC2S= ‘01 in the
TIMx_CCMR1 register.

2. Configure the input filter duration by writing the IC2F[3:0] bits in the TIMx_CCMR1
register (if no filter is needed, keep IC2F=0000).

Note: The capture prescaler is not used for triggering, so it does not need to be configured.

3. Select rising edge polarity by writing CC2P=0 and CC2NP=0 in the TIMx_CCER
register.

4. Configure the timer in external clock mode 1 by writing SMS=111 in the TIMx_SMCR
register.

5. Select TI2 as the input source by writing TS=110 in the TIMx_SMCR register.

6. Enable the counter by writing CEN=1 in the TIMx_CR1 register.

When a rising edge occurs on TI2, the counter counts once and the TIF flag is set.

The delay between the rising edge on TI2 and the actual clock of the counter is due to the
resynchronization circuit on TI2 input.

Figure 119. Control circuit in external clock mode 1

15.3.4 Capture/compare channels

Each Capture/Compare channel is built around a capture/compare register (including a
shadow register), a input stage for capture (with digital filter, multiplexing and prescaler) and
an output stage (with comparator and output control).

The following figure gives an overview of one Capture/Compare channel.

The input stage samples the corresponding TIx input to generate a filtered signal TIxF.
Then, an edge detector with polarity selection generates a signal (TIxFPx) which can be
used as trigger input by the slave mode controller or as the capture command. It is
prescaled before the capture register (ICxPS).

General-purpose timers (TIM5) RM0401

354/771 RM0401 Rev 3

Figure 120. Capture/compare channel (example: channel 1 input stage)

The output stage generates an intermediate waveform which is then used for reference:
OCxRef (active high). The polarity acts at the end of the chain.

Figure 121. Capture/compare channel 1 main circuit

RM0401 Rev 3 355/771

RM0401 General-purpose timers (TIM5)

389

Figure 122. Output stage of capture/compare channel (channel 1)

The capture/compare block is made of one preload register and one shadow register. Write
and read always access the preload register.

In capture mode, captures are actually done in the shadow register, which is copied into the
preload register.

In compare mode, the content of the preload register is copied into the shadow register
which is compared to the counter.

15.3.5 Input capture mode

In Input capture mode, the Capture/Compare Registers (TIMx_CCRx) are used to latch the
value of the counter after a transition detected by the corresponding ICx signal. When a
capture occurs, the corresponding CCXIF flag (TIMx_SR register) is set and an interrupt or
a DMA request can be sent if they are enabled. If a capture occurs while the CCxIF flag was
already high, then the over-capture flag CCxOF (TIMx_SR register) is set. CCxIF can be
cleared by software by writing it to 0 or by reading the captured data stored in the
TIMx_CCRx register. CCxOF is cleared when it is written with 0.

The following example shows how to capture the counter value in TIMx_CCR1 when TI1
input rises. To do this, use the following procedure:

• Select the active input: TIMx_CCR1 must be linked to the TI1 input, so write the CC1S
bits to 01 in the TIMx_CCMR1 register. As soon as CC1S becomes different from 00,
the channel is configured in input and the TIMx_CCR1 register becomes read-only.

• Program the appropriate input filter duration in relation with the signal connected to the
timer (by programming the ICxF bits in the TIMx_CCMRx register if the input is one of
the TIx inputs). Let’s imagine that, when toggling, the input signal is not stable during at
must 5 internal clock cycles. We must program a filter duration longer than these 5
clock cycles. We can validate a transition on TI1 when 8 consecutive samples with the

General-purpose timers (TIM5) RM0401

356/771 RM0401 Rev 3

new level have been detected (sampled at fDTS frequency). Then write IC1F bits to
0011 in the TIMx_CCMR1 register.

• Select the edge of the active transition on the TI1 channel by writing the CC1P and
CC1NP bits to 00 in the TIMx_CCER register (rising edge in this case).

• Program the input prescaler. In our example, we wish the capture to be performed at
each valid transition, so the prescaler is disabled (write IC1PS bits to 00 in the
TIMx_CCMR1 register).

• Enable capture from the counter into the capture register by setting the CC1E bit in the
TIMx_CCER register.

• If needed, enable the related interrupt request by setting the CC1IE bit in the
TIMx_DIER register, and/or the DMA request by setting the CC1DE bit in the
TIMx_DIER register.

When an input capture occurs:

• The TIMx_CCR1 register gets the value of the counter on the active transition.

• CC1IF flag is set (interrupt flag). CC1OF is also set if at least two consecutive captures
occurred whereas the flag was not cleared.

• An interrupt is generated depending on the CC1IE bit.

• A DMA request is generated depending on the CC1DE bit.

In order to handle the overcapture, it is recommended to read the data before the
overcapture flag. This is to avoid missing an overcapture which could happen after reading
the flag and before reading the data.

Note: IC interrupt and/or DMA requests can be generated by software by setting the
corresponding CCxG bit in the TIMx_EGR register.

15.3.6 PWM input mode

This mode is a particular case of input capture mode. The procedure is the same except:

• Two ICx signals are mapped on the same TIx input.

• These 2 ICx signals are active on edges with opposite polarity.

• One of the two TIxFP signals is selected as trigger input and the slave mode controller
is configured in reset mode.

RM0401 Rev 3 357/771

RM0401 General-purpose timers (TIM5)

389

For example, one can measure the period (in TIMx_CCR1 register) and the duty cycle (in
TIMx_CCR2 register) of the PWM applied on TI1 using the following procedure (depending
on CK_INT frequency and prescaler value):

• Select the active input for TIMx_CCR1: write the CC1S bits to 01 in the TIMx_CCMR1
register (TI1 selected).

• Select the active polarity for TI1FP1 (used both for capture in TIMx_CCR1 and counter
clear): write the CC1P to ‘0’ and the CC1NP bit to ‘0’ (active on rising edge).

• Select the active input for TIMx_CCR2: write the CC2S bits to 10 in the TIMx_CCMR1
register (TI1 selected).

• Select the active polarity for TI1FP2 (used for capture in TIMx_CCR2): write the CC2P
bit to ‘1’ and the CC2NP bit to ’0’(active on falling edge).

• Select the valid trigger input: write the TS bits to 101 in the TIMx_SMCR register
(TI1FP1 selected).

• Configure the slave mode controller in reset mode: write the SMS bits to 100 in the
TIMx_SMCR register.

• Enable the captures: write the CC1E and CC2E bits to ‘1 in the TIMx_CCER register.

Figure 123. PWM input mode timing

15.3.7 Forced output mode

In output mode (CCxS bits = 00 in the TIMx_CCMRx register), each output compare signal
(OCxREF and then OCx) can be forced to active or inactive level directly by software,
independently of any comparison between the output compare register and the counter.

To force an output compare signal (ocxref/OCx) to its active level, one just needs to write
101 in the OCxM bits in the corresponding TIMx_CCMRx register. Thus ocxref is forced high
(OCxREF is always active high) and OCx get opposite value to CCxP polarity bit.

e.g.: CCxP=0 (OCx active high) => OCx is forced to high level.

ocxref signal can be forced low by writing the OCxM bits to 100 in the TIMx_CCMRx
register.

TI1

TIMx_CNT 0000 0001 0002 0003 0004 00000004

TIMx_CCR1

TIMx_CCR2

0004

0002

IC1 capture

IC2 capture

reset counter

IC2 capture
pulse width

IC1 capture
period
measurementmeasurement

ai15413

General-purpose timers (TIM5) RM0401

358/771 RM0401 Rev 3

Anyway, the comparison between the TIMx_CCRx shadow register and the counter is still
performed and allows the flag to be set. Interrupt and DMA requests can be sent
accordingly. This is described in the Output Compare Mode section.

15.3.8 Output compare mode

This function is used to control an output waveform or indicating when a period of time has
elapsed.

When a match is found between the capture/compare register and the counter, the output
compare function:

• Assigns the corresponding output pin to a programmable value defined by the output
compare mode (OCxM bits in the TIMx_CCMRx register) and the output polarity (CCxP
bit in the TIMx_CCER register). The output pin can keep its level (OCXM=000), be set
active (OCxM=001), be set inactive (OCxM=010) or can toggle (OCxM=011) on match.

• Sets a flag in the interrupt status register (CCxIF bit in the TIMx_SR register).

• Generates an interrupt if the corresponding interrupt mask is set (CCXIE bit in the
TIMx_DIER register).

• Sends a DMA request if the corresponding enable bit is set (CCxDE bit in the
TIMx_DIER register, CCDS bit in the TIMx_CR2 register for the DMA request
selection).

The TIMx_CCRx registers can be programmed with or without preload registers using the
OCxPE bit in the TIMx_CCMRx register.

In output compare mode, the update event UEV has no effect on ocxref and OCx output.
The timing resolution is one count of the counter. Output compare mode can also be used to
output a single pulse (in One-pulse mode).

Procedure:

1. Select the counter clock (internal, external, prescaler).

2. Write the desired data in the TIMx_ARR and TIMx_CCRx registers.

3. Set the CCxIE and/or CCxDE bits if an interrupt and/or a DMA request is to be
generated.

4. Select the output mode. For example, one must write OCxM=011, OCxPE=0, CCxP=0
and CCxE=1 to toggle OCx output pin when CNT matches CCRx, CCRx preload is not
used, OCx is enabled and active high.

5. Enable the counter by setting the CEN bit in the TIMx_CR1 register.

The TIMx_CCRx register can be updated at any time by software to control the output
waveform, provided that the preload register is not enabled (OCxPE=0, else TIMx_CCRx
shadow register is updated only at the next update event UEV). An example is given in
Figure 124.

RM0401 Rev 3 359/771

RM0401 General-purpose timers (TIM5)

389

Figure 124. Output compare mode, toggle on OC1

15.3.9 PWM mode

Pulse width modulation mode allows to generate a signal with a frequency determined by
the value of the TIMx_ARR register and a duty cycle determined by the value of the
TIMx_CCRx register.

The PWM mode can be selected independently on each channel (one PWM per OCx
output) by writing 110 (PWM mode 1) or ‘111 (PWM mode 2) in the OCxM bits in the
TIMx_CCMRx register. The corresponding preload register must be enabled by setting the
OCxPE bit in the TIMx_CCMRx register, and eventually the auto-reload preload register by
setting the ARPE bit in the TIMx_CR1 register.

As the preload registers are transferred to the shadow registers only when an update event
occurs, before starting the counter, all registers must be initialized by setting the UG bit in
the TIMx_EGR register.

OCx polarity is software programmable using the CCxP bit in the TIMx_CCER register. It
can be programmed as active high or active low. OCx output is enabled by the CCxE bit in
the TIMx_CCER register. Refer to the TIMx_CCERx register description for more details.

In PWM mode (1 or 2), TIMx_CNT and TIMx_CCRx are always compared to determine
whether TIMx_CCRx ≤ TIMx_CNT or TIMx_CNT ≤ TIMx_CCRx (depending on the direction
of the counter). However, the OCREF signal is asserted only:

• When the result of the comparison changes, or

• When the output compare mode (OCxM bits in TIMx_CCMRx register) switches from
the “frozen” configuration (no comparison, OCxM=‘000) to one of the PWM modes
(OCxM=‘110 or ‘111).

This forces the PWM by software while the timer is running.

The timer is able to generate PWM in edge-aligned mode or center-aligned mode
depending on the CMS bits in the TIMx_CR1 register.

General-purpose timers (TIM5) RM0401

360/771 RM0401 Rev 3

PWM edge-aligned mode

Upcounting configuration

Upcounting is active when the DIR bit in the TIMx_CR1 register is low. Refer to Section :
Upcounting mode on page 343.

In the following example, we consider PWM mode 1. The reference PWM signal OCxREF is
high as long as TIMx_CNT <TIMx_CCRx else it becomes low. If the compare value in
TIMx_CCRx is greater than the auto-reload value (in TIMx_ARR) then OCxREF is held at ‘1.
If the compare value is 0 then OCxREF is held at ‘0. Figure 125 shows some edge-aligned
PWM waveforms in an example where TIMx_ARR=8.

Figure 125. Edge-aligned PWM waveforms (ARR=8)

Downcounting configuration

Downcounting is active when DIR bit in TIMx_CR1 register is high. Refer to Section :
Downcounting mode on page 346.

In PWM mode 1, the reference signal ocxref is low as long as TIMx_CNT>TIMx_CCRx else
it becomes high. If the compare value in TIMx_CCRx is greater than the auto-reload value in
TIMx_ARR, then ocxref is held at ‘1’. 0% PWM is not possible in this mode.

PWM center-aligned mode

Center-aligned mode is active when the CMS bits in TIMx_CR1 register are different from
‘00 (all the remaining configurations having the same effect on the ocxref/OCx signals). The
compare flag is set when the counter counts up, when it counts down or both when it counts
up and down depending on the CMS bits configuration. The direction bit (DIR) in the
TIMx_CR1 register is updated by hardware and must not be changed by software. Refer to

RM0401 Rev 3 361/771

RM0401 General-purpose timers (TIM5)

389

Section : Center-aligned mode (up/down counting) on page 348.

Figure 126 shows some center-aligned PWM waveforms in an example where:

• TIMx_ARR=8,

• PWM mode is the PWM mode 1,

• The flag is set when the counter counts down corresponding to the center-aligned
mode 1 selected for CMS=01 in TIMx_CR1 register.

Figure 126. Center-aligned PWM waveforms (ARR=8)

Hints on using center-aligned mode:

• When starting in center-aligned mode, the current up-down configuration is used. It
means that the counter counts up or down depending on the value written in the DIR bit

General-purpose timers (TIM5) RM0401

362/771 RM0401 Rev 3

in the TIMx_CR1 register. Moreover, the DIR and CMS bits must not be changed at the
same time by the software.

• Writing to the counter while running in center-aligned mode is not recommended as it
can lead to unexpected results. In particular:

– The direction is not updated if a value greater than the auto-reload value is written
in the counter (TIMx_CNT>TIMx_ARR). For example, if the counter was counting
up, it continues to count up.

– The direction is updated if 0 or the TIMx_ARR value is written in the counter but no
Update Event UEV is generated.

• The safest way to use center-aligned mode is to generate an update by software
(setting the UG bit in the TIMx_EGR register) just before starting the counter and not to
write the counter while it is running.

15.3.10 One-pulse mode

One-pulse mode (OPM) is a particular case of the previous modes. It allows the counter to
be started in response to a stimulus and to generate a pulse with a programmable length
after a programmable delay.

Starting the counter can be controlled through the slave mode controller. Generating the
waveform can be done in output compare mode or PWM mode. One-pulse mode is selected
by setting the OPM bit in the TIMx_CR1 register. This makes the counter stop automatically
at the next update event UEV.

A pulse can be correctly generated only if the compare value is different from the counter
initial value. Before starting (when the timer is waiting for the trigger), the configuration must
be:

• In upcounting: CNT<CCRx ≤ ARR (in particular, 0<CCRx),

• In downcounting: CNT>CCRx.

Figure 127. Example of one-pulse mode

For example one may want to generate a positive pulse on OC1 with a length of tPULSE and
after a delay of tDELAY as soon as a positive edge is detected on the TI2 input pin.

RM0401 Rev 3 363/771

RM0401 General-purpose timers (TIM5)

389

Let’s use TI2FP2 as trigger 1:

• Map TI2FP2 on TI2 by writing CC2S=01 in the TIMx_CCMR1 register.

• TI2FP2 must detect a rising edge, write CC2P=0 and CC2NP=’0’ in the TIMx_CCER
register.

• Configure TI2FP2 as trigger for the slave mode controller (TRGI) by writing TS=110 in
the TIMx_SMCR register.

• TI2FP2 is used to start the counter by writing SMS to ‘110 in the TIMx_SMCR register
(trigger mode).

The OPM waveform is defined by writing the compare registers (taking into account the
clock frequency and the counter prescaler).

• The tDELAY is defined by the value written in the TIMx_CCR1 register.

• The tPULSE is defined by the difference between the auto-reload value and the compare
value (TIMx_ARR - TIMx_CCR + 1).

• Let’s say one want to build a waveform with a transition from ‘0 to ‘1 when a compare
match occurs and a transition from ‘1 to ‘0 when the counter reaches the auto-reload
value. To do this PWM mode 2 must be enabled by writing OC1M=111 in the
TIMx_CCMR1 register. Optionally the preload registers can be enabled by writing
OC1PE=1 in the TIMx_CCMR1 register and ARPE in the TIMx_CR1 register. In this
case one has to write the compare value in the TIMx_CCR1 register, the auto-reload
value in the TIMx_ARR register, generate an update by setting the UG bit and wait for
external trigger event on TI2. CC1P is written to ‘0 in this example.

In our example, the DIR and CMS bits in the TIMx_CR1 register should be low.

Since only 1 pulse (Single mode) is needed, a 1 must be written in the OPM bit in the
TIMx_CR1 register to stop the counter at the next update event (when the counter rolls over
from the auto-reload value back to 0). When OPM bit in the TIMx_CR1 register is set to '0',
so the Repetitive Mode is selected.

Particular case: OCx fast enable:

In One-pulse mode, the edge detection on TIx input set the CEN bit which enables the
counter. Then the comparison between the counter and the compare value makes the
output toggle. But several clock cycles are needed for these operations and it limits the
minimum delay tDELAY min we can get.

If one wants to output a waveform with the minimum delay, the OCxFE bit can be set in the
TIMx_CCMRx register. Then OCxRef (and OCx) is forced in response to the stimulus,
without taking in account the comparison. Its new level is the same as if a compare match
had occurred. OCxFE acts only if the channel is configured in PWM1 or PWM2 mode.

15.3.11 Encoder interface mode

To select Encoder Interface mode write SMS=‘001 in the TIMx_SMCR register if the counter
is counting on TI2 edges only, SMS=010 if it is counting on TI1 edges only and SMS=011 if
it is counting on both TI1 and TI2 edges.

Select the TI1 and TI2 polarity by programming the CC1P and CC2P bits in the TIMx_CCER
register. When needed, the input filter can be programmed as well.

The two inputs TI1 and TI2 are used to interface to an incremental encoder. Refer to
Table 61. The counter is clocked by each valid transition on TI1FP1 or TI2FP2 (TI1 and TI2
after input filter and polarity selection, TI1FP1=TI1 if not filtered and not inverted,

General-purpose timers (TIM5) RM0401

364/771 RM0401 Rev 3

TI2FP2=TI2 if not filtered and not inverted) assuming that it is enabled (CEN bit in
TIMx_CR1 register written to ‘1). The sequence of transitions of the two inputs is evaluated
and generates count pulses as well as the direction signal. Depending on the sequence the
counter counts up or down, the DIR bit in the TIMx_CR1 register is modified by hardware
accordingly. The DIR bit is calculated at each transition on any input (TI1 or TI2), whatever
the counter is counting on TI1 only, TI2 only or both TI1 and TI2.

Encoder interface mode acts simply as an external clock with direction selection. This
means that the counter just counts continuously between 0 and the auto-reload value in the
TIMx_ARR register (0 to ARR or ARR down to 0 depending on the direction). So the
TIMx_ARR must be configured before starting. In the same way, the capture, compare,
prescaler, trigger output features continue to work as normal.

In this mode, the counter is modified automatically following the speed and the direction of
the incremental encoder and its content, therefore, always represents the encoder’s
position. The count direction correspond to the rotation direction of the connected sensor.
The table summarizes the possible combinations, assuming TI1 and TI2 do not switch at the
same time.

An external incremental encoder can be connected directly to the MCU without external
interface logic. However, comparators are normally be used to convert the encoder’s
differential outputs to digital signals. This greatly increases noise immunity. The third
encoder output which indicate the mechanical zero position, may be connected to an
external interrupt input and trigger a counter reset.

Figure 128 gives an example of counter operation, showing count signal generation and
direction control. It also shows how input jitter is compensated where both edges are
selected. This might occur if the sensor is positioned near to one of the switching points. For
this example we assume that the configuration is the following:

• CC1S= ‘01’ (TIMx_CCMR1 register, TI1FP1 mapped on TI1)

• CC2S= ‘01’ (TIMx_CCMR2 register, TI2FP2 mapped on TI2)

• CC1P= ‘0’, CC1NP = ‘0’, IC1F =’0000’ (TIMx_CCER register, TI1FP1 noninverted,
TI1FP1=TI1)

• CC2P= ‘0’, CC2NP = ‘0’, IC2F =’0000’ (TIMx_CCER register, TI2FP2 noninverted,
TI2FP2=TI2)

• SMS= ‘011’ (TIMx_SMCR register, both inputs are active on both rising and falling
edges)

• CEN = 1 (TIMx_CR1 register, Counter is enabled)

Table 61. Counting direction versus encoder signals

Active edge
Level on opposite
signal (TI1FP1 for
TI2, TI2FP2 for TI1)

TI1FP1 signal TI2FP2 signal

Rising Falling Rising Falling

Counting on
TI1 only

High Down Up No Count No Count

Low Up Down No Count No Count

Counting on
TI2 only

High No Count No Count Up Down

Low No Count No Count Down Up

Counting on
TI1 and TI2

High Down Up Up Down

Low Up Down Down Up

RM0401 Rev 3 365/771

RM0401 General-purpose timers (TIM5)

389

Figure 128. Example of counter operation in encoder interface mode

Figure 129 gives an example of counter behavior when TI1FP1 polarity is inverted (same
configuration as above except CC1P=1).

Figure 129. Example of encoder interface mode with TI1FP1 polarity inverted

The timer, when configured in Encoder Interface mode provides information on the sensor’s
current position. Dynamic information can be obtained (speed, acceleration, deceleration)
by measuring the period between two encoder events using a second timer configured in
capture mode. The output of the encoder which indicates the mechanical zero can be used
for this purpose. Depending on the time between two events, the counter can also be read
at regular times. This can be done by latching the counter value into a third input capture
register if available (then the capture signal must be periodic and can be generated by
another timer). when available, it is also possible to read its value through a DMA request
generated by a Real-Time clock.

General-purpose timers (TIM5) RM0401

366/771 RM0401 Rev 3

15.3.12 Timer input XOR function

The TI1S bit in the TIM_CR2 register, allows the input filter of channel 1 to be connected to
the output of a XOR gate, combining the three input pins TIMx_CH1 to TIMx_CH3.

The XOR output can be used with all the timer input functions such as trigger or input
capture.

15.3.13 Timers and external trigger synchronization

The TIMx Timers can be synchronized with an external trigger in several modes: Reset
mode, Gated mode and Trigger mode.

Slave mode: Reset mode

The counter and its prescaler can be reinitialized in response to an event on a trigger input.
Moreover, if the URS bit from the TIMx_CR1 register is low, an update event UEV is
generated. Then all the preloaded registers (TIMx_ARR, TIMx_CCRx) are updated.

In the following example, the upcounter is cleared in response to a rising edge on TI1 input:

• Configure the channel 1 to detect rising edges on TI1. Configure the input filter duration
(in this example, we do not need any filter, so we keep IC1F=0000). The capture
prescaler is not used for triggering, so it does not need to be configured. The CC1S bits
select the input capture source only, CC1S = 01 in the TIMx_CCMR1 register. Write
CC1P=0 and CC1NP=0 in TIMx_CCER register to validate the polarity (and detect
rising edges only).

• Configure the timer in reset mode by writing SMS=100 in TIMx_SMCR register. Select
TI1 as the input source by writing TS=101 in TIMx_SMCR register.

• Start the counter by writing CEN=1 in the TIMx_CR1 register.

The counter starts counting on the internal clock, then behaves normally until TI1 rising
edge. When TI1 rises, the counter is cleared and restarts from 0. In the meantime, the
trigger flag is set (TIF bit in the TIMx_SR register) and an interrupt request, or a DMA
request can be sent if enabled (depending on the TIE and TDE bits in TIMx_DIER register).

The following figure shows this behavior when the auto-reload register TIMx_ARR=0x36.
The delay between the rising edge on TI1 and the actual reset of the counter is due to the
resynchronization circuit on TI1 input.

Figure 130. Control circuit in reset mode

RM0401 Rev 3 367/771

RM0401 General-purpose timers (TIM5)

389

Slave mode: Gated mode

The counter can be enabled depending on the level of a selected input.

In the following example, the upcounter counts only when TI1 input is low:

• Configure the channel 1 to detect low levels on TI1. Configure the input filter duration
(in this example, we do not need any filter, so we keep IC1F=0000). The capture
prescaler is not used for triggering, so it does not need to be configured. The CC1S bits
select the input capture source only, CC1S=01 in TIMx_CCMR1 register. Write
CC1P=1 in TIMx_CCER register to validate the polarity (and detect low level only).

• Configure the timer in gated mode by writing SMS=101 in TIMx_SMCR register. Select
TI1 as the input source by writing TS=101 in TIMx_SMCR register.

• Enable the counter by writing CEN=1 in the TIMx_CR1 register (in gated mode, the
counter doesn’t start if CEN=0, whatever is the trigger input level).

The counter starts counting on the internal clock as long as TI1 is low and stops as soon as
TI1 becomes high. The TIF flag in the TIMx_SR register is set both when the counter starts
or stops.

The delay between the rising edge on TI1 and the actual stop of the counter is due to the
resynchronization circuit on TI1 input.

Figure 131. Control circuit in gated mode

1. The configuration “CCxP=CCxNP=1” (detection of both rising and falling edges) does not have any effect
in gated mode because gated mode acts on a level and not on an edge.

Slave mode: Trigger mode

The counter can start in response to an event on a selected input.

In the following example, the upcounter starts in response to a rising edge on TI2 input:

• Configure the channel 2 to detect rising edges on TI2. Configure the input filter duration
(in this example, we do not need any filter, so we keep IC2F=0000). The capture
prescaler is not used for triggering, so it does not need to be configured. CC2S bits are
selecting the input capture source only, CC2S=01 in TIMx_CCMR1 register. Write
CC2P=1 in TIMx_CCER register to validate the polarity (and detect low level only).

• Configure the timer in trigger mode by writing SMS=110 in TIMx_SMCR register. Select
TI2 as the input source by writing TS=110 in TIMx_SMCR register.

When a rising edge occurs on TI2, the counter starts counting on the internal clock and the
TIF flag is set.

General-purpose timers (TIM5) RM0401

368/771 RM0401 Rev 3

The delay between the rising edge on TI2 and the actual start of the counter is due to the
resynchronization circuit on TI2 input.

Figure 132. Control circuit in trigger mode

15.3.14 Debug mode

When the microcontroller enters debug mode (Cortex®-M4 with FPU core - halted), the
TIMx counter either continues to work normally or stops, depending on DBG_TIMx_STOP
configuration bit in DBGMCU module. For more details, refer to Section 26.16.2: Debug
support for timers, watchdog, and I2C.

RM0401 Rev 3 369/771

RM0401 General-purpose timers (TIM5)

389

15.4 TIM5 registers

Refer to Section 1.2 on page 34 for a list of abbreviations used in register descriptions.

The 32-bit peripheral registers have to be written by words (32 bits). All other peripheral
registers have to be written by half-words (16 bits) or words (32 bits). Read accesses can be
done by bytes (8 bits), half-words (16 bits) or words (32 bits).

15.4.1 TIMx control register 1 (TIMx_CR1)

Address offset: 0x00

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. CKD[1:0] ARPE CMS DIR OPM URS UDIS CEN

rw rw rw rw rw rw rw rw rw rw

Bits 15:10 Reserved, must be kept at reset value.

Bits 9:8 CKD: Clock division

This bit-field indicates the division ratio between the timer clock (CK_INT) frequency and
sampling clock used by the digital filters (TIx).
00: tDTS = tCK_INT
01: tDTS = 2 × tCK_INT
10: tDTS = 4 × tCK_INT
11: Reserved

Bit 7 ARPE: Auto-reload preload enable

0: TIMx_ARR register is not buffered
1: TIMx_ARR register is buffered

Bits 6:5 CMS: Center-aligned mode selection

00: Edge-aligned mode. The counter counts up or down depending on the direction bit
(DIR).
01: Center-aligned mode 1. The counter counts up and down alternatively. Output compare
interrupt flags of channels configured in output (CCxS=00 in TIMx_CCMRx register) are set
only when the counter is counting down.
10: Center-aligned mode 2. The counter counts up and down alternatively. Output compare
interrupt flags of channels configured in output (CCxS=00 in TIMx_CCMRx register) are set
only when the counter is counting up.
11: Center-aligned mode 3. The counter counts up and down alternatively. Output compare
interrupt flags of channels configured in output (CCxS=00 in TIMx_CCMRx register) are set
both when the counter is counting up or down.

Note: It is not allowed to switch from edge-aligned mode to center-aligned mode as long as
the counter is enabled (CEN=1)

Bit 4 DIR: Direction

0: Counter used as upcounter
1: Counter used as downcounter

Note: This bit is read only when the timer is configured in Center-aligned mode or Encoder
mode.

Bit 3 OPM: One-pulse mode

0: Counter is not stopped at update event
1: Counter stops counting at the next update event (clearing the bit CEN)

General-purpose timers (TIM5) RM0401

370/771 RM0401 Rev 3

Bit 2 URS: Update request source

This bit is set and cleared by software to select the UEV event sources.
0: Any of the following events generate an update interrupt or DMA request if enabled.
These events can be:

– Counter overflow/underflow

– Setting the UG bit

– Update generation through the slave mode controller
1: Only counter overflow/underflow generates an update interrupt or DMA request if
enabled.

Bit 1 UDIS: Update disable

This bit is set and cleared by software to enable/disable UEV event generation.
0: UEV enabled. The Update (UEV) event is generated by one of the following events:

– Counter overflow/underflow

– Setting the UG bit

– Update generation through the slave mode controller
Buffered registers are then loaded with their preload values.
1: UEV disabled. The Update event is not generated, shadow registers keep their value
(ARR, PSC, CCRx). However the counter and the prescaler are reinitialized if the UG bit is
set or if a hardware reset is received from the slave mode controller.

Bit 0 CEN: Counter enable

0: Counter disabled
1: Counter enabled

Note: External clock, gated mode and encoder mode can work only if the CEN bit has been
previously set by software. However trigger mode can set the CEN bit automatically by
hardware.

CEN is cleared automatically in one-pulse mode, when an update event occurs.

RM0401 Rev 3 371/771

RM0401 General-purpose timers (TIM5)

389

15.4.2 TIMx control register 2 (TIMx_CR2)

Address offset: 0x04

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. TI1S MMS[2:0] CCDS Res. Res. Res.

rw rw rw rw rw

Bits 15:8 Reserved, must be kept at reset value.

Bit 7 TI1S: TI1 selection

0: The TIMx_CH1 pin is connected to TI1 input
1: The TIMx_CH1, CH2 and CH3 pins are connected to the TI1 input (XOR combination)

Bits 6:4 MMS[2:0]: Master mode selection

These bits allow to select the information to be sent in master mode to slave timers for
synchronization (TRGO). The combination is as follows:
000: Reset - the UG bit from the TIMx_EGR register is used as trigger output (TRGO). If the
reset is generated by the trigger input (slave mode controller configured in reset mode) then
the signal on TRGO is delayed compared to the actual reset.
001: Enable - the Counter enable signal, CNT_EN, is used as trigger output (TRGO). It is
useful to start several timers at the same time or to control a window in which a slave timer is
enabled. The Counter Enable signal is generated by a logic OR between CEN control bit
and the trigger input when configured in gated mode.
When the Counter Enable signal is controlled by the trigger input, there is a delay on TRGO,
except if the master/slave mode is selected (see the MSM bit description in TIMx_SMCR
register).
010: Update - The update event is selected as trigger output (TRGO). For instance a master
timer can then be used as a prescaler for a slave timer.
011: Compare Pulse - The trigger output send a positive pulse when the CC1IF flag is to be
set (even if it was already high), as soon as a capture or a compare match occurred.
(TRGO)
100: Compare - OC1REF signal is used as trigger output (TRGO)
101: Compare - OC2REF signal is used as trigger output (TRGO)
110: Compare - OC3REF signal is used as trigger output (TRGO)
111: Compare - OC4REF signal is used as trigger output (TRGO)

Bit 3 CCDS: Capture/compare DMA selection

0: CCx DMA request sent when CCx event occurs
1: CCx DMA requests sent when update event occurs

Bits 2:0 Reserved, must be kept at reset value.

General-purpose timers (TIM5) RM0401

372/771 RM0401 Rev 3

15.4.3 TIMx slave mode control register (TIMx_SMCR)

Address offset: 0x08

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. MSM TS[2:0] Res. SMS[2:0]

rw rw rw rw rw rw rw

Bits 15:8 Reserved, must be kept at reset value.

Bit 7 MSM: Master/Slave mode

0: No action
1: The effect of an event on the trigger input (TRGI) is delayed to allow a perfect
synchronization between the current timer and its slaves (through TRGO). It is useful if we
want to synchronize several timers on a single external event.

Bits 6:4 TS: Trigger selection

This bit-field selects the trigger input to be used to synchronize the counter.
000: Internal Trigger 0 (ITR0)
001: Internal Trigger 1 (ITR1).
010: Internal Trigger 2 (ITR2).
011: Internal Trigger 3 (ITR3).
100: TI1 Edge Detector (TI1F_ED)
101: Filtered Timer Input 1 (TI1FP1)
110: Filtered Timer Input 2 (TI2FP2)
111: Reserved
See Table 62: TIMx internal trigger connection on page 373 for more details on ITRx
meaning for each Timer.

Note: These bits must be changed only when they are not used (e.g. when SMS=000) to
avoid wrong edge detections at the transition.

Bit 3 Reserved, must be kept at reset value.

Bits 2:0 SMS: Slave mode selection

When external signals are selected the active edge of the trigger signal (TRGI) is linked to
the polarity selected on the external input (see Input Control register and Control Register
description.
000: Slave mode disabled - if CEN = ‘1 then the prescaler is clocked directly by the internal
clock.
001: Encoder mode 1 - Counter counts up/down on TI2FP2 edge depending on TI1FP1
level.
010: Encoder mode 2 - Counter counts up/down on TI1FP1 edge depending on TI2FP2
level.
011: Encoder mode 3 - Counter counts up/down on both TI1FP1 and TI2FP2 edges
depending on the level of the other input.
100: Reset Mode - Rising edge of the selected trigger input (TRGI) reinitializes the counter
and generates an update of the registers.
101: Gated Mode - The counter clock is enabled when the trigger input (TRGI) is high. The
counter stops (but is not reset) as soon as the trigger becomes low. Both start and stop of
the counter are controlled.
110: Trigger Mode - The counter starts at a rising edge of the trigger TRGI (but it is not
reset). Only the start of the counter is controlled.
111: External Clock Mode 1 - Rising edges of the selected trigger (TRGI) clock the counter.

Note: The gated mode must not be used if TI1F_ED is selected as the trigger input (TS=100).
Indeed, TI1F_ED outputs 1 pulse for each transition on TI1F, whereas the gated mode
checks the level of the trigger signal.

RM0401 Rev 3 373/771

RM0401 General-purpose timers (TIM5)

389

15.4.4 TIMx DMA/Interrupt enable register (TIMx_DIER)

Address offset: 0x0C

Reset value: 0x0000

Table 62. TIMx internal trigger connection

Slave TIM ITR0 (TS = 000) ITR1 (TS = 001) ITR2 (TS = 010) ITR3 (TS = 011)

TIM5 Reserved LPTIM Reserved Reserved

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. TDE Res. CC4DE CC3DE CC2DE CC1DE UDE Res. TIE Res. CC4IE CC3IE CC2IE CC1IE UIE

rw rw rw rw rw rw rw rw rw rw rw rw

Bit 15 Reserved, must be kept at reset value.

Bit 14 TDE: Trigger DMA request enable

0: Trigger DMA request disabled.
1: Trigger DMA request enabled.

Bit 13 Reserved, always read as 0

Bit 12 CC4DE: Capture/Compare 4 DMA request enable

0: CC4 DMA request disabled.
1: CC4 DMA request enabled.

Bit 11 CC3DE: Capture/Compare 3 DMA request enable

0: CC3 DMA request disabled.
1: CC3 DMA request enabled.

Bit 10 CC2DE: Capture/Compare 2 DMA request enable

0: CC2 DMA request disabled.
1: CC2 DMA request enabled.

Bit 9 CC1DE: Capture/Compare 1 DMA request enable

0: CC1 DMA request disabled.
1: CC1 DMA request enabled.

Bit 8 UDE: Update DMA request enable

0: Update DMA request disabled.
1: Update DMA request enabled.

Bit 7 Reserved, must be kept at reset value.

Bit 6 TIE: Trigger interrupt enable

0: Trigger interrupt disabled.
1: Trigger interrupt enabled.

Bit 5 Reserved, must be kept at reset value.

Bit 4 CC4IE: Capture/Compare 4 interrupt enable

0: CC4 interrupt disabled.
1: CC4 interrupt enabled.

Bit 3 CC3IE: Capture/Compare 3 interrupt enable

0: CC3 interrupt disabled
1: CC3 interrupt enabled

General-purpose timers (TIM5) RM0401

374/771 RM0401 Rev 3

15.4.5 TIMx status register (TIMx_SR)

Address offset: 0x10

Reset value: 0x0000

Bit 2 CC2IE: Capture/Compare 2 interrupt enable

0: CC2 interrupt disabled
1: CC2 interrupt enabled

Bit 1 CC1IE: Capture/Compare 1 interrupt enable

0: CC1 interrupt disabled
1: CC1 interrupt enabled

Bit 0 UIE: Update interrupt enable

0: Update interrupt disabled
1: Update interrupt enabled

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. CC4OF CC3OF CC2OF CC1OF Res. Res. TIF Res. CC4IF CC3IF CC2IF CC1IF UIF

rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0

Bits 15:13 Reserved, must be kept at reset value.

Bit 12 CC4OF: Capture/Compare 4 overcapture flag

refer to CC1OF description

Bit 11 CC3OF: Capture/Compare 3 overcapture flag

refer to CC1OF description

Bit 10 CC2OF: Capture/compare 2 overcapture flag

refer to CC1OF description

Bit 9 CC1OF: Capture/Compare 1 overcapture flag

This flag is set by hardware only when the corresponding channel is configured in input
capture mode. It is cleared by software by writing it to ‘0.
0: No overcapture has been detected
1: The counter value has been captured in TIMx_CCR1 register while CC1IF flag was
already set

Bits 8:7 Reserved, must be kept at reset value.

Bit 6 TIF: Trigger interrupt flag

This flag is set by hardware on trigger event (active edge detected on TRGI input when the
slave mode controller is enabled in all modes but gated mode. It is set when the counter
starts or stops when gated mode is selected. It is cleared by software.
0: No trigger event occurred
1: Trigger interrupt pending

Bit 5 Reserved, must be kept at reset value.

Bit 4 CC4IF: Capture/Compare 4 interrupt flag

refer to CC1IF description

Bit 3 CC3IF: Capture/Compare 3 interrupt flag

refer to CC1IF description

RM0401 Rev 3 375/771

RM0401 General-purpose timers (TIM5)

389

Bit 2 CC2IF: Capture/Compare 2 interrupt flag

refer to CC1IF description

Bit 1 CC1IF: Capture/compare 1 interrupt flag

If channel CC1 is configured as output:
This flag is set by hardware when the counter matches the compare value, with some
exception in center-aligned mode (refer to the CMS bits in the TIMx_CR1 register
description). It is cleared by software.
0: No match
1: The content of the counter TIMx_CNT matches the content of the TIMx_CCR1 register.
When the contents of TIMx_CCR1 are greater than the contents of TIMx_ARR, the CC1IF bit
goes high on the counter overflow (in upcounting and up/down-counting modes) or underflow
(in downcounting mode)
If channel CC1 is configured as input:
This bit is set by hardware on a capture. It is cleared by software or by reading the
TIMx_CCR1 register.
0: No input capture occurred
1: The counter value has been captured in TIMx_CCR1 register (An edge has been detected
on IC1 which matches the selected polarity)

Bit 0 UIF: Update interrupt flag

″ This bit is set by hardware on an update event. It is cleared by software.
0: No update occurred.
1: Update interrupt pending. This bit is set by hardware when the registers are updated:

″ At overflow or underflow and if UDIS=0 in the TIMx_CR1 register.

″ When CNT is reinitialized by software using the UG bit in TIMx_EGR register, if URS=0
and UDIS=0 in the TIMx_CR1 register.

When CNT is reinitialized by a trigger event (refer to the synchro control register description),
if URS=0 and UDIS=0 in the TIMx_CR1 register.

General-purpose timers (TIM5) RM0401

376/771 RM0401 Rev 3

15.4.6 TIMx event generation register (TIMx_EGR)

Address offset: 0x14

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. Res. TG Res. CC4G CC3G CC2G CC1G UG

w w w w w w

Bits 15:7 Reserved, must be kept at reset value.

Bit 6 TG: Trigger generation

This bit is set by software in order to generate an event, it is automatically cleared by
hardware.
0: No action
1: The TIF flag is set in TIMx_SR register. Related interrupt or DMA transfer can occur if
enabled.

Bit 5 Reserved, must be kept at reset value.

Bit 4 CC4G: Capture/compare 4 generation

refer to CC1G description

Bit 3 CC3G: Capture/compare 3 generation

refer to CC1G description

Bit 2 CC2G: Capture/compare 2 generation

refer to CC1G description

Bit 1 CC1G: Capture/compare 1 generation

This bit is set by software in order to generate an event, it is automatically cleared by
hardware.
0: No action
1: A capture/compare event is generated on channel 1:
If channel CC1 is configured as output:
CC1IF flag is set, Corresponding interrupt or DMA request is sent if enabled.
If channel CC1 is configured as input:
The current value of the counter is captured in TIMx_CCR1 register. The CC1IF flag is set,
the corresponding interrupt or DMA request is sent if enabled. The CC1OF flag is set if the
CC1IF flag was already high.

Bit 0 UG: Update generation

This bit can be set by software, it is automatically cleared by hardware.
0: No action
1: Re-initialize the counter and generates an update of the registers. Note that the prescaler
counter is cleared too (anyway the prescaler ratio is not affected). The counter is cleared if
the center-aligned mode is selected or if DIR=0 (upcounting), else it takes the auto-reload
value (TIMx_ARR) if DIR=1 (downcounting).

RM0401 Rev 3 377/771

RM0401 General-purpose timers (TIM5)

389

15.4.7 TIMx capture/compare mode register 1 (TIMx_CCMR1)

Address offset: 0x18

Reset value: 0x0000

The channels can be used in input (capture mode) or in output (compare mode). The
direction of a channel is defined by configuring the corresponding CCxS bits. All the other
bits of this register have a different function in input and in output mode. For a given bit,
OCxx describes its function when the channel is configured in output, ICxx describes its
function when the channel is configured in input. So one must take care that the same bit
can have a different meaning for the input stage and for the output stage.

Output compare mode

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. OC2M[2:0] OC2PE OC2FE
CC2S[1:0]

Res. OC1M[2:0] OC1PE OC1FE
CC1S[1:0]

IC2F[3:0] IC2PSC[1:0] IC1F[3:0] IC1PSC[1:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 15 Reserved, must be kept at reset value.

Bits 14:12 OC2M[2:0]: Output compare 2 mode

Bit 11 OC2PE: Output compare 2 preload enable

Bit 10 OC2FE: Output compare 2 fast enable

Bits 9:8 CC2S[1:0]: Capture/Compare 2 selection

This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC2 channel is configured as output
01: CC2 channel is configured as input, IC2 is mapped on TI2
10: CC2 channel is configured as input, IC2 is mapped on TI1
11: CC2 channel is configured as input, IC2 is mapped on TRC. This mode is working only if
an internal trigger input is selected through the TS bit (TIMx_SMCR register)

Note: CC2S bits are writable only when the channel is OFF (CC2E = 0 in TIMx_CCER).

Bit 7 Reserved, must be kept at reset value.

General-purpose timers (TIM5) RM0401

378/771 RM0401 Rev 3

Bits 6:4 OC1M: Output compare 1 mode

These bits define the behavior of the output reference signal OC1REF from which OC1 and
OC1N are derived. OC1REF is active high whereas OC1 and OC1N active level depends
on CC1P and CC1NP bits.
000: Frozen - The comparison between the output compare register TIMx_CCR1 and the
counter TIMx_CNT has no effect on the outputs.(this mode is used to generate a timing
base).
001: Set channel 1 to active level on match. OC1REF signal is forced high when the counter
TIMx_CNT matches the capture/compare register 1 (TIMx_CCR1).
010: Set channel 1 to inactive level on match. OC1REF signal is forced low when the
counter TIMx_CNT matches the capture/compare register 1 (TIMx_CCR1).
011: Toggle - OC1REF toggles when TIMx_CNT=TIMx_CCR1.
100: Force inactive level - OC1REF is forced low.
101: Force active level - OC1REF is forced high.
110: PWM mode 1 - In upcounting, channel 1 is active as long as TIMx_CNT<TIMx_CCR1
else inactive. In downcounting, channel 1 is inactive (OC1REF=‘0) as long as
TIMx_CNT>TIMx_CCR1 else active (OC1REF=1).
111: PWM mode 2 - In upcounting, channel 1 is inactive as long as TIMx_CNT<TIMx_CCR1
else active. In downcounting, channel 1 is active as long as TIMx_CNT>TIMx_CCR1 else
inactive.

Note: In PWM mode 1 or 2, the OCREF level changes only when the result of the
comparison changes or when the output compare mode switches from “frozen” mode
to “PWM” mode.

Bit 3 OC1PE: Output compare 1 preload enable

0: Preload register on TIMx_CCR1 disabled. TIMx_CCR1 can be written at anytime, the
new value is taken in account immediately.
1: Preload register on TIMx_CCR1 enabled. Read/Write operations access the preload
register. TIMx_CCR1 preload value is loaded in the active register at each update event.

Note: 1: These bits can not be modified as long as LOCK level 3 has been programmed
(LOCK bits in TIMx_BDTR register) and CC1S=00 (the channel is configured in
output).

2: The PWM mode can be used without validating the preload register only in one-
pulse mode (OPM bit set in TIMx_CR1 register). Else the behavior is not guaranteed.

Bit 2 OC1FE: Output compare 1 fast enable

This bit is used to accelerate the effect of an event on the trigger in input on the CC output.
0: CC1 behaves normally depending on counter and CCR1 values even when the trigger is
ON. The minimum delay to activate CC1 output when an edge occurs on the trigger input is
5 clock cycles.
1: An active edge on the trigger input acts like a compare match on CC1 output. Then, OC
is set to the compare level independently from the result of the comparison. Delay to sample
the trigger input and to activate CC1 output is reduced to 3 clock cycles. OCFE acts only if
the channel is configured in PWM1 or PWM2 mode.

Bits 1:0 CC1S: Capture/Compare 1 selection

This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC1 channel is configured as output.
01: CC1 channel is configured as input, IC1 is mapped on TI1.
10: CC1 channel is configured as input, IC1 is mapped on TI2.
11: CC1 channel is configured as input, IC1 is mapped on TRC. This mode is working only if
an internal trigger input is selected through TS bit (TIMx_SMCR register)

Note: CC1S bits are writable only when the channel is OFF (CC1E = 0 in TIMx_CCER).

RM0401 Rev 3 379/771

RM0401 General-purpose timers (TIM5)

389

Input capture mode

Bits 15:12 IC2F: Input capture 2 filter

Bits 11:10 IC2PSC[1:0]: Input capture 2 prescaler

Bits 9:8 CC2S: Capture/compare 2 selection

This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC2 channel is configured as output.
01: CC2 channel is configured as input, IC2 is mapped on TI2.
10: CC2 channel is configured as input, IC2 is mapped on TI1.
11: CC2 channel is configured as input, IC2 is mapped on TRC. This mode is working only if
an internal trigger input is selected through TS bit (TIMx_SMCR register)

Note: CC2S bits are writable only when the channel is OFF (CC2E = 0 in TIMx_CCER).

Bits 7:4 IC1F: Input capture 1 filter

This bit-field defines the frequency used to sample TI1 input and the length of the digital filter
applied to TI1. The digital filter is made of an event counter in which N events are needed to
validate a transition on the output:
0000: No filter, sampling is done at fDTS
0001: fSAMPLING=fCK_INT, N=2
0010: fSAMPLING=fCK_INT, N=4
0011: fSAMPLING=fCK_INT, N=8
0100: fSAMPLING=fDTS/2, N=6
0101: fSAMPLING=fDTS/2, N=8
0110: fSAMPLING=fDTS/4, N=6
0111: fSAMPLING=fDTS/4, N=8
1000: fSAMPLING=fDTS/8, N=6
1001: fSAMPLING=fDTS/8, N=8
1010: fSAMPLING=fDTS/16, N=5
1011: fSAMPLING=fDTS/16, N=6
1100: fSAMPLING=fDTS/16, N=8
1101: fSAMPLING=fDTS/32, N=5
1110: fSAMPLING=fDTS/32, N=6
1111: fSAMPLING=fDTS/32, N=8

Bits 3:2 IC1PSC: Input capture 1 prescaler

This bit-field defines the ratio of the prescaler acting on CC1 input (IC1).
The prescaler is reset as soon as CC1E=0 (TIMx_CCER register).
00: no prescaler, capture is done each time an edge is detected on the capture input
01: capture is done once every 2 events
10: capture is done once every 4 events
11: capture is done once every 8 events

Bits 1:0 CC1S: Capture/Compare 1 selection

This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC1 channel is configured as output
01: CC1 channel is configured as input, IC1 is mapped on TI1
10: CC1 channel is configured as input, IC1 is mapped on TI2
11: CC1 channel is configured as input, IC1 is mapped on TRC. This mode is working only if
an internal trigger input is selected through TS bit (TIMx_SMCR register)

Note: CC1S bits are writable only when the channel is OFF (CC1E = 0 in TIMx_CCER).

General-purpose timers (TIM5) RM0401

380/771 RM0401 Rev 3

15.4.8 TIMx capture/compare mode register 2 (TIMx_CCMR2)

Address offset: 0x1C

Reset value: 0x0000

Refer to the above CCMR1 register description.

Output compare mode

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. OC4M[2:0] OC4PE OC4FE
CC4S[1:0]

Res. OC3M[2:0] OC3PE OC3FE
CC3S[1:0]

IC4F[3:0] IC4PSC[1:0] IC3F[3:0] IC3PSC[1:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 15 Reserved, must be kept at reset value.

Bits 14:12 OC4M: Output compare 4 mode

Bit 11 OC4PE: Output compare 4 preload enable

Bit 10 OC4FE: Output compare 4 fast enable

Bits 9:8 CC4S: Capture/Compare 4 selection

This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC4 channel is configured as output
01: CC4 channel is configured as input, IC4 is mapped on TI4
10: CC4 channel is configured as input, IC4 is mapped on TI3
11: CC4 channel is configured as input, IC4 is mapped on TRC. This mode is working only if
an internal trigger input is selected through TS bit (TIMx_SMCR register)

Note: CC4S bits are writable only when the channel is OFF (CC4E = 0 in TIMx_CCER).

Bit 7 Reserved, must be kept at reset value.

Bits 6:4 OC3M: Output compare 3 mode

Bit 3 OC3PE: Output compare 3 preload enable

Bit 2 OC3FE: Output compare 3 fast enable

Bits 1:0 CC3S: Capture/Compare 3 selection

This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC3 channel is configured as output
01: CC3 channel is configured as input, IC3 is mapped on TI3
10: CC3 channel is configured as input, IC3 is mapped on TI4
11: CC3 channel is configured as input, IC3 is mapped on TRC. This mode is working only if
an internal trigger input is selected through TS bit (TIMx_SMCR register)

Note: CC3S bits are writable only when the channel is OFF (CC3E = 0 in TIMx_CCER).

RM0401 Rev 3 381/771

RM0401 General-purpose timers (TIM5)

389

Input capture mode

15.4.9 TIMx capture/compare enable register (TIMx_CCER)

Address offset: 0x20

Reset value: 0x0000

Bits 15:12 IC4F: Input capture 4 filter

Bits 11:10 IC4PSC: Input capture 4 prescaler

Bits 9:8 CC4S: Capture/Compare 4 selection

This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC4 channel is configured as output
01: CC4 channel is configured as input, IC4 is mapped on TI4
10: CC4 channel is configured as input, IC4 is mapped on TI3
11: CC4 channel is configured as input, IC4 is mapped on TRC. This mode is working only if
an internal trigger input is selected through TS bit (TIMx_SMCR register)

Note: CC4S bits are writable only when the channel is OFF (CC4E = 0 in TIMx_CCER).

Bits 7:4 IC3F: Input capture 3 filter

Bits 3:2 IC3PSC: Input capture 3 prescaler

Bits 1:0 CC3S: Capture/Compare 3 selection

This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC3 channel is configured as output
01: CC3 channel is configured as input, IC3 is mapped on TI3
10: CC3 channel is configured as input, IC3 is mapped on TI4
11: CC3 channel is configured as input, IC3 is mapped on TRC. This mode is working only if
an internal trigger input is selected through TS bit (TIMx_SMCR register)

Note: CC3S bits are writable only when the channel is OFF (CC3E = 0 in TIMx_CCER).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CC4NP Res. CC4P CC4E CC3NP Res. CC3P CC3E CC2NP Res. CC2P CC2E CC1NP Res. CC1P CC1E

rw rw rw rw rw rw rw rw rw rw rw rw

Bit 15 CC4NP: Capture/Compare 4 output Polarity.

Refer to CC1NP description

Bit 14 Reserved, must be kept at reset value.

Bit 13 CC4P: Capture/Compare 4 output Polarity.

refer to CC1P description

Bit 12 CC4E: Capture/Compare 4 output enable.

refer to CC1E description

Bit 11 CC3NP: Capture/Compare 3 output Polarity.

refer to CC1NP description

Bit 10 Reserved, must be kept at reset value.

Bit 9 CC3P: Capture/Compare 3 output Polarity.

refer to CC1P description

Bit 8 CC3E: Capture/Compare 3 output enable.

refer to CC1E description

General-purpose timers (TIM5) RM0401

382/771 RM0401 Rev 3

Note: The state of the external IO pins connected to the standard OCx channels depends on the
OCx channel state and the GPIO registers.

Bit 7 CC2NP: Capture/Compare 2 output Polarity.

refer to CC1NP description

Bit 6 Reserved, must be kept at reset value.

Bit 5 CC2P: Capture/Compare 2 output Polarity.

refer to CC1P description

Bit 4 CC2E: Capture/Compare 2 output enable.

refer to CC1E description

Bit 3 CC1NP: Capture/Compare 1 output Polarity.

CC1 channel configured as output:
CC1NP must be kept cleared in this case.
CC1 channel configured as input:
This bit is used in conjunction with CC1P to define TI1FP1/TI2FP1 polarity. refer to CC1P
description.

Bit 2 Reserved, must be kept at reset value.

Bit 1 CC1P: Capture/Compare 1 output Polarity.

CC1 channel configured as output:
0: OC1 active high
1: OC1 active low
CC1 channel configured as input:
CC1NP/CC1P bits select TI1FP1 and TI2FP1 polarity for trigger or capture operations.
00: noninverted/rising edge
Circuit is sensitive to TIxFP1 rising edge (capture, trigger in reset, external clock or trigger
mode), TIxFP1 is not inverted (trigger in gated mode, encoder mode).
01: inverted/falling edge
Circuit is sensitive to TIxFP1 falling edge (capture, trigger in reset, external clock or trigger
mode), TIxFP1 is inverted (trigger in gated mode, encoder mode).
10: reserved, do not use this configuration.
11: noninverted/both edges
Circuit is sensitive to both TIxFP1 rising and falling edges (capture, trigger in reset, external
clock or trigger mode), TIxFP1 is not inverted (trigger in gated mode). This configuration
must not be used for encoder mode.

Bit 0 CC1E: Capture/Compare 1 output enable.

CC1 channel configured as output:
0: Off - OC1 is not active
1: On - OC1 signal is output on the corresponding output pin
CC1 channel configured as input:
This bit determines if a capture of the counter value can actually be done into the input
capture/compare register 1 (TIMx_CCR1) or not.
0: Capture disabled
1: Capture enabled

Table 63. Output control bit for standard OCx channels

CCxE bit OCx output state

0 Output Disabled (OCx=0, OCx_EN=0)

1 OCx=OCxREF + Polarity, OCx_EN=1

RM0401 Rev 3 383/771

RM0401 General-purpose timers (TIM5)

389

15.4.10 TIMx counter (TIMx_CNT)

Address offset: 0x24

Reset value: 0x0000

15.4.11 TIMx prescaler (TIMx_PSC)

Address offset: 0x28

Reset value: 0x0000

15.4.12 TIMx auto-reload register (TIMx_ARR)

Address offset: 0x2C

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CNT[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 CNT[15:0]: Counter value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PSC[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 PSC[15:0]: Prescaler value

The counter clock frequency CK_CNT is equal to fCK_PSC / (PSC[15:0] + 1).
PSC contains the value to be loaded in the active prescaler register at each update event.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ARR[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 ARR[15:0]: Auto-reload value
ARR is the value to be loaded in the actual auto-reload register.
Refer to the Section 15.3.1: Time-base unit on page 341 for more details about ARR update
and behavior.
The counter is blocked while the auto-reload value is null.

General-purpose timers (TIM5) RM0401

384/771 RM0401 Rev 3

15.4.13 TIMx capture/compare register 1 (TIMx_CCR1)

Address offset: 0x34

Reset value: 0x0000 0000

15.4.14 TIMx capture/compare register 2 (TIMx_CCR2)

Address offset: 0x38

Reset value: 0x0000 0000

15.4.15 TIMx capture/compare register 3 (TIMx_CCR3)

Address offset: 0x3C

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

CCR1[31:16] (depending on timers)

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CCR1[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 CCR1[31:16]: High Capture/Compare 1 value

Bits 15:0 CCR1[15:0]: Low Capture/Compare 1 value

If channel CC1 is configured as output:
CCR1 is the value to be loaded in the actual capture/compare 1 register (preload value).
It is loaded permanently if the preload feature is not selected in the TIMx_CCMR1 register
(bit OC1PE). Else the preload value is copied in the active capture/compare 1 register when
an update event occurs.
The active capture/compare register contains the value to be compared to the counter
TIMx_CNT and signaled on OC1 output.

If channel CC1is configured as input:
CCR1 is the counter value transferred by the last input capture 1 event (IC1).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

CCR2[31:16] (depending on timers)

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CCR2[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 CCR2[31:16]: High Capture/Compare 2 value.

Bits 15:0 CCR2[15:0]: Low Capture/Compare 2 value

If channel CC2 is configured as output:
CCR2 is the value to be loaded in the actual capture/compare 2 register (preload value).
It is loaded permanently if the preload feature is not selected in the TIMx_CCMR register (bit
OC2PE). Else the preload value is copied in the active capture/compare 2 register when an
update event occurs.
The active capture/compare register contains the value to be compared to the counter
TIMx_CNT and signalled on OC2 output.
If channel CC2 is configured as input:
CCR2 is the counter value transferred by the last input capture 2 event (IC2).

RM0401 Rev 3 385/771

RM0401 General-purpose timers (TIM5)

389

Reset value: 0x0000 0000

15.4.16 TIMx capture/compare register 4 (TIMx_CCR4)

Address offset: 0x40

Reset value: 0x0000 0000

15.4.17 TIMx DMA control register (TIMx_DCR)

Address offset: 0x48

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

CCR3[31:16] (depending on timers)

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CCR3[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 CCR3[31:16]: High Capture/Compare 3 value.

Bits 15:0 CCR3[15:0]: Low Capture/Compare value

If channel CC3 is configured as output:
CCR3 is the value to be loaded in the actual capture/compare 3 register (preload value).
It is loaded permanently if the preload feature is not selected in the TIMx_CCMR register (bit
OC3PE). Else the preload value is copied in the active capture/compare 3 register when an
update event occurs.
The active capture/compare register contains the value to be compared to the counter
TIMx_CNT and signaled on OC3 output.
If channel CC3 is configured as input:
CCR3 is the counter value transferred by the last input capture 3 event (IC3).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

CCR4[31:16] (depending on timers)

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CCR4[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 CCR4[31:16]: High Capture/Compare 4 value

Bits 15:0 CCR4[15:0]: Low Capture/Compare value

1. if CC4 channel is configured as output (CC4S bits):
CCR4 is the value to be loaded in the actual capture/compare 4 register (preload value).
It is loaded permanently if the preload feature is not selected in the TIMx_CCMR register
(bit OC4PE). Else the preload value is copied in the active capture/compare 4 register
when an update event occurs.
The active capture/compare register contains the value to be compared to the counter
TIMx_CNT and signalled on OC4 output.

2. if CC4 channel is configured as input (CC4S bits in TIMx_CCMR4 register):
CCR4 is the counter value transferred by the last input capture 4 event (IC4).

General-purpose timers (TIM5) RM0401

386/771 RM0401 Rev 3

Reset value: 0x0000

15.4.18 TIMx DMA address for full transfer (TIMx_DMAR)

Address offset: 0x4C

Reset value: 0x0000

Example of how to use the DMA burst feature

In this example the timer DMA burst feature is used to update the contents of the CCRx
registers (x = 2, 3, 4) with the DMA transferring half words into the CCRx registers.

This is done in the following steps:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. DBL[4:0] Res. Res. Res. DBA[4:0]

rw rw rw rw rw rw rw rw rw rw

Bits 15:13 Reserved, must be kept at reset value.

Bits 12:8 DBL[4:0]: DMA burst length

This 5-bit vector defines the number of DMA transfers (the timer recognizes a burst transfer
when a read or a write access is done to the TIMx_DMAR address).
00000: 1 transfer,
00001: 2 transfers,
00010: 3 transfers,
...
10001: 18 transfers.

Bits 7:5 Reserved, must be kept at reset value.

Bits 4:0 DBA[4:0]: DMA base address

This 5-bit vector defines the base-address for DMA transfers (when read/write access are
done through the TIMx_DMAR address). DBA is defined as an offset starting from the
address of the TIMx_CR1 register.
Example:
00000: TIMx_CR1,
00001: TIMx_CR2,
00010: TIMx_SMCR,
...

Example: Let us consider the following transfer: DBL = 7 transfers & DBA = TIMx_CR1. In this
case the transfer is done to/from 7 registers starting from the TIMx_CR1 address.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DMAB[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 DMAB[15:0]: DMA register for burst accesses

A read or write operation to the DMAR register accesses the register located at the address

(TIMx_CR1 address) + (DBA + DMA index) x 4

where TIMx_CR1 address is the address of the control register 1, DBA is the DMA base
address configured in TIMx_DCR register, DMA index is automatically controlled by the
DMA transfer, and ranges from 0 to DBL (DBL configured in TIMx_DCR).

RM0401 Rev 3 387/771

RM0401 General-purpose timers (TIM5)

389

1. Configure the corresponding DMA channel as follows:

– DMA channel peripheral address is the DMAR register address

– DMA channel memory address is the address of the buffer in the RAM containing
the data to be transferred by DMA into CCRx registers.

– Number of data to transfer = 3 (See note below).

– Circular mode disabled.

2. Configure the DCR register by configuring the DBA and DBL bit fields as follows:
DBL = 3 transfers, DBA = 0xE.

3. Enable the TIMx update DMA request (set the UDE bit in the DIER register).

4. Enable TIMx

5. Enable the DMA channel

Note: This example is for the case where every CCRx register to be updated once. If every CCRx
register is to be updated twice for example, the number of data to transfer should be 6. Let's
take the example of a buffer in the RAM containing data1, data2, data3, data4, data5 and
data6. The data is transferred to the CCRx registers as follows: on the first update DMA
request, data1 is transferred to CCR2, data2 is transferred to CCR3, data3 is transferred to
CCR4 and on the second update DMA request, data4 is transferred to CCR2, data5 is
transferred to CCR3 and data6 is transferred to CCR4.

15.4.19 TIM5 option register (TIM5_OR)

Address offset: 0x50

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. TI4_RMP Res. Res. Res. Res. Res. Res.

rw rw

Bits 15:8 Reserved, must be kept at reset value.

Bits 7:6 TI4_RMP: Timer Input 4 remap

Set and cleared by software.
00: TIM5 Channel4 is connected to the GPIO: Refer to the Alternate function mapping table
in the datasheets.
01: the LSI internal clock is connected to the TIM5_CH4 input for calibration purposes
10: the LSE internal clock is connected to the TIM5_CH4 input for calibration purposes
11: the RTC wakeup interrupt is connected to TIM5_CH4 input for calibration purposes.
Wakeup interrupt should be enabled.

Bits 5:0 Reserved, must be kept at reset value.

General-purpose timers (TIM5) RM0401

388/771 RM0401 Rev 3

15.4.20 TIMx register map

TIMx registers are mapped as described in the table below:

Table 64. TIM5 register map and reset values

Offset Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

0x00
TIMx_CR1

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

. CKD
[1:0] A

R
P

E CMS
[1:0] D

IR

O
P

M

U
R

S

U
D

IS

C
E

N

Reset value 0 0 0 0 0 0 0 0 0 0

0x04
TIMx_CR2

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

T
I1

S

MMS[2:0]

C
C

D
S

R
es

.

R
es

.

R
es

.

Reset value 0 0 0 0 0

0x08
TIMx_SMCR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

E
T

P

E
C

E ETPS
[1:0]

ETF[3:0]

M
S

M

TS[2:0]

R
es

.

SMS[2:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x0C
TIMx_DIER

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

T
D

E

C
O

M
D

E

C
C

4
D

E

C
C

3
D

E

C
C

2
D

E

C
C

1
D

E

U
D

E

R
es

.

T
IE

R
es

.

C
C

4I
E

C
C

3I
E

C
C

2I
E

C
C

1I
E

U
IE

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0

0x10
TIMx_SR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

C
C

4
O

F

C
C

3
O

F

C
C

2
O

F

C
C

1
O

F

R
es

.

R
es

.

T
IF

R
es

.

C
C

4
IF

C
C

3
IF

C
C

2
IF

C
C

1
IF

U
IF

Reset value 0 0 0 0 0 0 0 0 0 0

0x14
TIMx_EGR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

T
G

R
es

.

C
C

4
G

C
C

3
G

C
C

2
G

C
C

1
G

U
G

Reset value 0 0 0 0 0 0

0x18

TIMx_CCMR1
Output Compare

mode R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

. OC2M
[2:0]

O
C

2P
E

O
C

2
F

E

CC2S
[1:0] R

es
. OC1M

[2:0]

O
C

1P
E

O
C

1
F

E

CC1S
[1:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TIMx_CCMR1
Input Capture

mode R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

IC2F[3:0]
IC2
PSC
[1:0]

CC2S
[1:0]

IC1F[3:0]
IC1
PSC
[1:0]

CC1S
[1:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x1C

TIMx_CCMR2
Output Compare

mode R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

. OC4M
[2:0]

O
C

4
P

E

O
C

4
F

E

CC4S
[1:0] R

es
. OC3M

[2:0]

O
C

3
P

E

O
C

3
F

E

CC3S
[1:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TIMx_CCMR2
Input Capture

mode R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

IC4F[3:0]
IC4
PSC
[1:0]

CC4S
[1:0]

IC3F[3:0]
IC3
PSC
[1:0]

CC3S
[1:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x20
TIMx_CCER

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

C
C

4
N

P

R
es

.

C
C

4P

C
C

4E

C
C

3
N

P

R
es

.

C
C

3P

C
C

3E

C
C

2
N

P

R
es

.

C
C

2P

C
C

2E

C
C

1
N

P

R
es

.

C
C

1P

C
C

1E

Reset value 0 0 0 0 0 0 0 0 0 0 0 0

0x24
TIMx_CNT CNT[31:16] CNT[15:0]

Reset value 0

RM0401 Rev 3 389/771

RM0401 General-purpose timers (TIM5)

389

Refer to Section 2.2 on page 41 for the register boundary addresses.

0x28
TIMx_PSC

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

PSC[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x2C
TIMx_ARR ARR[31:16] ARR[15:0]

Reset value 0

0x30 Reserved

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

0x34
TIMx_CCR1 CCR1[31:16] CCR1[15:0]

Reset value 0

0x38
TIMx_CCR2 CCR2[31:16] CCR2[15:0]

Reset value 0

0x3C
TIMx_CCR3 CCR3[31:16] CCR3[15:0]

Reset value 0

0x40
TIMx_CCR4 CCR4[31:16] CCR4[15:0]

Reset value 0

0x44 Reserved

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

0x48
TIMx_DCR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

DBL[4:0]
R

es
.

R
es

.

R
es

.

DBA[4:0]

Reset value 0 0 0 0 0 0 0 0 0 0

0x4C
TIMx_DMAR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

DMAB[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x50
TIM5_OR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

. IT4_
RMP R

es
.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

Reset value 0 0

Table 64. TIM5 register map and reset values (continued)

Offset Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

General-purpose timers (TIM9 and TIM11) RM0401

390/771 RM0401 Rev 3

16 General-purpose timers (TIM9 and TIM11)

16.1 TIM9 and TIM11 introduction

The TIM9 and TIM11 general-purpose timers consist of a 16-bit auto-reload counter driven
by a programmable prescaler.

They may be used for a variety of purposes, including measuring the pulse lengths of input
signals (input capture) or generating output waveforms (output compare, PWM).

Pulse lengths and waveform periods can be modulated from a few microseconds to several
milliseconds using the timer prescaler and the RCC clock controller prescalers.

16.2 TIM9 and TIM11 main features

16.2.1 TIM9 main features

The features of the TIM9 general-purpose timer include:

• 16-bit auto-reload upcounter

• 16-bit programmable prescaler used to divide the counter clock frequency by any factor
between 1 and 65536 (can be changed “on the fly”)

• Up to 2 independent channels for:

– Input capture

– Output compare

– PWM generation (edge-aligned mode)

– One-pulse mode output

• Synchronization circuit to control the timer with external signals and to interconnect
several timers together

• Interrupt generation on the following events:

– Update: counter overflow, counter initialization (by software or internal trigger)

– Trigger event (counter start, stop, initialization or count by internal trigger)

– Input capture

– Output compare

RM0401 Rev 3 391/771

RM0401 General-purpose timers (TIM9 and TIM11)

436

Figure 133. General-purpose timer block diagram (TIM9)

16.2.2 TIM11 main features

The features of general-purpose timer TIM11 include:

• 16-bit auto-reload upcounter

• 16-bit programmable prescaler used to divide the counter clock frequency by any factor
between 1 and 65536 (can be changed “on the fly”)

• independent channel for:

– Input capture

– Output compare

– PWM generation (edge-aligned mode)

– One-pulse mode output

• Interrupt generation on the following events:

– Update: counter overflow, counter initialization (by software)

– Input capture

– Output compare

Auto-reload register

Capture/Compare 1 register

Capture/Compare 2 register

U

U

U

CC1I

CC2I

Trigger
controller

Stop, Clear

TI1FP1

TI2FP2

 ITR0

 ITR1

 ITR2

 ITR3
TRGI

output
control

OC1OC1REF

OC2REF

U

UI

Reset, Enable, Count

IC1

IC2
Prescaler

PrescalerInput filter &
Edge detector

IC2PS

IC1PSTI1FP1

output
control

OC2

Reg

event

Notes:

Preload registers transferred
to active registers on U event
according to control bit

interrupt

TGI

TRC

TRC

ITR

TRC

TI1F_ED

Input filter &
Edge detector

CC1I

CC2I

TI1FP2

TI2FP1
TI2FP2

TI1

TI2

TIMx_CH1

TIMx_CH2

TIMx_CH1

TIMx_CH2

Prescaler COUNTER
+/-

CK_PSC PSC CNTCK_CNT

controller
mode
Slave

Internal clock (CK_INT)

ai17190

General-purpose timers (TIM9 and TIM11) RM0401

392/771 RM0401 Rev 3

Figure 134. General-purpose timer block diagram (TIM11)

RM0401 Rev 3 393/771

RM0401 General-purpose timers (TIM9 and TIM11)

436

16.3 TIM9 and TIM11 functional description

16.3.1 Time-base unit

The main block of the timer is a 16-bit counter with its related auto-reload register. The
counters counts up.

The counter clock can be divided by a prescaler.

The counter, the auto-reload register and the prescaler register can be written or read by
software. This is true even when the counter is running.

The time-base unit includes:

• Counter register (TIMx_CNT)

• Prescaler register (TIMx_PSC)

• Auto-reload register (TIMx_ARR)

The auto-reload register is preloaded. Writing to or reading from the auto-reload register
accesses the preload register. The content of the preload register are transferred into the
shadow register permanently or at each update event (UEV), depending on the auto-reload
preload enable bit (ARPE) in TIMx_CR1 register. The update event is sent when the counter
reaches the overflow and if the UDIS bit equals 0 in the TIMx_CR1 register. It can also be
generated by software. The generation of the update event is described in details for each
configuration.

The counter is clocked by the prescaler output CK_CNT, which is enabled only when the
counter enable bit (CEN) in TIMx_CR1 register is set (refer also to the slave mode controller
description to get more details on counter enabling).

Note that the counter starts counting 1 clock cycle after setting the CEN bit in the TIMx_CR1
register.

Prescaler description

The prescaler can divide the counter clock frequency by any factor between 1 and 65536. It
is based on a 16-bit counter controlled through a 16-bit register (in the TIMx_PSC register).
It can be changed on the fly as this control register is buffered. The new prescaler ratio is
taken into account at the next update event.

Figure 135 and Figure 136 give some examples of the counter behavior when the prescaler
ratio is changed on the fly.

General-purpose timers (TIM9 and TIM11) RM0401

394/771 RM0401 Rev 3

Figure 135. Counter timing diagram with prescaler division change from 1 to 2

Figure 136. Counter timing diagram with prescaler division change from 1 to 4

RM0401 Rev 3 395/771

RM0401 General-purpose timers (TIM9 and TIM11)

436

16.3.2 Counter modes

Upcounting mode

In upcounting mode, the counter counts from 0 to the auto-reload value (content of the
TIMx_ARR register), then restarts from 0 and generates a counter overflow event.

Setting the UG bit in the TIMx_EGR register (by software or by using the slave mode
controller on TIM9) also generates an update event.

The UEV event can be disabled by software by setting the UDIS bit in the TIMx_CR1
register. This is to avoid updating the shadow registers while writing new values in the
preload registers. Then no update event occurs until the UDIS bit has been written to 0.
However, the counter restarts from 0, as well as the counter of the prescaler (but the
prescale rate does not change). In addition, if the URS bit (update request selection) in
TIMx_CR1 register is set, setting the UG bit generates an update event UEV but without
setting the UIF flag (thus no interrupt is sent). This is to avoid generating both update and
capture interrupts when clearing the counter on the capture event.

When an update event occurs, all the registers are updated and the update flag (UIF bit in
TIMx_SR register) is set (depending on the URS bit):

• The auto-reload shadow register is updated with the preload value (TIMx_ARR),

• The buffer of the prescaler is reloaded with the preload value (content of the TIMx_PSC
register).

The following figures show some examples of the counter behavior for different clock
frequencies when TIMx_ARR=0x36.

Figure 137. Counter timing diagram, internal clock divided by 1

General-purpose timers (TIM9 and TIM11) RM0401

396/771 RM0401 Rev 3

Figure 138. Counter timing diagram, internal clock divided by 2

Figure 139. Counter timing diagram, internal clock divided by 4

Figure 140. Counter timing diagram, internal clock divided by N

RM0401 Rev 3 397/771

RM0401 General-purpose timers (TIM9 and TIM11)

436

Figure 141. Counter timing diagram, update event when ARPE=0
 (TIMx_ARR not preloaded)

Figure 142. Counter timing diagram, update event when ARPE=1
 (TIMx_ARR preloaded)

General-purpose timers (TIM9 and TIM11) RM0401

398/771 RM0401 Rev 3

16.3.3 Clock selection

The counter clock can be provided by the following clock sources:

• Internal clock (CK_INT)

• External clock mode1 (for TIM9): external input pin (TIx)

• Internal trigger inputs (ITRx) (for TIM9): connecting the trigger output from another
timer.

Internal clock source (CK_INT)

The internal clock source is the default clock source for TIM11.

For TIM9, the internal clock source is selected when the slave mode controller is disabled
(SMS=’000’). The CEN bit in the TIMx_CR1 register and the UG bit in the TIMx_EGR
register are then used as control bits and can be changed only by software (except for UG
which remains cleared). As soon as the CEN bit is programmed to 1, the prescaler is
clocked by the internal clock CK_INT.

Figure 143 shows the behavior of the control circuit and the upcounter in normal mode,
without prescaler.

Figure 143. Control circuit in normal mode, internal clock divided by 1

External clock source mode 1(TIM9)

This mode is selected when SMS=’111’ in the TIMx_SMCR register. The counter can count
at each rising or falling edge on a selected input.

RM0401 Rev 3 399/771

RM0401 General-purpose timers (TIM9 and TIM11)

436

Figure 144. TI2 external clock connection example

For example, to configure the upcounter to count in response to a rising edge on the TI2
input, use the following procedure:

1. Configure channel 2 to detect rising edges on the TI2 input by writing CC2S = ‘01’ in
the TIMx_CCMR1 register.

2. Configure the input filter duration by writing the IC2F[3:0] bits in the TIMx_CCMR1
register (if no filter is needed, keep IC2F=’0000’).

3. Select the rising edge polarity by writing CC2P=’0’ and CC2NP=’0’ in the TIMx_CCER
register.

4. Configure the timer in external clock mode 1 by writing SMS=’111’ in the TIMx_SMCR
register.

5. Select TI2 as the trigger input source by writing TS=’110’ in the TIMx_SMCR register.

6. Enable the counter by writing CEN=’1’ in the TIMx_CR1 register.

Note: The capture prescaler is not used for triggering, so it does not need to be configured.

When a rising edge occurs on TI2, the counter counts once and the TIF flag is set.

The delay between the rising edge on TI2 and the actual clock of the counter is due to the
resynchronization circuit on TI2 input.

Figure 145. Control circuit in external clock mode 1

General-purpose timers (TIM9 and TIM11) RM0401

400/771 RM0401 Rev 3

16.3.4 Capture/compare channels

Each Capture/Compare channel is built around a capture/compare register (including a
shadow register), a input stage for capture (with digital filter, multiplexing and prescaler) and
an output stage (with comparator and output control).

Figure 146 to Figure 148 give an overview of one capture/compare channel.

The input stage samples the corresponding TIx input to generate a filtered signal TIxF.
Then, an edge detector with polarity selection generates a signal (TIxFPx) which can be
used as trigger input by the slave mode controller or as the capture command. It is
prescaled before the capture register (ICxPS).

Figure 146. Capture/compare channel (example: channel 1 input stage)

The output stage generates an intermediate waveform which is then used for reference:
OCxRef (active high). The polarity acts at the end of the chain.

RM0401 Rev 3 401/771

RM0401 General-purpose timers (TIM9 and TIM11)

436

Figure 147. Capture/compare channel 1 main circuit

Figure 148. Output stage of capture/compare channel (channel 1)

The capture/compare block is made of one preload register and one shadow register. Write
and read always access the preload register.

In capture mode, captures are actually done in the shadow register, which is copied into the
preload register.

In compare mode, the content of the preload register is copied into the shadow register
which is compared to the counter.

16.3.5 Input capture mode

In Input capture mode, the Capture/Compare Registers (TIMx_CCRx) are used to latch the
value of the counter after a transition detected by the corresponding ICx signal. When a
capture occurs, the corresponding CCXIF flag (TIMx_SR register) is set and an interrupt or
a DMA request can be sent if they are enabled. If a capture occurs while the CCxIF flag was
already high, then the over-capture flag CCxOF (TIMx_SR register) is set. CCxIF can be

General-purpose timers (TIM9 and TIM11) RM0401

402/771 RM0401 Rev 3

cleared by software by writing it to ‘0’ or by reading the captured data stored in the
TIMx_CCRx register. CCxOF is cleared when it is written with 0.

The following example shows how to capture the counter value in TIMx_CCR1 when TI1
input rises. To do this, use the following procedure:

1. Select the active input: TIMx_CCR1 must be linked to the TI1 input, so write the CC1S
bits to ‘01’ in the TIMx_CCMR1 register. As soon as CC1S becomes different from ‘00’,
the channel is configured in input mode and the TIMx_CCR1 register becomes read-
only.

2. Program the appropriate input filter duration in relation with the signal connected to the
timer (by programming the ICxF bits in the TIMx_CCMRx register if the input is one of
the TIx inputs). Let’s imagine that, when toggling, the input signal is not stable during at
must 5 internal clock cycles. We must program a filter duration longer than these 5
clock cycles. We can validate a transition on TI1 when 8 consecutive samples with the
new level have been detected (sampled at fDTS frequency). Then write IC1F bits to
‘0011’ in the TIMx_CCMR1 register.

3. Select the edge of the active transition on the TI1 channel by programming CC1P and
CC1NP bits to ‘00’ in the TIMx_CCER register (rising edge in this case).

4. Program the input prescaler. In our example, we wish the capture to be performed at
each valid transition, so the prescaler is disabled (write IC1PS bits to ‘00’ in the
TIMx_CCMR1 register).

5. Enable capture from the counter into the capture register by setting the CC1E bit in the
TIMx_CCER register.

6. If needed, enable the related interrupt request by setting the CC1IE bit in the
TIMx_DIER register.

When an input capture occurs:

• The TIMx_CCR1 register gets the value of the counter on the active transition.

• CC1IF flag is set (interrupt flag). CC1OF is also set if at least two consecutive captures
occurred whereas the flag was not cleared.

• An interrupt is generated depending on the CC1IE bit.

In order to handle the overcapture, it is recommended to read the data before the
overcapture flag. This is to avoid missing an overcapture which could happen after reading
the flag and before reading the data.

Note: IC interrupt requests can be generated by software by setting the corresponding CCxG bit in
the TIMx_EGR register.

16.3.6 PWM input mode (only for TIM9)

This mode is a particular case of input capture mode. The procedure is the same except:

• Two ICx signals are mapped on the same TIx input.

• These 2 ICx signals are active on edges with opposite polarity.

• One of the two TIxFP signals is selected as trigger input and the slave mode controller
is configured in reset mode.

For example, one can measure the period (in TIMx_CCR1 register) and the duty cycle (in
TIMx_CCR2 register) of the PWM applied on TI1 using the following procedure (depending
on CK_INT frequency and prescaler value):

RM0401 Rev 3 403/771

RM0401 General-purpose timers (TIM9 and TIM11)

436

1. Select the active input for TIMx_CCR1: write the CC1S bits to ‘01’ in the TIMx_CCMR1
register (TI1 selected).

2. Select the active polarity for TI1FP1 (used both for capture in TIMx_CCR1 and counter
clear): program the CC1P and CC1NP bits to ‘00’ (active on rising edge).

3. Select the active input for TIMx_CCR2: write the CC2S bits to ‘10’ in the TIMx_CCMR1
register (TI1 selected).

4. Select the active polarity for TI1FP2 (used for capture in TIMx_CCR2): program the
CC2P and CC2NP bits to ‘11’ (active on falling edge).

5. Select the valid trigger input: write the TS bits to ‘101’ in the TIMx_SMCR register
(TI1FP1 selected).

6. Configure the slave mode controller in reset mode: write the SMS bits to ‘100’ in the
TIMx_SMCR register.

7. Enable the captures: write the CC1E and CC2E bits to ‘1’ in the TIMx_CCER register.

Figure 149. PWM input mode timing

1. The PWM input mode can be used only with the TIMx_CH1/TIMx_CH2 signals due to the fact that only
TI1FP1 and TI2FP2 are connected to the slave mode controller.

16.3.7 Forced output mode

In output mode (CCxS bits = ‘00’ in the TIMx_CCMRx register), each output compare signal
(OCxREF and then OCx) can be forced to active or inactive level directly by software,
independently of any comparison between the output compare register and the counter.

To force an output compare signal (OCXREF/OCx) to its active level, one just needs to write
‘101’ in the OCxM bits in the corresponding TIMx_CCMRx register. Thus OCXREF is forced
high (OCxREF is always active high) and OCx get opposite value to CCxP polarity bit.

For example: CCxP=’0’ (OCx active high) => OCx is forced to high level.

The OCxREF signal can be forced low by writing the OCxM bits to ‘100’ in the
TIMx_CCMRx register.

Anyway, the comparison between the TIMx_CCRx shadow register and the counter is still
performed and allows the flag to be set. Interrupt requests can be sent accordingly. This is
described in the output compare mode section below.

TI1

TIMx_CNT 0000 0001 0002 0003 0004 00000004

TIMx_CCR1

TIMx_CCR2

0004

0002

IC1 capture

IC2 capture

reset counter

IC2 capture
pulse width

IC1 capture
period
measurementmeasurement

ai15413

General-purpose timers (TIM9 and TIM11) RM0401

404/771 RM0401 Rev 3

16.3.8 Output compare mode

This function is used to control an output waveform or indicating when a period of time has
elapsed.

When a match is found between the capture/compare register and the counter, the output
compare function:

1. Assigns the corresponding output pin to a programmable value defined by the output
compare mode (OCxM bits in the TIMx_CCMRx register) and the output polarity (CCxP
bit in the TIMx_CCER register). The output pin can keep its level (OCXM=’000’), be set
active (OCxM=’001’), be set inactive (OCxM=’010’) or can toggle (OCxM=’011’) on
match.

2. Sets a flag in the interrupt status register (CCxIF bit in the TIMx_SR register).

3. Generates an interrupt if the corresponding interrupt mask is set (CCXIE bit in the
TIMx_DIER register).

The TIMx_CCRx registers can be programmed with or without preload registers using the
OCxPE bit in the TIMx_CCMRx register.

In output compare mode, the update event UEV has no effect on OCxREF and OCx output.
The timing resolution is one count of the counter. Output compare mode can also be used to
output a single pulse (in One-pulse mode).

Procedure:

1. Select the counter clock (internal, external, prescaler).

2. Write the desired data in the TIMx_ARR and TIMx_CCRx registers.

3. Set the CCxIE bit if an interrupt request is to be generated.

4. Select the output mode. For example:

– Write OCxM = ‘011’ to toggle OCx output pin when CNT matches CCRx

– Write OCxPE = ‘0’ to disable preload register

– Write CCxP = ‘0’ to select active high polarity

– Write CCxE = ‘1’ to enable the output

5. Enable the counter by setting the CEN bit in the TIMx_CR1 register.

The TIMx_CCRx register can be updated at any time by software to control the output
waveform, provided that the preload register is not enabled (OCxPE=’0’, else TIMx_CCRx
shadow register is updated only at the next update event UEV). An example is given in
Figure 150.

RM0401 Rev 3 405/771

RM0401 General-purpose timers (TIM9 and TIM11)

436

Figure 150. Output compare mode, toggle on OC1.

16.3.9 PWM mode

Pulse Width Modulation mode allows to generate a signal with a frequency determined by
the value of the TIMx_ARR register and a duty cycle determined by the value of the
TIMx_CCRx register.

The PWM mode can be selected independently on each channel (one PWM per OCx
output) by writing ‘110’ (PWM mode 1) or ‘111’ (PWM mode 2) in the OCxM bits in the
TIMx_CCMRx register. The corresponding preload register must be enabled by setting the
OCxPE bit in the TIMx_CCMRx register, and eventually the auto-reload preload register (in
upcounting or center-aligned modes) by setting the ARPE bit in the TIMx_CR1 register.

As the preload registers are transferred to the shadow registers only when an update event
occurs, before starting the counter, all registers must be initialized by setting the UG bit in
the TIMx_EGR register.

The OCx polarity is software programmable using the CCxP bit in the TIMx_CCER register.
It can be programmed as active high or active low. The OCx output is enabled by the CCxE
bit in the TIMx_CCER register. Refer to the TIMx_CCERx register description for more
details.

In PWM mode (1 or 2), TIMx_CNT and TIMx_CCRx are always compared to determine
whether TIMx_CNT ≤ TIMx_CCRx.

The timer is able to generate PWM in edge-aligned mode only since the counter is
upcounting.

PWM edge-aligned mode

In the following example, we consider PWM mode 1. The reference PWM signal OCxREF is
high as long as TIMx_CNT < TIMx_CCRx else it becomes low. If the compare value in
TIMx_CCRx is greater than the auto-reload value (in TIMx_ARR) then OCxREF is held at
‘1’. If the compare value is 0 then OCxRef is held at ‘0’. Figure 151 shows some edge-
aligned PWM waveforms in an example where TIMx_ARR=8.

General-purpose timers (TIM9 and TIM11) RM0401

406/771 RM0401 Rev 3

Figure 151. Edge-aligned PWM waveforms (ARR=8)

16.3.10 One-pulse mode

One-pulse mode (OPM) is a particular case of the previous modes. It allows the counter to
be started in response to a stimulus and to generate a pulse with a programmable length
after a programmable delay.

Starting the counter can be controlled through the slave mode controller. Generating the
waveform can be done in output compare mode or PWM mode. One-pulse mode is selected
by setting the OPM bit in the TIMx_CR1 register. This makes the counter stop automatically
at the next update event UEV.

A pulse can be correctly generated only if the compare value is different from the counter
initial value. Before starting (when the timer is waiting for the trigger), the configuration must
be as follows:

CNT < CCRx ≤ ARR (in particular, 0 < CCRx)

RM0401 Rev 3 407/771

RM0401 General-purpose timers (TIM9 and TIM11)

436

Figure 152. Example of one pulse mode.

For example one may want to generate a positive pulse on OC1 with a length of tPULSE and
after a delay of tDELAY as soon as a positive edge is detected on the TI2 input pin.

Use TI2FP2 as trigger 1:

1. Map TI2FP2 to TI2 by writing CC2S=’01’ in the TIMx_CCMR1 register.

2. TI2FP2 must detect a rising edge, write CC2P=’0’ and CC2NP = ‘0’ in the TIMx_CCER
register.

3. Configure TI2FP2 as trigger for the slave mode controller (TRGI) by writing TS=’110’ in
the TIMx_SMCR register.

4. TI2FP2 is used to start the counter by writing SMS to ‘110’ in the TIMx_SMCR register
(trigger mode).

The OPM waveform is defined by writing the compare registers (taking into account the
clock frequency and the counter prescaler).

• The tDELAY is defined by the value written in the TIMx_CCR1 register.

• The tPULSE is defined by the difference between the auto-reload value and the compare
value (TIMx_ARR - TIMx_CCR1).

• Let’s say one want to build a waveform with a transition from ‘0’ to ‘1’ when a compare
match occurs and a transition from ‘1’ to ‘0’ when the counter reaches the auto-reload
value. To do this PWM mode 2 must be enabled by writing OC1M=’111’ in the
TIMx_CCMR1 register. Optionally the preload registers can be enabled by writing
OC1PE=’1’ in the TIMx_CCMR1 register and ARPE in the TIMx_CR1 register. In this
case one has to write the compare value in the TIMx_CCR1 register, the auto-reload
value in the TIMx_ARR register, generate an update by setting the UG bit and wait for
external trigger event on TI2. CC1P is written to ‘0’ in this example.

Since only 1 pulse (Single mode) is needed, a 1 must be written in the OPM bit in the
TIMx_CR1 register to stop the counter at the next update event (when the counter rolls over
from the auto-reload value back to 0). When OPM bit in the TIMx_CR1 register is set to '0',
so the Repetitive Mode is selected.

General-purpose timers (TIM9 and TIM11) RM0401

408/771 RM0401 Rev 3

Particular case: OCx fast enable

In One-pulse mode, the edge detection on TIx input set the CEN bit which enables the
counter. Then the comparison between the counter and the compare value makes the
output toggle. But several clock cycles are needed for these operations and it limits the
minimum delay tDELAY min we can get.

If one wants to output a waveform with the minimum delay, the OCxFE bit can be set in the
TIMx_CCMRx register. Then OCxRef (and OCx) are forced in response to the stimulus,
without taking in account the comparison. Its new level is the same as if a compare match
had occurred. OCxFE acts only if the channel is configured in PWM1 or PWM2 mode.

16.3.11 TIM9 external trigger synchronization

The TIM9 timers can be synchronized with an external trigger in several modes: Reset
mode, Gated mode and Trigger mode.

Slave mode: Reset mode

The counter and its prescaler can be reinitialized in response to an event on a trigger input.
Moreover, if the URS bit from the TIMx_CR1 register is low, an update event UEV is
generated. Then all the preloaded registers (TIMx_ARR, TIMx_CCRx) are updated.

In the following example, the upcounter is cleared in response to a rising edge on TI1 input:

1. Configure the channel 1 to detect rising edges on TI1. Configure the input filter duration
(in this example, we do not need any filter, so we keep IC1F=’0000’). The capture
prescaler is not used for triggering, so it does not need to be configured. The CC1S bits
select the input capture source only, CC1S = ‘01’ in the TIMx_CCMR1 register.
Program CC1P and CC1NP to ‘00’ in TIMx_CCER register to validate the polarity (and
detect rising edges only).

2. Configure the timer in reset mode by writing SMS=’100’ in TIMx_SMCR register. Select
TI1 as the input source by writing TS=’101’ in TIMx_SMCR register.

3. Start the counter by writing CEN=’1’ in the TIMx_CR1 register.

The counter starts counting on the internal clock, then behaves normally until TI1 rising
edge. When TI1 rises, the counter is cleared and restarts from 0. In the meantime, the
trigger flag is set (TIF bit in the TIMx_SR register) and an interrupt request can be sent if
enabled (depending on the TIE bit in TIMx_DIER register).

The following figure shows this behavior when the auto-reload register TIMx_ARR=0x36.
The delay between the rising edge on TI1 and the actual reset of the counter is due to the
resynchronization circuit on TI1 input.

RM0401 Rev 3 409/771

RM0401 General-purpose timers (TIM9 and TIM11)

436

Figure 153. Control circuit in reset mode

Slave mode: Gated mode

The counter can be enabled depending on the level of a selected input.

In the following example, the upcounter counts only when TI1 input is low:

1. Configure the channel 1 to detect low levels on TI1. Configure the input filter duration
(in this example, we do not need any filter, so we keep IC1F=’0000’). The capture
prescaler is not used for triggering, so it does not need to be configured. The CC1S bits
select the input capture source only, CC1S=’01’ in TIMx_CCMR1 register. Program
CC1P=’1’ and CC1NP= ‘0’ in TIMx_CCER register to validate the polarity (and detect
low level only).

2. Configure the timer in gated mode by writing SMS=’101’ in TIMx_SMCR register.
Select TI1 as the input source by writing TS=’101’ in TIMx_SMCR register.

3. Enable the counter by writing CEN=’1’ in the TIMx_CR1 register (in gated mode, the
counter doesn’t start if CEN=’0’, whatever is the trigger input level).

The counter starts counting on the internal clock as long as TI1 is low and stops as soon as
TI1 becomes high. The TIF flag in the TIMx_SR register is set both when the counter starts
or stops.

The delay between the rising edge on TI1 and the actual stop of the counter is due to the
resynchronization circuit on TI1 input.

General-purpose timers (TIM9 and TIM11) RM0401

410/771 RM0401 Rev 3

Figure 154. Control circuit in gated mode

Slave mode: Trigger mode

The counter can start in response to an event on a selected input.

In the following example, the upcounter starts in response to a rising edge on TI2 input:

1. Configure the channel 2 to detect rising edges on TI2. Configure the input filter duration
(in this example, we do not need any filter, so we keep IC2F=’0000’). The capture
prescaler is not used for triggering, so it does not need to be configured. The CC2S bits
are configured to select the input capture source only, CC2S=’01’ in TIMx_CCMR1
register. Program CC2P=’1’ and CC2NP=’0’ in TIMx_CCER register to validate the
polarity (and detect low level only).

2. Configure the timer in trigger mode by writing SMS=’110’ in TIMx_SMCR register.
Select TI2 as the input source by writing TS=’110’ in TIMx_SMCR register.

When a rising edge occurs on TI2, the counter starts counting on the internal clock and the
TIF flag is set.

The delay between the rising edge on TI2 and the actual start of the counter is due to the
resynchronization circuit on TI2 input.

Figure 155. Control circuit in trigger mode

RM0401 Rev 3 411/771

RM0401 General-purpose timers (TIM9 and TIM11)

436

16.3.12 Debug mode

When the microcontroller enters debug mode (Cortex®-M4 with FPU core halted), the TIMx
counter either continues to work normally or stops, depending on DBG_TIMx_STOP
configuration bit in DBGMCU module. For more details, refer to Section 26.16.2: Debug
support for timers, watchdog, and I2C.

16.4 TIM9 registers

Refer to Section 1.2 on page 34 for a list of abbreviations used in register descriptions.

The peripheral registers have to be written by half-words (16 bits) or words (32 bits). Read
accesses can be done by bytes (8 bits), half-words (16 bits) or words (32 bits).

16.4.1 TIM9 control register 1 (TIMx_CR1)

Address offset: 0x00

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. CKD[1:0] ARPE Res. Res. Res. OPM URS UDIS CEN

rw rw rw rw rw rw rw

Bits 15:10 Reserved, must be kept at reset value.

Bits 9:8 CKD: Clock division

This bit-field indicates the division ratio between the timer clock (CK_INT) frequency and
sampling clock used by the digital filters (TIx),
00: tDTS = tCK_INT
01: tDTS = 2 × tCK_INT
10: tDTS = 4 × tCK_INT
11: Reserved

Bit 7 ARPE: Auto-reload preload enable

0: TIMx_ARR register is not buffered.
1: TIMx_ARR register is buffered.

Bits 6:4 Reserved, must be kept at reset value.

Bit 3 OPM: One-pulse mode

0: Counter is not stopped on the update event
1: Counter stops counting on the next update event (clearing the CEN bit).

General-purpose timers (TIM9 and TIM11) RM0401

412/771 RM0401 Rev 3

Bit 2 URS: Update request source

This bit is set and cleared by software to select the UEV event sources.
0: Any of the following events generates an update interrupt if enabled:

– Counter overflow

– Setting the UG bit
1: Only counter overflow generates an update interrupt if enabled.

Bit 1 UDIS: Update disable

This bit is set and cleared by software to enable/disable update event (UEV) generation.
0: UEV enabled. An UEV is generated by one of the following events:

– Counter overflow

– Setting the UG bit
Buffered registers are then loaded with their preload values.
1: UEV disabled. No UEV is generated, shadow registers keep their value (ARR, PSC,
CCRx). The counter and the prescaler are reinitialized if the UG bit is set.

Bit 0 CEN: Counter enable

0: Counter disabled
1: Counter enabled

CEN is cleared automatically in one-pulse mode, when an update event occurs.

RM0401 Rev 3 413/771

RM0401 General-purpose timers (TIM9 and TIM11)

436

16.4.2 TIM9 slave mode control register (TIMx_SMCR)

Address offset: 0x08

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. MSM TS[2:0] Res. SMS[2:0]

rw rw rw rw rw rw rw

Bits 15:8 Reserved, must be kept at reset value.

Bit 7 MSM: Master/Slave mode

0: No action
1: The effect of an event on the trigger input (TRGI) is delayed to allow a perfect
synchronization between the current timer and its slaves (through TRGO). It is useful in
order to synchronize several timers on a single external event.

Bits 6:4 TS: Trigger selection

This bitfield selects the trigger input to be used to synchronize the counter.
000: Internal Trigger 0 (ITR0)
001: Internal Trigger 1 (ITR1)
010: Internal Trigger 2 (ITR2)
011: Internal Trigger 3 (ITR3)
100: TI1 Edge Detector (TI1F_ED)
101: Filtered Timer Input 1 (TI1FP1)
110: Filtered Timer Input 2 (TI2FP2)
111: Reserved.
See Table 65 for more details on the meaning of ITRx for each timer.

Note: These bits must be changed only when they are not used (e.g. when SMS=’000’) to
avoid wrong edge detections at the transition.

Bit 3 Reserved, must be kept at reset value.

Bits 2:0 SMS: Slave mode selection

When external signals are selected, the active edge of the trigger signal (TRGI) is linked to
the polarity selected on the external input (see Input control register and Control register
descriptions.
000: Slave mode disabled - if CEN = 1 then the prescaler is clocked directly by the internal
clock
001: Reserved
010: Reserved
011: Reserved
100: Reset mode - Rising edge of the selected trigger input (TRGI) reinitializes the counter
and generates an update of the registers
101: Gated mode - The counter clock is enabled when the trigger input (TRGI) is high. The
counter stops (but is not reset) as soon as the trigger becomes low. Counter starts and stops
are both controlled
110: Trigger mode - The counter starts on a rising edge of the trigger TRGI (but it is not
reset). Only the start of the counter is controlled
111: External clock mode 1 - Rising edges of the selected trigger (TRGI) clock the counter

Note: The Gated mode must not be used if TI1F_ED is selected as the trigger input
(TS=’100’). Indeed, TI1F_ED outputs 1 pulse for each transition on TI1F, whereas the
Gated mode checks the level of the trigger signal.

General-purpose timers (TIM9 and TIM11) RM0401

414/771 RM0401 Rev 3

16.4.3 TIM9 Interrupt enable register (TIMx_DIER)

Address offset: 0x0C

Reset value: 0x0000

Table 65. TIMx internal trigger connections

Slave TIM ITR0 (TS = ‘000’) ITR1 (TS = ‘001’) ITR2 (TS = ‘010’) ITR3 (TS = ‘011’)

TIM5 Reserved LPTIM Reserved Reserved

TIM9 Reserved LPTIM Reserved TIM11

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. Res. TIE Res. Res. Res. CC2IE CC1IE UIE

rw rw rw rw

Bits 15:7 Reserved, must be kept at reset value.

Bit 6 TIE: Trigger interrupt enable

0: Trigger interrupt disabled.
1: Trigger interrupt enabled.

Bits 5:3 Reserved, must be kept at reset value.

Bit 2 CC2IE: Capture/Compare 2 interrupt enable

0: CC2 interrupt disabled.
1: CC2 interrupt enabled.

Bit 1 CC1IE: Capture/Compare 1 interrupt enable

0: CC1 interrupt disabled.
1: CC1 interrupt enabled.

Bit 0 UIE: Update interrupt enable

0: Update interrupt disabled.
1: Update interrupt enabled.

RM0401 Rev 3 415/771

RM0401 General-purpose timers (TIM9 and TIM11)

436

16.4.4 TIM9 status register (TIMx_SR)

Address offset: 0x10

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. CC2OF CC1OF Res. Res. TIF Res. Res. Res. CC2IF CC1IF UIF

rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0

Bits 15:11 Reserved, must be kept at reset value.

Bit 10 CC2OF: Capture/compare 2 overcapture flag

refer to CC1OF description

Bit 9 CC1OF: Capture/Compare 1 overcapture flag

This flag is set by hardware only when the corresponding channel is configured in input
capture mode. It is cleared by software by writing it to ‘0’.
0: No overcapture has been detected.
1: The counter value has been captured in TIMx_CCR1 register while CC1IF flag was
already set

Bits 8:7 Reserved, must be kept at reset value.

Bit 6 TIF: Trigger interrupt flag

This flag is set by hardware on trigger event (active edge detected on TRGI input when the
slave mode controller is enabled in all modes but gated mode. It is set when the counter
starts or stops when gated mode is selected. It is cleared by software.
0: No trigger event occurred.
1: Trigger interrupt pending.

Bits 5:3 Reserved, must be kept at reset value.

Bit 2 CC2IF: Capture/Compare 2 interrupt flag

refer to CC1IF description

General-purpose timers (TIM9 and TIM11) RM0401

416/771 RM0401 Rev 3

Bit 1 CC1IF: Capture/compare 1 interrupt flag

If channel CC1 is configured as output:
This flag is set by hardware when the counter matches the compare value. It is cleared by
software.
0: No match.
1: The content of the counter TIMx_CNT matches the content of the TIMx_CCR1 register.
When the contents of TIMx_CCR1 are greater than the contents of TIMx_ARR, the CC1IF
bit goes high on the counter overflow.
If channel CC1 is configured as input:
This bit is set by hardware on a capture. It is cleared by software or by reading the
TIMx_CCR1 register.
0: No input capture occurred.
1: The counter value has been captured in TIMx_CCR1 register (an edge has been detected
on IC1 which matches the selected polarity).

Bit 0 UIF: Update interrupt flag

This bit is set by hardware on an update event. It is cleared by software.
0: No update occurred.
1: Update interrupt pending. This bit is set by hardware when the registers are updated:

– At overflow and if UDIS=’0’ in the TIMx_CR1 register.

– When CNT is reinitialized by software using the UG bit in TIMx_EGR register, if URS=’0’ and
UDIS=’0’ in the TIMx_CR1 register.

– When CNT is reinitialized by a trigger event (refer to the synchro control register
description), if URS=’0’ and UDIS=’0’ in the TIMx_CR1 register.

RM0401 Rev 3 417/771

RM0401 General-purpose timers (TIM9 and TIM11)

436

16.4.5 TIM9 event generation register (TIMx_EGR)

Address offset: 0x14

Reset value: 0x0000

16.4.6 TIM9 capture/compare mode register 1 (TIMx_CCMR1)

Address offset: 0x18

Reset value: 0x0000

The channels can be used in input (capture mode) or in output (compare mode). The
direction of a channel is defined by configuring the corresponding CCxS bits. All the other
bits in this register have different functions in input and output modes. For a given bit, OCxx
describes its function when the channel is configured in output mode, ICxx describes its
function when the channel is configured in input mode. So one must take care that the same
bit can have different meanings for the input stage and the output stage.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. Res. TG Res. Res. Res. CC2G CC1G UG

w w w w

Bits 15:7 Reserved, must be kept at reset value.

Bit 6 TG: Trigger generation

This bit is set by software in order to generate an event, it is automatically cleared by
hardware.
0: No action
1: The TIF flag is set in the TIMx_SR register. Related interrupt can occur if enabled

Bits 5:3 Reserved, must be kept at reset value.

Bit 2 CC2G: Capture/compare 2 generation

refer to CC1G description

Bit 1 CC1G: Capture/compare 1 generation

This bit is set by software to generate an event, it is automatically cleared by hardware.
0: No action
1: A capture/compare event is generated on channel 1:
If channel CC1 is configured as output:
the CC1IF flag is set, the corresponding interrupt is sent if enabled.
If channel CC1 is configured as input:
The current counter value is captured in the TIMx_CCR1 register. The CC1IF flag is set, the
corresponding interrupt is sent if enabled. The CC1OF flag is set if the CC1IF flag was
already high.

Bit 0 UG: Update generation

This bit can be set by software, it is automatically cleared by hardware.
0: No action
1: Re-initializes the counter and generates an update of the registers. The prescaler counter
is also cleared and the prescaler ratio is not affected. The counter is cleared.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. OC2M[2:0] OC2PE OC2FE
CC2S[1:0]

Res. OC1M[2:0] OC1PE OC1FE
CC1S[1:0]

IC2F[3:0] IC2PSC[1:0] IC1F[3:0] IC1PSC[1:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

General-purpose timers (TIM9 and TIM11) RM0401

418/771 RM0401 Rev 3

Output compare mode

Bit 15 Reserved, must be kept at reset value.

Bits 14:12 OC2M[2:0]: Output compare 2 mode

Bit 11 OC2PE: Output compare 2 preload enable

Bit 10 OC2FE: Output compare 2 fast enable

Bits 9:8 CC2S[1:0]: Capture/Compare 2 selection

This bitfield defines the direction of the channel (input/output) as well as the used input.
00: CC2 channel is configured as output
01: CC2 channel is configured as input, IC2 is mapped on TI2
10: CC2 channel is configured as input, IC2 is mapped on TI1
11: CC2 channel is configured as input, IC2 is mapped on TRC. This mode works only if an
internal trigger input is selected through the TS bit (TIMx_SMCR register

Note: The CC2S bits are writable only when the channel is OFF (CC2E = 0 in TIMx_CCER).

Bit 7 Reserved, must be kept at reset value.

Bits 6:4 OC1M: Output compare 1 mode

These bits define the behavior of the output reference signal OC1REF from which OC1 and
OC1N are derived. OC1REF is active high whereas the active levels of OC1 and OC1N
depend on the CC1P and CC1NP bits, respectively.
000: Frozen - The comparison between the output compare register TIMx_CCR1 and the
counter TIMx_CNT has no effect on the outputs.(this mode is used to generate a timing
base).
001: Set channel 1 to active level on match. The OC1REF signal is forced high when the
TIMx_CNT counter matches the capture/compare register 1 (TIMx_CCR1).
010: Set channel 1 to inactive level on match. The OC1REF signal is forced low when the
TIMx_CNT counter matches the capture/compare register 1 (TIMx_CCR1).
011: Toggle - OC1REF toggles when TIMx_CNT=TIMx_CCR1
100: Force inactive level - OC1REF is forced low
101: Force active level - OC1REF is forced high
110: PWM mode 1 - In upcounting, channel 1 is active as long as TIMx_CNT<TIMx_CCR1
else it is inactive. In downcounting, channel 1 is inactive (OC1REF=‘0) as long as
TIMx_CNT>TIMx_CCR1, else it is active (OC1REF=’1’)
111: PWM mode 2 - In upcounting, channel 1 is inactive as long as TIMx_CNT<TIMx_CCR1
else it is active. In downcounting, channel 1 is active as long as TIMx_CNT>TIMx_CCR1
else it is inactive.

Note: In PWM mode 1 or 2, the OCREF level changes only when the result of the
comparison changes or when the output compare mode switches from “frozen” mode
to “PWM” mode.

RM0401 Rev 3 419/771

RM0401 General-purpose timers (TIM9 and TIM11)

436

Bit 3 OC1PE: Output compare 1 preload enable

0: Preload register on TIMx_CCR1 disabled. TIMx_CCR1 can be written at anytime, the
new value is taken into account immediately
1: Preload register on TIMx_CCR1 enabled. Read/Write operations access the preload
register. TIMx_CCR1 preload value is loaded into the active register at each update event

Note: The PWM mode can be used without validating the preload register only in one-pulse
mode (OPM bit set in the TIMx_CR1 register). Else the behavior is not guaranteed.

Bit 2 OC1FE: Output compare 1 fast enable

This bit is used to accelerate the effect of an event on the trigger in input on the CC output.
0: CC1 behaves normally depending on the counter and CCR1 values even when the
trigger is ON. The minimum delay to activate the CC1 output when an edge occurs on the
trigger input is 5 clock cycles
1: An active edge on the trigger input acts like a compare match on the CC1 output. Then,
OC is set to the compare level independently of the result of the comparison. Delay to
sample the trigger input and to activate CC1 output is reduced to 3 clock cycles. OC1FE
acts only if the channel is configured in PWM1 or PWM2 mode.

Bits 1:0 CC1S: Capture/Compare 1 selection

This bitfield defines the direction of the channel (input/output) as well as the used input.
00: CC1 channel is configured as output
01: CC1 channel is configured as input, IC1 is mapped on TI1
10: CC1 channel is configured as input, IC1 is mapped on TI2
11: CC1 channel is configured as input, IC1 is mapped on TRC. This mode works only if an
internal trigger input is selected through the TS bit (TIMx_SMCR register)

Note: The CC1S bits are writable only when the channel is OFF (CC1E = 0 in TIMx_CCER).

General-purpose timers (TIM9 and TIM11) RM0401

420/771 RM0401 Rev 3

Input capture mode

Bits 15:12 IC2F: Input capture 2 filter

Bits 11:10 IC2PSC[1:0]: Input capture 2 prescaler

Bits 9:8 CC2S: Capture/compare 2 selection

This bitfield defines the direction of the channel (input/output) as well as the used input.
00: CC2 channel is configured as output
01: CC2 channel is configured as input, IC2 is mapped on TI2
10: CC2 channel is configured as input, IC2 is mapped on TI1
11: CC2 channel is configured as input, IC2 is mapped on TRC. This mode works only if an
internal trigger input is selected through the TS bit (TIMx_SMCR register)

Note: The CC2S bits are writable only when the channel is OFF (CC2E = 0 in TIMx_CCER).

Bits 7:4 IC1F: Input capture 1 filter

This bitfield defines the frequency used to sample the TI1 input and the length of the digital
filter applied to TI1. The digital filter is made of an event counter in which N consecutive
events are needed to validate a transition on the output:
0000: No filter, sampling is done at fDTS1000: fSAMPLING=fDTS/8, N=6
0001: fSAMPLING=fCK_INT, N=21001: fSAMPLING=fDTS/8, N=8
0010: fSAMPLING=fCK_INT, N=41010: fSAMPLING=fDTS/16, N=5
0011: fSAMPLING=fCK_INT, N=8 1011: fSAMPLING=fDTS/16, N=6
0100: fSAMPLING=fDTS/2, N=61100: fSAMPLING=fDTS/16, N=8
0101: fSAMPLING=fDTS/2, N=81101: fSAMPLING=fDTS/32, N=5
0110: fSAMPLING=fDTS/4, N=61110: fSAMPLING=fDTS/32, N=6
0111: fSAMPLING=fDTS/4, N=81111: fSAMPLING=fDTS/32, N=8

Bits 3:2 IC1PSC: Input capture 1 prescaler

This bitfield defines the ratio of the prescaler acting on the CC1 input (IC1).
The prescaler is reset as soon as CC1E=’0’ (TIMx_CCER register).
00: no prescaler, capture is done each time an edge is detected on the capture input
01: capture is done once every 2 events
10: capture is done once every 4 events
11: capture is done once every 8 events

Bits 1:0 CC1S: Capture/Compare 1 selection

This bitfield defines the direction of the channel (input/output) as well as the used input.
00: CC1 channel is configured as output
01: CC1 channel is configured as input, IC1 is mapped on TI1
10: CC1 channel is configured as input, IC1 is mapped on TI2
11: CC1 channel is configured as input, IC1 is mapped on TRC. This mode is working only if
an internal trigger input is selected through TS bit (TIMx_SMCR register)

Note: The CC1S bits are writable only when the channel is OFF (CC1E = 0 in TIMx_CCER).

RM0401 Rev 3 421/771

RM0401 General-purpose timers (TIM9 and TIM11)

436

16.4.7 TIM9 capture/compare enable register (TIMx_CCER)

Address offset: 0x20

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. CC2NP Res. CC2P CC2E CC1NP Res. CC1P CC1E

rw rw rw rw rw rw

Bits 15:8 Reserved, must be kept at reset value.

Bit 7 CC2NP: Capture/Compare 2 output Polarity

refer to CC1NP description

Bit 6 Reserved, must be kept at reset value.

Bit 5 CC2P: Capture/Compare 2 output Polarity

refer to CC1P description

Bit 4 CC2E: Capture/Compare 2 output enable

refer to CC1E description

Bit 3 CC1NP: Capture/Compare 1 complementary output Polarity

CC1 channel configured as output: CC1NP must be kept cleared
CC1 channel configured as input: CC1NP is used in conjunction with CC1P to define
TI1FP1/TI2FP1 polarity (refer to CC1P description).

Bit 2 Reserved, must be kept at reset value.

Bit 1 CC1P: Capture/Compare 1 output Polarity.

CC1 channel configured as output:
0: OC1 active high.
1: OC1 active low.
CC1 channel configured as input:
CC1NP/CC1P bits select TI1FP1 and TI2FP1 polarity for trigger or capture operations.
00: noninverted/rising edge
Circuit is sensitive to TIxFP1 rising edge (capture, trigger in reset, external clock or trigger
mode), TIxFP1 is not inverted (trigger in gated mode, encoder mode).
01: inverted/falling edge
Circuit is sensitive to TIxFP1 falling edge (capture, trigger in reset, external clock or trigger
mode), TIxFP1 is inverted (trigger in gated mode, encoder mode).
10: reserved, do not use this configuration.

Note: 11: noninverted/both edges
Circuit is sensitive to both TIxFP1 rising and falling edges (capture, trigger in reset,
external clock or trigger mode), TIxFP1 is not inverted (trigger in gated mode). This
configuration must not be used for encoder mode.

Bit 0 CC1E: Capture/Compare 1 output enable.

CC1 channel configured as output:
0: Off - OC1 is not active.
1: On - OC1 signal is output on the corresponding output pin.
CC1 channel configured as input:
This bit determines if a capture of the counter value can actually be done into the input
capture/compare register 1 (TIMx_CCR1) or not.
0: Capture disabled.
1: Capture enabled.

General-purpose timers (TIM9 and TIM11) RM0401

422/771 RM0401 Rev 3

Note: The states of the external I/O pins connected to the standard OCx channels depend on the
state of the OCx channel and on the GPIO registers.

16.4.8 TIM9 counter (TIMx_CNT)

Address offset: 0x24

Reset value: 0x0000 0000

16.4.9 TIM9 prescaler (TIMx_PSC)

Address offset: 0x28

Reset value: 0x0000

16.4.10 TIM9 auto-reload register (TIMx_ARR)

Address offset: 0x2C

Reset value: 0x0000

Table 66. Output control bit for standard OCx channels

CCxE bit OCx output state

0 Output disabled (OCx=’0’, OCx_EN=’0’)

1 OCx=OCxREF + Polarity, OCx_EN=’1’

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CNT[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 CNT[15:0]: Counter value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PSC[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 PSC[15:0]: Prescaler value

The counter clock frequency CK_CNT is equal to fCK_PSC / (PSC[15:0] + 1).
PSC contains the value to be loaded into the active prescaler register at each update event.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ARR[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 ARR[15:0]: Auto-reload value

ARR is the value to be loaded into the actual auto-reload register.
Refer to Section 16.3.1: Time-base unit for more details about ARR update and behavior.
The counter is blocked while the auto-reload value is null.

RM0401 Rev 3 423/771

RM0401 General-purpose timers (TIM9 and TIM11)

436

16.4.11 TIM9 capture/compare register 1 (TIMx_CCR1)

Address offset: 0x34

Reset value: 0x0000

16.4.12 TIM9 capture/compare register 2 (TIMx_CCR2)

Address offset: 0x38

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CCR1[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 CCR1[15:0]: Capture/Compare 1 value

If channel CC1 is configured as output:
CCR1 is the value to be loaded into the actual capture/compare 1 register (preload value).
It is loaded permanently if the preload feature is not selected in the TIMx_CCMR1 register
(OC1PE bit). Else the preload value is copied into the active capture/compare 1 register
when an update event occurs.
The active capture/compare register contains the value to be compared to the TIMx_CNT
counter and signaled on the OC1 output.
If channel CC1is configured as input:
CCR1 is the counter value transferred by the last input capture 1 event (IC1).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CCR2[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 CCR2[15:0]: Capture/Compare 2 value

If channel CC2 is configured as output:
CCR2 is the value to be loaded into the actual capture/compare 2 register (preload value).
It is loaded permanently if the preload feature is not selected in the TIMx_CCMR2 register
(OC2PE bit). Else the preload value is copied into the active capture/compare 2 register
when an update event occurs.
The active capture/compare register contains the value to be compared to the TIMx_CNT
counter and signalled on the OC2 output.
If channel CC2 is configured as input:
CCR2 is the counter value transferred by the last input capture 2 event (IC2).

General-purpose timers (TIM9 and TIM11) RM0401

424/771 RM0401 Rev 3

16.4.13 TIM9 register map

TIM9 registers are mapped as 16-bit addressable registers as described below:

Table 67. TIM9 register map and reset values

Offset Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

0x00
TIMx_CR1

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

. CKD
[1:0] A

R
P

E

R
es

.

R
es

.

R
es

.

O
P

M

U
R

S

U
D

IS

C
E

N

Reset value 0 0 0 0 0 0 0

0x08
TIMx_SMCR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

M
S

M

TS[2:0]

R
es

.

SMS[2:0]

Reset value 0 0 0 0

0x0C
TIMx_DIER

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

T
IE

R
es

.

R
es

.

R
es

.

C
C

2I
E

C
C

1I
E

U
IE

Reset value 0 0 0 0

0x10
TIMx_SR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

C
C

2O
F

C
C

1O
F

R
es

.

R
es

.

T
IF

R
es

.

R
es

.

R
es

.

C
C

2I
F

C
C

1I
F

U
IF

Reset value 0 0 0 0 0 0

0x14
TIMx_EGR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

T
G

R
es

.

R
es

.

R
es

.

C
C

2G

C
C

1G

U
G

Reset value 0 0 0 0

0x18

TIMx_CCMR1
Output Compare

mode R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

. OC2M
[2:0]

O
C

2
P

E

O
C

2
F

E
CC2S
[1:0] R

es
. OC1M

[2:0]

O
C

1
P

E

O
C

1
F

E CC1
S

[1:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TIMx_CCMR1
Input Capture

mode R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

IC2F[3:0]
IC2
PSC
[1:0]

CC2S
[1:0]

IC1F[3:0]
IC1
PSC
[1:0]

CC1
S

[1:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x1C Reserved

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.
0x20

TIMx_CCER

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

C
C

2N
P

R
es

.

C
C

2P

C
C

2E

C
C

1N
P

R
es

.

C
C

1P

C
C

1E

Reset value 0 0 0 0 0 0

0x24
TIMx_CNT

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

CNT[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x28
TIMx_PSC

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

PSC[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x2C
TIMx_ARR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

ARR[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x30 Reserved

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

RM0401 Rev 3 425/771

RM0401 General-purpose timers (TIM9 and TIM11)

436

Refer to Section 2.2 on page 41 for the register boundary addresses.

0x34
TIMx_CCR1

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

CCR1[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x38
TIMx_CCR2

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

CCR2[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x3C to
0x4C

Reserved

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

Table 67. TIM9 register map and reset values (continued)

Offset Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

General-purpose timers (TIM9 and TIM11) RM0401

426/771 RM0401 Rev 3

16.5 TIM11 registers

The peripheral registers have to be written by half-words (16 bits) or words (32 bits). Read
accesses can be done by bytes (8 bits), half-words (16 bits) or words (32 bits).

16.5.1 TIM11 control register 1 (TIMx_CR1)

Address offset: 0x00

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. CKD[1:0] ARPE Res. Res. Res. Res. URS UDIS CEN

rw rw rw rw rw rw

Bits 15:10 Reserved, must be kept at reset value.

Bits 9:8 CKD: Clock division

This bit-field indicates the division ratio between the timer clock (CK_INT) frequency and
sampling clock used by the digital filters (TIx),
00: tDTS = tCK_INT
01: tDTS = 2 × tCK_INT
10: tDTS = 4 × tCK_INT
11: Reserved

Bit 7 ARPE: Auto-reload preload enable

0: TIMx_ARR register is not buffered
1: TIMx_ARR register is buffered

Bits 6:3 Reserved, must be kept at reset value.

Bit 2 URS: Update request source

This bit is set and cleared by software to select the update interrupt (UEV) sources.
0: Any of the following events generate an UEV if enabled:

– Counter overflow

– Setting the UG bit
1: Only counter overflow generates an UEV if enabled.

Bit 1 UDIS: Update disable

This bit is set and cleared by software to enable/disable update interrupt (UEV) event
generation.
0: UEV enabled. An UEV is generated by one of the following events:

– Counter overflow

– Setting the UG bit.
Buffered registers are then loaded with their preload values.
1: UEV disabled. No UEV is generated, shadow registers keep their value (ARR, PSC,
CCRx). The counter and the prescaler are reinitialized if the UG bit is set.

Bit 0 CEN: Counter enable

0: Counter disabled
1: Counter enabled

RM0401 Rev 3 427/771

RM0401 General-purpose timers (TIM9 and TIM11)

436

16.5.2 TIM11 Interrupt enable register (TIMx_DIER)

Address offset: 0x0C

Reset value: 0x0000

16.5.3 TIM11 status register (TIMx_SR)

Address offset: 0x10

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. CC1IE UIE

rw rw

Bits 15:2 Reserved, must be kept at reset value.

Bit 1 CC1IE: Capture/Compare 1 interrupt enable

0: CC1 interrupt disabled
1: CC1 interrupt enabled

Bit 0 UIE: Update interrupt enable

0: Update interrupt disabled
1: Update interrupt enabled

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. CC1OF Res. Res. Res. Res. Res. Res. Res. CC1IF UIF

rc_w0 rc_w0 rc_w0

Bits 15:10 Reserved, must be kept at reset value.

Bit 9 CC1OF: Capture/Compare 1 overcapture flag

This flag is set by hardware only when the corresponding channel is configured in input
capture mode. It is cleared by software by writing it to ‘0’.
0: No overcapture has been detected.
1: The counter value has been captured in TIMx_CCR1 register while CC1IF flag was
already set

Bits 8:2 Reserved, must be kept at reset value.

General-purpose timers (TIM9 and TIM11) RM0401

428/771 RM0401 Rev 3

16.5.4 TIM11 event generation register (TIMx_EGR)

Address offset: 0x14

Reset value: 0x0000

Bit 1 CC1IF: Capture/compare 1 interrupt flag

If channel CC1 is configured as output:
This flag is set by hardware when the counter matches the compare value. It is cleared by
software.
0: No match.
1: The content of the counter TIMx_CNT matches the content of the TIMx_CCR1 register.
When the contents of TIMx_CCR1 are greater than the contents of TIMx_ARR, the CC1IF bit
goes high on the counter overflow.
If channel CC1 is configured as input:
This bit is set by hardware on a capture. It is cleared by software or by reading the
TIMx_CCR1 register.
0: No input capture occurred.
1: The counter value has been captured in TIMx_CCR1 register (an edge has been detected
on IC1 which matches the selected polarity).

Bit 0 UIF: Update interrupt flag

This bit is set by hardware on an update event. It is cleared by software.
0: No update occurred.
1: Update interrupt pending. This bit is set by hardware when the registers are updated:

– At overflow and if UDIS=’0’ in the TIMx_CR1 register.

– When CNT is reinitialized by software using the UG bit in TIMx_EGR register, if
URS=’0’ and UDIS=’0’ in the TIMx_CR1 register.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. CC1G UG

w w

Bits 15:2 Reserved, must be kept at reset value.

Bit 1 CC1G: Capture/compare 1 generation

This bit is set by software in order to generate an event, it is automatically cleared by
hardware.
0: No action
1: A capture/compare event is generated on channel 1:
If channel CC1 is configured as output:
CC1IF flag is set, Corresponding interrupt or is sent if enabled.
If channel CC1 is configured as input:
The current value of the counter is captured in TIMx_CCR1 register. The CC1IF flag is set,
the corresponding interrupt is sent if enabled. The CC1OF flag is set if the CC1IF flag was
already high.

Bit 0 UG: Update generation

This bit can be set by software, it is automatically cleared by hardware.
0: No action
1: Re-initialize the counter and generates an update of the registers. Note that the prescaler
counter is cleared too (anyway the prescaler ratio is not affected). The counter is cleared.

RM0401 Rev 3 429/771

RM0401 General-purpose timers (TIM9 and TIM11)

436

16.5.5 TIM11 capture/compare mode register 1
(TIMx_CCMR1)

Address offset: 0x18

Reset value: 0x0000

The channels can be used in input (capture mode) or in output (compare mode). The
direction of a channel is defined by configuring the corresponding CCxS bits. All the other
bits of this register have a different function in input and in output mode. For a given bit,
OCxx describes its function when the channel is configured in output, ICxx describes its
function when the channel is configured in input. So the user must take care that the same
bit can have a different meaning for the input stage and for the output stage.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. Res. OC1M[2:0] OC1PE OC1FE
CC1S[1:0]

Res. Res. Res. Res. Res. Res. Res. Res. IC1F[3:0] IC1PSC[1:0]

rw rw rw rw rw rw rw rw

General-purpose timers (TIM9 and TIM11) RM0401

430/771 RM0401 Rev 3

Output compare mode

Bits 15:7 Reserved, must be kept at reset value.

Bits 6:4 OC1M: Output compare 1 mode

These bits define the behavior of the output reference signal OC1REF from which OC1 is
derived. OC1REF is active high whereas OC1 active level depends on CC1P bit.
000: Frozen. The comparison between the output compare register TIMx_CCR1 and the
counter TIMx_CNT has no effect on the outputs.
001: Set channel 1 to active level on match. OC1REF signal is forced high when the counter
TIMx_CNT matches the capture/compare register 1 (TIMx_CCR1).
010: Set channel 1 to inactive level on match. OC1REF signal is forced low when the
counter TIMx_CNT matches the capture/compare register 1 (TIMx_CCR1).
011: Toggle - OC1REF toggles when TIMx_CNT = TIMx_CCR1.
100: Force inactive level - OC1REF is forced low.
101: Force active level - OC1REF is forced high.
110: PWM mode 1 - Channel 1 is active as long as TIMx_CNT < TIMx_CCR1 else inactive.
111: PWM mode 2 - Channel 1 is inactive as long as TIMx_CNT < TIMx_CCR1 else active.

Note: In PWM mode 1 or 2, the OCREF level changes when the result of the comparison
changes or when the output compare mode switches from frozen to PWM mode.

Bit 3 OC1PE: Output compare 1 preload enable

0: Preload register on TIMx_CCR1 disabled. TIMx_CCR1 can be written at anytime, the
new value is taken in account immediately.
1: Preload register on TIMx_CCR1 enabled. Read/Write operations access the preload
register. TIMx_CCR1 preload value is loaded in the active register at each update event.

Note: The PWM mode can be used without validating the preload register only in one pulse
mode (OPM bit set in TIMx_CR1 register). Else the behavior is not guaranteed.

Bit 2 OC1FE: Output compare 1 fast enable

This bit is used to accelerate the effect of an event on the trigger in input on the CC output.
0: CC1 behaves normally depending on counter and CCR1 values even when the trigger is
ON. The minimum delay to activate CC1 output when an edge occurs on the trigger input is
5 clock cycles.
1: An active edge on the trigger input acts like a compare match on CC1 output. OC is then
set to the compare level independently of the result of the comparison. Delay to sample the
trigger input and to activate CC1 output is reduced to 3 clock cycles. OC1FE acts only if the
channel is configured in PWM1 or PWM2 mode.

Bits 1:0 CC1S: Capture/Compare 1 selection

This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC1 channel is configured as output.
01: CC1 channel is configured as input, IC1 is mapped on TI1.
10:
11:

Note: CC1S bits are writable only when the channel is OFF (CC1E = 0 in TIMx_CCER).

RM0401 Rev 3 431/771

RM0401 General-purpose timers (TIM9 and TIM11)

436

Input capture mode

Bits 15:8 Reserved, must be kept at reset value.

Bits 7:4 IC1F: Input capture 1 filter

This bit-field defines the frequency used to sample TI1 input and the length of the digital filter
applied to TI1. The digital filter is made of an event counter in which N consecutive events
are needed to validate a transition on the output:
0000: No filter, sampling is done at fDTS1000: fSAMPLING=fDTS/8, N=6
0001: fSAMPLING=fCK_INT, N=21001: fSAMPLING=fDTS/8, N=8
0010: fSAMPLING=fCK_INT, N=41010: fSAMPLING=fDTS/16, N=5
0011: fSAMPLING=fCK_INT, N=81011: fSAMPLING=fDTS/16, N=6
0100: fSAMPLING=fDTS/2, N=61100: fSAMPLING=fDTS/16, N=8
0101: fSAMPLING=fDTS/2, N=81101: fSAMPLING=fDTS/32, N=5
0110: fSAMPLING=fDTS/4, N=61110: fSAMPLING=fDTS/32, N=6
0111: fSAMPLING=fDTS/4, N=81111: fSAMPLING=fDTS/32, N=8

Bits 3:2 IC1PSC: Input capture 1 prescaler

This bit-field defines the ratio of the prescaler acting on CC1 input (IC1).
The prescaler is reset as soon as CC1E=’0’ (TIMx_CCER register).
00: no prescaler, capture is done each time an edge is detected on the capture input
01: capture is done once every 2 events
10: capture is done once every 4 events
11: capture is done once every 8 events

Bits 1:0 CC1S: Capture/Compare 1 selection

This bit-field defines the direction of the channel (input/output) as well as the used input.
00: CC1 channel is configured as output
01: CC1 channel is configured as input, IC1 is mapped on TI1
10: Reserved
11: Reserved

Note: CC1S bits are writable only when the channel is OFF (CC1E = 0 in TIMx_CCER).

General-purpose timers (TIM9 and TIM11) RM0401

432/771 RM0401 Rev 3

16.5.6 TIM11 capture/compare enable register
(TIMx_CCER)

Address offset: 0x20

Reset value: 0x0000

Note: The state of the external I/O pins connected to the standard OCx channels depends on the
OCx channel state and the GPIO registers.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. CC1NP Res. CC1P CC1E

rw rw rw

Bits 15:4 Reserved, must be kept at reset value.

Bit 3 CC1NP: Capture/Compare 1 complementary output Polarity.

CC1 channel configured as output: CC1NP must be kept cleared.
CC1 channel configured as input: CC1NP bit is used in conjunction with CC1P to define
TI1FP1 polarity (refer to CC1P description).

Bit 2 Reserved, must be kept at reset value.

Bit 1 CC1P: Capture/Compare 1 output Polarity.

CC1 channel configured as output:
0: OC1 active high
1: OC1 active low
CC1 channel configured as input:
The CC1P bit selects TI1FP1 and TI2FP1 polarity for trigger or capture operations.
00: noninverted/rising edge
Circuit is sensitive to TI1FP1 rising edge (capture mode), TI1FP1 is not inverted.
01: inverted/falling edge
Circuit is sensitive to TI1FP1 falling edge (capture mode), TI1FP1 is inverted.
10: reserved, do not use this configuration.
11: noninverted/both edges
Circuit is sensitive to both TI1FP1 rising and falling edges (capture mode), TI1FP1 is not
inverted.

Bit 0 CC1E: Capture/Compare 1 output enable.

CC1 channel configured as output:
0: Off - OC1 is not active
1: On - OC1 signal is output on the corresponding output pin
CC1 channel configured as input:
This bit determines if a capture of the counter value can actually be done into the input
capture/compare register 1 (TIMx_CCR1) or not.
0: Capture disabled
1: Capture enabled

Table 68. Output control bit for standard OCx channels

CCxE bit OCx output state

0 Output Disabled (OCx=’0’, OCx_EN=’0’)

1 OCx=OCxREF + Polarity, OCx_EN=’1’

RM0401 Rev 3 433/771

RM0401 General-purpose timers (TIM9 and TIM11)

436

16.5.7 TIM11 counter (TIMx_CNT)

Address offset: 0x24

Reset value: 0x0000

16.5.8 TIM11 prescaler (TIMx_PSC)

Address offset: 0x28

Reset value: 0x0000

16.5.9 TIM11 auto-reload register (TIMx_ARR)

Address offset: 0x2C

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CNT[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 CNT[15:0]: Counter value

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PSC[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 PSC[15:0]: Prescaler value

The counter clock frequency CK_CNT is equal to fCK_PSC / (PSC[15:0] + 1).

PSC contains the value to be loaded in the active prescaler register at each update event.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ARR[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 ARR[15:0]: Auto-reload value
ARR is the value to be loaded in the actual auto-reload register.

Refer to Section 16.3.1: Time-base unit for more details about ARR update and behavior.

The counter is blocked while the auto-reload value is null.

General-purpose timers (TIM9 and TIM11) RM0401

434/771 RM0401 Rev 3

16.5.10 TIM11 capture/compare register 1 (TIMx_CCR1)

Address offset: 0x34

Reset value: 0x0000

16.5.11 TIM11 option register 1 (TIM11_OR)

Address offset: 0x50

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CCR1[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 CCR1[15:0]: Capture/Compare 1 value

If channel CC1 is configured as output:
CCR1 is the value to be loaded in the actual capture/compare 1 register (preload value).

It is loaded permanently if the preload feature is not selected in the TIMx_CCMR1 register (bit
OC1PE). Else the preload value is copied in the active capture/compare 1 register when an
update event occurs.

The active capture/compare register contains the value to be compared to the counter
TIMx_CNT and signaled on OC1 output.

If channel CC1is configured as input:
CCR1 is the counter value transferred by the last input capture 1 event (IC1).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. TI1_RMP[1:0]

rw

Bits 15:2 Reserved, must be kept at reset value.

Bits 1:0 TI1_RMP[1:0]: TIM11 Input 1 remapping capability
Set and cleared by software.
00,01,11: TIM11 Channel1 is connected to the GPIO (refer to the Alternate function mapping
table in the datasheets).
10: HSE_RTC clock (HSE divided by programmable prescaler) is connected to the
TIM11_CH1 input for measurement purposes.

RM0401 Rev 3 435/771

RM0401 General-purpose timers (TIM9 and TIM11)

436

16.5.12 TIM11 register map

TIMx registers are mapped as 16-bit addressable registers as described in the table below:

Table 69. TIM11 register map and reset values

Offset Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

0x00
TIMx_CR1

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

. CKD
[1:0] A

R
P

E

R
es

.

R
es

.

R
es

.

R
es

.

U
R

S

U
D

IS

C
E

N

Reset value 0 0 0 0 0 0

0x08
TIMx_SMCR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

Reset value

0x0C
TIMx_DIER

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

C
C

1I
E

U
IE

Reset value 0 0

0x10
TIMx_SR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

C
C

1O
F

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

C
C

1I
F

U
IF

Reset value 0 0 0

0x14
TIMx_EGR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

C
C

1G

U
G

Reset value 0 0

0x18

TIMx_CCMR1
Output compare

mode R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

. OC1M
[2:0]

O
C

1
P

E

O
C

1
F

E

CC1S
[1:0]

Reset value 0 0 0 0 0 0 0

TIMx_CCMR1
Input capture

mode R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

IC1F[3:0]
IC1
PSC
[1:0]

CC1S
[1:0]

Reset value 0 0 0 0 0 0 0 0

0x1C Reserved

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.
0x20

TIMx_CCER

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

C
C

1N
P

R
es

.

C
C

1P

C
C

1E

Reset value 0 0 0

0x24
TIMx_CNT

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

CNT[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x28
TIMx_PSC

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

PSC[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x2C
TIMx_ARR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

ARR[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x30 Reserved

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

General-purpose timers (TIM9 and TIM11) RM0401

436/771 RM0401 Rev 3

Refer to Section 2.2.2 on page 38 for the register boundary addresses.

0x34
TIMx_CCR1

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

CCR1[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x38 to
0x4C

Reserved

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

0x50
TIMx_OR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

T
I1

_
R

M
P

Reset value 0 0

Table 69. TIM11 register map and reset values (continued)

Offset Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

RM0401 Rev 3 437/771

RM0401 Basic timers (TIM6)

449

17 Basic timers (TIM6)

17.1 Introduction

The basic timer TIM6 consists of a 16-bit auto-reload counter driven by a programmable
prescaler.

IT can be used as generic timer for timebase generation but it is also specifically used to
drive the digital-to-analog converter (DAC). In fact, the timer is internally connected to the
DAC and is able to drive it through its trigger output.

The timers are completely independent, and do not share any resources.

They can be used as generic timers for timebase generation but they are also specifically
used to drive the digital-to-analog converter (DAC). In fact, the timers are internally
connected to the DAC and are able to drive it through their trigger outputs.

The timers are completely independent, and do not share any resources.

17.2 TIM6 main features

Basic timer (TIM6) features include:

• 16-bit auto-reload upcounter

• 16-bit programmable prescaler used to divide (also “on the fly”) the counter clock
frequency by any factor between 1 and 65536

• Synchronization circuit to trigger the DAC

• Interrupt/DMA generation on the update event: counter overflow

Figure 156. Basic timer block diagram

Basic timers (TIM6) RM0401

438/771 RM0401 Rev 3

17.3 TIM6 functional description

17.3.1 Time-base unit

The main block of the programmable timer is a 16-bit upcounter with its related auto-reload
register. The counter clock can be divided by a prescaler.

The counter, the auto-reload register and the prescaler register can be written or read by
software. This is true even when the counter is running.

The time-base unit includes:

• Counter Register (TIMx_CNT)

• Prescaler Register (TIMx_PSC)

• Auto-Reload Register (TIMx_ARR)

The auto-reload register is preloaded. The preload register is accessed each time an
attempt is made to write or read the auto-reload register. The contents of the preload
register are transferred into the shadow register permanently or at each update event UEV,
depending on the auto-reload preload enable bit (ARPE) in the TIMx_CR1 register. The
update event is sent when the counter reaches the overflow value and if the UDIS bit equals
0 in the TIMx_CR1 register. It can also be generated by software. The generation of the
update event is described in detail for each configuration.

The counter is clocked by the prescaler output CK_CNT, which is enabled only when the
counter enable bit (CEN) in the TIMx_CR1 register is set.

Note that the actual counter enable signal CNT_EN is set 1 clock cycle after CEN.

Prescaler description

The prescaler can divide the counter clock frequency by any factor between 1 and 65536. It
is based on a 16-bit counter controlled through a 16-bit register (in the TIMx_PSC register).
It can be changed on the fly as the TIMx_PSC control register is buffered. The new
prescaler ratio is taken into account at the next update event.

Figure 157 and Figure 158 give some examples of the counter behavior when the prescaler
ratio is changed on the fly.

RM0401 Rev 3 439/771

RM0401 Basic timers (TIM6)

449

Figure 157. Counter timing diagram with prescaler division change from 1 to 2

Figure 158. Counter timing diagram with prescaler division change from 1 to 4

Basic timers (TIM6) RM0401

440/771 RM0401 Rev 3

17.3.2 Counting mode

The counter counts from 0 to the auto-reload value (contents of the TIMx_ARR register),
then restarts from 0 and generates a counter overflow event.

An update event can be generate at each counter overflow or by setting the UG bit in the
TIMx_EGR register (by software or by using the slave mode controller).

The UEV event can be disabled by software by setting the UDIS bit in the TIMx_CR1
register. This avoids updating the shadow registers while writing new values into the preload
registers. In this way, no update event occurs until the UDIS bit has been written to 0,
however, the counter and the prescaler counter both restart from 0 (but the prescale rate
does not change). In addition, if the URS (update request selection) bit in the TIMx_CR1
register is set, setting the UG bit generates an update event UEV, but the UIF flag is not set
(so no interrupt or DMA request is sent).

When an update event occurs, all the registers are updated and the update flag (UIF bit in
the TIMx_SR register) is set (depending on the URS bit):

• The buffer of the prescaler is reloaded with the preload value (contents of the
TIMx_PSC register)

• The auto-reload shadow register is updated with the preload value (TIMx_ARR)

The following figures show some examples of the counter behavior for different clock
frequencies when TIMx_ARR = 0x36.

Figure 159. Counter timing diagram, internal clock divided by 1

RM0401 Rev 3 441/771

RM0401 Basic timers (TIM6)

449

Figure 160. Counter timing diagram, internal clock divided by 2

Figure 161. Counter timing diagram, internal clock divided by 4

Basic timers (TIM6) RM0401

442/771 RM0401 Rev 3

Figure 162. Counter timing diagram, internal clock divided by N

Figure 163. Counter timing diagram, update event when ARPE = 0 (TIMx_ARR not
preloaded)

RM0401 Rev 3 443/771

RM0401 Basic timers (TIM6)

449

Figure 164. Counter timing diagram, update event when ARPE=1 (TIMx_ARR
preloaded)

17.3.3 Clock source

The counter clock is provided by the Internal clock (CK_INT) source.

The CEN (in the TIMx_CR1 register) and UG bits (in the TIMx_EGR register) are actual
control bits and can be changed only by software (except for UG that remains cleared
automatically). As soon as the CEN bit is written to 1, the prescaler is clocked by the internal
clock CK_INT.

Figure 165 shows the behavior of the control circuit and the upcounter in normal mode,
without prescaler.

Basic timers (TIM6) RM0401

444/771 RM0401 Rev 3

Figure 165. Control circuit in normal mode, internal clock divided by 1

17.3.4 Debug mode

When the microcontroller enters the debug mode (Cortex®-M4 with FPU core - halted), the
TIMx counter either continues to work normally or stops, depending on the
DBG_TIMx_STOP configuration bit in the DBGMCU module. For more details, refer to
Section 26.16.2: Debug support for timers, watchdog, and I2C.

RM0401 Rev 3 445/771

RM0401 Basic timers (TIM6)

449

17.4 TIM6 registers

Refer to Section 1.2: List of abbreviations for registers for a list of abbreviations used in
register descriptions.

The peripheral registers have to be written by half-words (16 bits) or words (32 bits). Read
accesses can be done by bytes (8 bits), half-words (16 bits) or words (32 bits).

17.4.1 TIM6 control register 1 (TIMx_CR1)

Address offset: 0x00

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. ARPE Res. Res. Res. OPM URS UDIS CEN

rw rw rw rw rw

Bits 15:8 Reserved, must be kept at reset value.

Bit 7 ARPE: Auto-reload preload enable

0: TIMx_ARR register is not buffered.
1: TIMx_ARR register is buffered.

Bits 6:4 Reserved, must be kept at reset value.

Bit 3 OPM: One-pulse mode

0: Counter is not stopped at update event
1: Counter stops counting at the next update event (clearing the CEN bit).

Bit 2 URS: Update request source

This bit is set and cleared by software to select the UEV event sources.
0: Any of the following events generates an update interrupt or DMA request if enabled.
These events can be:

– Counter overflow/underflow

– Setting the UG bit

– Update generation through the slave mode controller
1: Only counter overflow/underflow generates an update interrupt or DMA request if
enabled.

Bit 1 UDIS: Update disable

This bit is set and cleared by software to enable/disable UEV event generation.
0: UEV enabled. The Update (UEV) event is generated by one of the following events:

– Counter overflow/underflow

– Setting the UG bit

– Update generation through the slave mode controller
Buffered registers are then loaded with their preload values.
1: UEV disabled. The Update event is not generated, shadow registers keep their value
(ARR, PSC). However the counter and the prescaler are reinitialized if the UG bit is set or if
a hardware reset is received from the slave mode controller.

Bit 0 CEN: Counter enable

0: Counter disabled
1: Counter enabled

Note: Gated mode can work only if the CEN bit has been previously set by software.
However trigger mode can set the CEN bit automatically by hardware.

CEN is cleared automatically in one-pulse mode, when an update event occurs.

Basic timers (TIM6) RM0401

446/771 RM0401 Rev 3

17.4.2 TIM6 control register 2 (TIMx_CR2)

Address offset: 0x04

Reset value: 0x0000

17.4.3 TIM6 DMA/Interrupt enable register (TIMx_DIER)

Address offset: 0x0C

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. Res. MMS[2:0] Res. Res. Res. Res.

rw rw rw

Bits 15:7 Reserved, must be kept at reset value.

Bits 6:4 MMS: Master mode selection

These bits are used to select the information to be sent in master mode to slave timers for
synchronization (TRGO). The combination is as follows:
000: Reset - the UG bit from the TIMx_EGR register is used as a trigger output (TRGO). If
reset is generated by the trigger input (slave mode controller configured in reset mode) then
the signal on TRGO is delayed compared to the actual reset.
001: Enable - the Counter enable signal, CNT_EN, is used as a trigger output (TRGO). It is
useful to start several timers at the same time or to control a window in which a slave timer
is enabled. The Counter Enable signal is generated by a logic OR between CEN control bit
and the trigger input when configured in gated mode.
When the Counter Enable signal is controlled by the trigger input, there is a delay on TRGO,
except if the master/slave mode is selected (see the MSM bit description in the TIMx_SMCR
register).
010: Update - The update event is selected as a trigger output (TRGO). For instance a
master timer can then be used as a prescaler for a slave timer.

Bits 3:0 Reserved, must be kept at reset value.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. UDE Res. Res. Res. Res. Res. Res. Res. UIE

rw rw

Bits 15:9 Reserved, must be kept at reset value.

Bit 8 UDE: Update DMA request enable

0: Update DMA request disabled.
1: Update DMA request enabled.

Bits 7:1 Reserved, must be kept at reset value.

Bit 0 UIE: Update interrupt enable

0: Update interrupt disabled.
1: Update interrupt enabled.

RM0401 Rev 3 447/771

RM0401 Basic timers (TIM6)

449

17.4.4 TIM6 status register (TIMx_SR)

Address offset: 0x10

Reset value: 0x0000

17.4.5 TIM6 event generation register (TIMx_EGR)

Address offset: 0x14

Reset value: 0x0000

17.4.6 TIM6 counter (TIMx_CNT)

Address offset: 0x24

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. UIF

rc_w0

Bits 15:1 Reserved, must be kept at reset value.

Bit 0 UIF: Update interrupt flag

This bit is set by hardware on an update event. It is cleared by software.
0: No update occurred.
1: Update interrupt pending. This bit is set by hardware when the registers are updated:

– At overflow or underflow regarding the repetition counter value and if UDIS = 0 in the
TIMx_CR1 register.

– When CNT is reinitialized by software using the UG bit in the TIMx_EGR register, if URS = 0
and UDIS = 0 in the TIMx_CR1 register.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. UG

w

Bits 15:1 Reserved, must be kept at reset value.

Bit 0 UG: Update generation

This bit can be set by software, it is automatically cleared by hardware.
0: No action.
1: Re-initializes the timer counter and generates an update of the registers. Note that the
prescaler counter is cleared too (but the prescaler ratio is not affected).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CNT[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 CNT[15:0]: Counter value

Basic timers (TIM6) RM0401

448/771 RM0401 Rev 3

17.4.7 TIM6 prescaler (TIMx_PSC)

Address offset: 0x28

Reset value: 0x0000

17.4.8 TIM6 auto-reload register (TIMx_ARR)

Address offset: 0x2C

Reset value: 0xFFFF

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PSC[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 PSC[15:0]: Prescaler value

The counter clock frequency (CK_CNT) is equal to fCK_PSC / (PSC[15:0] + 1).
PSC contains the value to be loaded in the active prescaler register at each update event
(including when the counter is cleared through UG bit of TIMx_EGR register or through
trigger controller when configured in “reset mode”).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ARR[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 ARR[15:0]: Auto-reload value

ARR is the value to be loaded into the actual auto-reload register.
Refer to Section 17.3.1: Time-base unit on page 438 for more details about ARR update and
behavior.
The counter is blocked while the auto-reload value is null.

RM0401 Rev 3 449/771

RM0401 Basic timers (TIM6)

449

17.4.9 TIM6 register map

TIMx registers are mapped as 16-bit addressable registers as described in the table below:

Refer to Section 2.2 on page 41 for the register boundary addresses.

Table 70. TIM6 register map and reset values

Offset Register 1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

0x00
TIMx_CR1

R
e

s.

R
e

s.

R
e

s.

R
e

s.

R
e

s.

R
e

s.

R
e

s.

R
e

s.

A
R

P
E

R
e

s.

R
e

s.

R
e

s.

O
P

M

U
R

S

U
D

IS

C
E

N

Reset value 0 0 0 0 0

0x04
TIMx_CR2

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

MMS[2:0]

R
es

.

R
es

.

R
es

.

R
es

.

Reset value 0 0 0

0x08 Res.

0x0C
TIMx_DIER

R
e

s.

R
e

s.

R
e

s.

R
e

s.

R
e

s.

R
e

s.

R
e

s.

U
D

E

R
e

s.

R
e

s.

R
e

s.

R
e

s.

R
e

s.

R
e

s.

R
e

s.

U
IE

Reset value 0 0

0x10
TIMx_SR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

U
IF

Reset value 0

0x14
TIMx_EGR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

U
G

Reset value 0

0x18 Res.

0x1C Res.

0x20 Res.

0x24
TIMx_CNT CNT[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x28
TIMx_PSC PSC[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x2C
TIMx_ARR ARR[15:0]

Reset value 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Low-power timer (LPTIM) RM0401

450/771 RM0401 Rev 3

18 Low-power timer (LPTIM)

18.1 Introduction

The LPTIM is a 16-bit timer that benefits from the ultimate developments in power
consumption reduction. Thanks to its diversity of clock sources, the LPTIM is able to keep
running in all power modes except for Standby mode. Given its capability to run even with
no internal clock source, the LPTIM can be used as a “Pulse Counter” which can be useful
in some applications. Also, the LPTIM capability to wake up the system from low-power
modes, makes it suitable to realize “Timeout functions” with extremely low power
consumption.

The LPTIM introduces a flexible clock scheme that provides the needed functionalities and
performance, while minimizing the power consumption.

18.2 LPTIM main features

• 16 bit upcounter

• 3-bit prescaler with 8 possible dividing factors (1,2,4,8,16,32,64,128)

• Selectable clock

– Internal clock sources: LSE, LSI, HSI or APB clock

– External clock source over LPTIM input (working with no LP oscillator running,
used by Pulse Counter application)

• 16 bit ARR autoreload register

• 16 bit compare register

• Continuous/One-shot mode

• Selectable software/hardware input trigger

• Programmable Digital Glitch filter

• Configurable output: Pulse, PWM

• Configurable I/O polarity

• Encoder mode

18.3 LPTIM implementation

Table 71 describes LPTIM implementation on STM32F410 devices.

Table 71. STM32F410 LPTIM features

LPTIM modes/features(1)

1. X = supported.

LPTIM1

Encoder mode X

RM0401 Rev 3 451/771

RM0401 Low-power timer (LPTIM)

472

18.4 LPTIM functional description

18.4.1 LPTIM block diagram

Figure 166. Low-power timer block diagram

18.4.2 LPTIM trigger mapping

The LPTIM external trigger connections are detailed hereafter:

Table 72. LPTIM1 external trigger connection

TRIGSEL External trigger

lptim_ext_trig0 PB6 or PC3 input on AF1

lptim_ext_trig1 RTC alarm A output signal

lptim_ext_trig2 RTC alarm B output signal

lptim_ext_trig3 RTC tamper output signal

lptim_ext_trig4 TIM1 trigger output (0) output signal

lptim_ext_trig5 TIM5 trigger output (3) output signal

Low-power timer (LPTIM) RM0401

452/771 RM0401 Rev 3

18.4.3 LPTIM input1 multiplexing

Various inputs can be selected for LPTIM1 input 1 through the LPTMI option register
(LPTIM1_OR).

This input can either be connected to the pads selected by the LPTIM alternate function
(AF1) or directly connected internally to PA4, PB9 pad or to TIM6/DAC trigger.

In case of internal connection to PA4 or PB9, the selected alternate function for this pad
defines the peripheral to which the timer is connected.

PA4 and PB9 can also be configured as GPIO.

18.4.4 LPTIM reset and clocks

The LPTIM can be clocked using several clock sources. It can be clocked using an internal
clock signal which can be chosen among APB, LSI, LSE or HSI sources through the Reset
and Clock controller (RCC). Also, the LPTIM can be clocked using an external clock signal
injected on its external Input1. When clocked with an external clock source, the LPTIM may
run in one of these two possible configurations:

• The first configuration is when the LPTIM is clocked by an external signal but in the
same time an internal clock signal is provided to the LPTIM either from APB or any
other embedded oscillator including LSE, LSI and HSI.

• The second configuration is when the LPTIM is solely clocked by an external clock
source through its external Input1. This configuration is the one used to realize Timeout
function or Pulse counter function when all the embedded oscillators are turned off
after entering a low-power mode.

Programming the CKSEL and COUNTMODE bits allows controlling whether the LPTIM will
use an external clock source or an internal one.

When configured to use an external clock source, the CKPOL bits are used to select the
external clock signal active edge. If both edges are configured to be active ones, an internal
clock signal should also be provided (first configuration). In this case, the internal clock
signal frequency should be at least four times higher than the external clock signal
frequency.

18.4.5 Glitch filter

The LPTIM inputs, either external (mapped to GPIOs) or internal (mapped on the chip-level
to other embedded peripherals, such as embedded comparators), are protected with digital
filters that prevent any glitches and noise perturbations to propagate inside the LPTIM. This
is in order to prevent spurious counts or triggers.

Before activating the digital filters, an internal clock source should first be provided to the
LPTIM. This is necessary to guarantee the proper operation of the filters.

lptim_ext_trig6 Reserved

lptim_ext_trig7 Reserved

Table 72. LPTIM1 external trigger connection (continued)

TRIGSEL External trigger

RM0401 Rev 3 453/771

RM0401 Low-power timer (LPTIM)

472

The digital filters are divided into two groups:

• The first group of digital filters protects the LPTIM external inputs. The digital filters
sensitivity is controlled by the CKFLT bits

• The second group of digital filters protects the LPTIM internal trigger inputs. The digital
filters sensitivity is controlled by the TRGFLT bits.

Note: The digital filters sensitivity is controlled by groups. It is not possible to configure each digital
filter sensitivity separately inside the same group.

The filter sensitivity acts on the number of consecutive equal samples that should be
detected on one of the LPTIM inputs to consider a signal level change as a valid transition.
Figure 167 shows an example of glitch filter behavior in case of a 2 consecutive samples
programmed.

Figure 167. Glitch filter timing diagram

Note: In case no internal clock signal is provided, the digital filter must be deactivated by setting
the CKFLT and TRGFLT bits to ‘0’. In that case, an external analog filter may be used to
protect the LPTIM external inputs against glitches.

18.4.6 Prescaler

The LPTIM 16-bit counter is preceded by a configurable power-of-2 prescaler. The prescaler
division ratio is controlled by the PRESC[2:0] 3-bit field. The table below lists all the possible
division ratios:

Table 73. Prescaler division ratios

programming dividing factor

000 /1

001 /2

010 /4

011 /8

100 /16

101 /32

110 /64

111 /128

Low-power timer (LPTIM) RM0401

454/771 RM0401 Rev 3

18.4.7 Trigger multiplexer

The LPTIM counter may be started either by software or after the detection of an active
edge on one of the 8 trigger inputs.

TRIGEN[1:0] is used to determine the LPTIM trigger source:

• When TRIGEN[1:0] equals ‘00’, The LPTIM counter is started as soon as one of the
CNTSTRT or the SNGSTRT bits is set by software. The three remaining possible
values for the TRIGEN[1:0] are used to configure the active edge used by the trigger
inputs. The LPTIM counter starts as soon as an active edge is detected.

• When TRIGEN[1:0] is different than ‘00’, TRIGSEL[2:0] is used to select which of the 8
trigger inputs is used to start the counter.

The external triggers are considered asynchronous signals for the LPTIM. So after a trigger
detection, a two-counter-clock period latency is needed before the timer starts running due
to the synchronization.

If a new trigger event occurs when the timer is already started it will be ignored (unless
timeout function is enabled).

Note: The timer must be enabled before setting the SNGSTRT/CNTSTRT bits. Any write on these
bits when the timer is disabled will be discarded by hardware.

18.4.8 Operating mode

The LPTIM features two operating modes:

• The Continuous mode: the timer is free running, the timer is started from a trigger event
and never stops until the timer is disabled

• One-shot mode: the timer is started from a trigger event and stops when reaching the
ARR value.

One-shot mode

To enable the one-shot counting, the SNGSTRT bit must be set.

A new trigger event will re-start the timer. Any trigger event occurring after the counter starts
and before the counter reaches ARR will be discarded.

In case an external trigger is selected, each external trigger event arriving after the
SNGSTRT bit is set, and after the counter register has stopped (contains zero value), will
start the counter for a new one-shot counting cycle as shown in Figure 168.

RM0401 Rev 3 455/771

RM0401 Low-power timer (LPTIM)

472

Figure 168. LPTIM output waveform, single counting mode configuration

- Set-once mode activated:

It should be noted that when the WAVE bit-field in the LPTIM_CFGR register is set, the Set-
once mode is activated. In this case, the counter is only started once following the first
trigger, and any subsequent trigger event is discarded as shown in Figure 169.

Figure 169. LPTIM output waveform, Single counting mode configuration
and Set-once mode activated (WAVE bit is set)

In case of software start (TRIGEN[1:0] = ‘00’), the SNGSTRT setting will start the counter for
one-shot counting.

Continous mode

To enable the continuous counting, the CNTSTRT bit must be set.

In case an external trigger is selected, an external trigger event arriving after CNTSTRT is
set will start the counter for continuous counting. Any subsequent external trigger event will
be discarded as shown in Figure 170.

In case of software start (TRIGEN[1:0] = ‘00’), setting CNTSTRT will start the counter for
continuous counting.

Low-power timer (LPTIM) RM0401

456/771 RM0401 Rev 3

Figure 170. LPTIM output waveform, Continuous counting mode configuration

SNGSTRT and CNTSTRT bits can only be set when the timer is enabled (The ENABLE bit
is set to ‘1’). It is possible to change “on the fly” from One-shot mode to Continuous mode.

If the Continuous mode was previously selected, setting SNGSTRT will switch the LPTIM to
the One-shot mode. The counter (if active) will stop as soon as it reaches ARR.

If the One-shot mode was previously selected, setting CNTSTRT will switch the LPTIM to
the Continuous mode. The counter (if active) will restart as soon as it reaches ARR.

18.4.9 Timeout function

The detection of an active edge on one selected trigger input can be used to reset the
LPTIM counter. This feature is controlled through the TIMOUT bit.

The first trigger event will start the timer, any successive trigger event will reset the counter
and the timer will restart.

A low-power timeout function can be realized. The timeout value corresponds to the
compare value; if no trigger occurs within the expected time frame, the MCU is waked-up by
the compare match event.

18.4.10 Waveform generation

Two 16-bit registers, the LPTIM_ARR (autoreload register) and LPTIM_CMP (compare
register), are used to generate several different waveforms on LPTIM output

The timer can generate the following waveforms:

• The PWM mode: the LPTIM output is set as soon as the counter value in LPTIM_CNT
exceeds the compare value in LPTIM_CMP. The LPTIM output is reset as soon as a
match occurs between the LPTIM_ARR and the LPTIM_CNT registers.

• The One-pulse mode: the output waveform is similar to the one of the PWM mode for
the first pulse, then the output is permanently reset

• The Set-once mode: the output waveform is similar to the One-pulse mode except that
the output is kept to the last signal level (depends on the output configured polarity).

The above described modes require that the LPTIM_ARR register value be strictly greater
than the LPTIM_CMP register value.

RM0401 Rev 3 457/771

RM0401 Low-power timer (LPTIM)

472

The LPTIM output waveform can be configured through the WAVE bit as follow:

• Resetting the WAVE bit to ‘0’ forces the LPTIM to generate either a PWM waveform or
a One pulse waveform depending on which bit is set: CNTSTRT or SNGSTRT.

• Setting the WAVE bit to ‘1’ forces the LPTIM to generate a Set-once mode waveform.

The WAVPOL bit controls the LPTIM output polarity. The change takes effect immediately,
so the output default value will change immediately after the polarity is re-configured, even
before the timer is enabled.

Signals with frequencies up to the LPTIM clock frequency divided by 2 can be generated.
Figure 171 below shows the three possible waveforms that can be generated on the LPTIM
output. Also, it shows the effect of the polarity change using the WAVPOL bit.

Figure 171. Waveform generation

18.4.11 Register update

The LPTIM_ARR register and LPTIM_CMP register are updated immediately after the APB
bus write operation, or at the end of the current period if the timer is already started.

The PRELOAD bit controls how the LPTIM_ARR and the LPTIM_CMP registers are
updated:

• When the PRELOAD bit is reset to ‘0’, the LPTIM_ARR and the LPTIM_CMP registers
are immediately updated after any write access.

• When the PRELOAD bit is set to ‘1’, the LPTIM_ARR and the LPTIM_CMP registers
are updated at the end of the current period, if the timer has been already started.

The LPTIM APB interface and the LPTIM kernel logic use different clocks, so there is some
latency between the APB write and the moment when these values are available to the

Low-power timer (LPTIM) RM0401

458/771 RM0401 Rev 3

counter comparator. Within this latency period, any additional write into these registers must
be avoided.

The ARROK flag and the CMPOK flag in the LPTIM_ISR register indicate when the write
operation is completed to respectively the LPTIM_ARR register and the LPTIM_CMP
register.

After a write to the LPTIM_ARR register or the LPTIM_CMP register, a new write operation
to the same register can only be performed when the previous write operation is completed.
Any successive write before respectively the ARROK flag or the CMPOK flag be set, will
lead to unpredictable results.

18.4.12 Counter mode

The LPTIM counter can be used to count external events on the LPTIM Input1 or it can be
used to count internal clock cycles. The CKSEL and COUNTMODE bits control which
source will be used for updating the counter.

In case the LPTIM is configured to count external events on Input1, the counter can be
updated following a rising edge, falling edge or both edges depending on the value written
to the CKPOL[1:0] bits.

The count modes below can be selected, depending on CKSEL and COUNTMODE values:

• CKSEL = 0: the LPTIM is clocked by an internal clock source

– COUNTMODE = 0

The LPTIM is configured to be clocked by an internal clock source and the LPTIM
counter is configured to be updated following each internal clock pulse.

– COUNTMODE = 1

The LPTIM external Input1 is sampled with the internal clock provided to the
LPTIM.

Consequently, in order not to miss any event, the frequency of the changes on the
external Input1 signal should never exceed the frequency of the internal clock
provided to the LPTIM. Also, the internal clock provided to the LPTIM must not be
prescaled (PRESC[2:0] = 000).

• CKSEL = 1: the LPTIM is clocked by an external clock source

COUNTMODE value is don’t care.

In this configuration, the LPTIM has no need for an internal clock source (except if the
glitch filters are enabled). The signal injected on the LPTIM external Input1 is used as
system clock for the LPTIM. This configuration is suitable for operation modes where
no embedded oscillator is enabled.

For this configuration, the LPTIM counter can be updated either on rising edges or
falling edges of the input1 clock signal but not on both rising and falling edges.

Since the signal injected on the LPTIM external Input1 is also used to clock the LPTIM
kernel logic, there is some initial latency (after the LPTIM is enabled) before the counter
is incremented. More precisely, the first five active edges on the LPTIM external Input1
(after LPTIM is enable) are lost.

18.4.13 Timer enable

The ENABLE bit located in the LPTIM_CR register is used to enable/disable the LPTIM
kernel logic. After setting the ENABLE bit, a delay of two counter clock is needed before the
LPTIM is actually enabled.

RM0401 Rev 3 459/771

RM0401 Low-power timer (LPTIM)

472

The LPTIM_CFGR and LPTIM_IER registers must be modified only when the LPTIM is
disabled.

18.4.14 Encoder mode

This mode allows handling signals from quadrature encoders used to detect angular
position of rotary elements. Encoder interface mode acts simply as an external clock with
direction selection. This means that the counter just counts continuously between 0 and the
auto-reload value programmed into the LPTIM_ARR register (0 up to ARR or ARR down to
0 depending on the direction). Therefore LPTIM_ARR must be configured before starting.
From the two external input signals, Input1 and Input2, a clock signal is generated to clock
the LPTIM counter. The phase between those two signals determines the counting direction.

The Encoder mode is only available when the LPTIM is clocked by an internal clock source.
The signals frequency on both Input1 and Input2 inputs must not exceed the LPTIM internal
clock frequency divided by 4. This is mandatory in order to guarantee a proper operation of
the LPTIM.

Direction change is signalized by the two Down and Up flags in the LPTIM_ISR register.
Also, an interrupt can be generated for both direction change events if enabled through the
DOWNIE bit.

To activate the Encoder mode the ENC bit has to be set to ‘1’. The LPTIM must first be
configured in Continuous mode.

When Encoder mode is active, the LPTIM counter is modified automatically following the
speed and the direction of the incremental encoder. Therefore, its content always
represents the encoder’s position. The count direction, signaled by the Up and Down flags,
correspond to the rotation direction of the encoder rotor.

According to the edge sensitivity configured using the CKPOL[1:0] bits, different counting
scenarios are possible. The following table summarizes the possible combinations,
assuming that Input1 and Input2 do not switch at the same time.

The following figure shows a counting sequence for Encoder mode where both-edge
sensitivity is configured.

Caution: In this mode the LPTIM must be clocked by an internal clock source, so the CKSEL bit must
be maintained to its reset value which is equal to ‘0’. Also, the prescaler division ratio must
be equal to its reset value which is 1 (PRESC[2:0] bits must be ‘000’).

Table 74. Encoder counting scenarios

Active edge

Level on opposite
signal (Input1 for
Input2, Input2 for

Input1)

Input1 signal Input2 signal

Rising Falling Rising Falling

Rising Edge
High Down No count Up No count

Low Up No count Down No count

Falling Edge
High No count Up No count Down

Low No count Down No count Up

Both Edges
High Down Up Up Down

Low Up Down Down Up

Low-power timer (LPTIM) RM0401

460/771 RM0401 Rev 3

Figure 172. Encoder mode counting sequence

18.4.15 Debug mode

When the microcontroller enters debug mode (core halted), the LPTIM counter either
continues to work normally or stops, depending on the DBG_LPTIM_STOP configuration bit
in the DBGMCU module.

18.5 LPTIM low-power modes

Table 75. Effect of low-power modes on the LPTIM

Mode Description

Sleep No effect. LPTIM interrupts cause the device to exit Sleep mode.

Stop
The LPTIM peripheral is active when it is clocked by LSE or LSI. LPTIM

interrupts cause the device to exit Stop mode

Standby
The LPTIM peripheral is powered down and must be reinitialized after
exiting Standby mode.

RM0401 Rev 3 461/771

RM0401 Low-power timer (LPTIM)

472

18.6 LPTIM interrupts

The following events generate an interrupt/wake-up event, if they are enabled through the
LPTIM_IER register:

• Compare match

• Auto-reload match (whatever the direction if encoder mode)

• External trigger event

• Autoreload register write completed

• Compare register write completed

• Direction change (encoder mode), programmable (up / down / both).

Note: If any bit in the LPTIM_IER register (Interrupt Enable Register) is set after that its
corresponding flag in the LPTIM_ISR register (Status Register) is set, the interrupt is not
asserted.

18.7 LPTIM registers

18.7.1 LPTIM interrupt and status register (LPTIM_ISR)

Address offset: 0x000

Reset value: 0x0000 0000

Table 76. Interrupt events

Interrupt event Description

Compare match
Interrupt flag is raised when the content of the Counter register
(LPTIM_CNT) matches the content of the compare register (LPTIM_CMP).

Auto-reload match
Interrupt flag is raised when the content of the Counter register
(LPTIM_CNT) matches the content of the Auto-reload register
(LPTIM_ARR).

External trigger event Interrupt flag is raised when an external trigger event is detected

Auto-reload register
update OK

Interrupt flag is raised when the write operation to the LPTIM_ARR register
is complete.

Compare register
update OK

Interrupt flag is raised when the write operation to the LPTIM_CMP register
is complete.

Direction change

Used in Encoder mode. Two interrupt flags are embedded to signal
direction change:

– UP flag signals up-counting direction change

– DOWN flag signals down-counting direction change.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. Res. DOWN UP
ARRO

K
CMP
OK

EXTTR
IG

ARRM CMPM

r r r r r r r

Low-power timer (LPTIM) RM0401

462/771 RM0401 Rev 3

Bits 31:22 Reserved, must be kept at reset value.

Bit 21 Reserved, must be kept at reset value.

Bit 20 Reserved, must be kept at reset value.

Bit 19 Reserved, must be kept at reset value.

Bits 18:16 Reserved, must be kept at reset value.

Bit 15 Reserved, must be kept at reset value.

Bit 14 Reserved, must be kept at reset value.

Bit 13 Reserved, must be kept at reset value.

Bit 12 Reserved, must be kept at reset value.

Bit 11 Reserved, must be kept at reset value.

Bit 10 Reserved, must be kept at reset value.

Bit 9 Reserved, must be kept at reset value.

Bits 8:7 Reserved, must be kept at reset value.

Bit 6 DOWN: Counter direction change up to down

In Encoder mode, DOWN bit is set by hardware to inform application that the counter direction has
changed from up to down. DOWN flag can be cleared by writing 1 to the DOWNCF bit in the
LPTIM_ICR register.

Note: If the LPTIM does not support encoder mode feature, this bit is reserved. Please refer to
Section 18.3: LPTIM implementation.

Bit 5 UP: Counter direction change down to up

In Encoder mode, UP bit is set by hardware to inform application that the counter direction has
changed from down to up. UP flag can be cleared by writing 1 to the UPCF bit in the LPTIM_ICR
register.

Note: If the LPTIM does not support encoder mode feature, this bit is reserved. Please refer to
Section 18.3: LPTIM implementation.

Bit 4 ARROK: Autoreload register update OK

ARROK is set by hardware to inform application that the APB bus write operation to the LPTIM_ARR
register has been successfully completed. ARROK flag can be cleared by writing 1 to the ARROKCF
bit in the LPTIM_ICR register.

Bit 3 CMPOK: Compare register update OK

CMPOK is set by hardware to inform application that the APB bus write operation to the
LPTIM_CMP register has been successfully completed.

Bit 2 EXTTRIG: External trigger edge event

EXTTRIG is set by hardware to inform application that a valid edge on the selected external trigger
input has occurred. If the trigger is ignored because the timer has already started, then this flag is
not set. EXTTRIG flag can be cleared by writing 1 to the EXTTRIGCF bit in the LPTIM_ICR register.

Bit 1 ARRM: Autoreload match

ARRM is set by hardware to inform application that LPTIM_CNT register’s value reached the
LPTIM_ARR register’s value. ARRM flag can be cleared by writing 1 to the ARRMCF bit in the
LPTIM_ICR register.

Bit 0 CMPM: Compare match

The CMPM bit is set by hardware to inform application that LPTIM_CNT register value reached the
LPTIM_CMP register’s value.

RM0401 Rev 3 463/771

RM0401 Low-power timer (LPTIM)

472

18.7.2 LPTIM interrupt clear register (LPTIM_ICR)

Address offset: 0x004

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. Res.
DOWN

CF
UPCF

ARRO
KCF

CMPO
KCF

EXTTR
IGCF

ARRM
CF

CMPM
CF

w w w w w w w

Bits 31:22 Reserved, must be kept at reset value.

Bit 21 Reserved, must be kept at reset value.

Bit 20 Reserved, must be kept at reset value.

Bit 19 Reserved, must be kept at reset value.

Bits 18:16 Reserved, must be kept at reset value.

Bit 15 Reserved, must be kept at reset value.

Bit 14 Reserved, must be kept at reset value.

Bit 13 Reserved, must be kept at reset value.

Bit 12 Reserved, must be kept at reset value.

Bit 11 Reserved, must be kept at reset value.

Bit 10 Reserved, must be kept at reset value.

Bit 9 Reserved, must be kept at reset value.

Bits 8:7 Reserved, must be kept at reset value.

Bit 6 DOWNCF: Direction change to down clear flag

Writing 1 to this bit clear the DOWN flag in the LPTIM_ISR register.

Note: If the LPTIM does not support encoder mode feature, this bit is reserved. Please refer to
Section 18.3: LPTIM implementation.

Bit 5 UPCF: Direction change to UP clear flag

Writing 1 to this bit clear the UP flag in the LPTIM_ISR register.

Note: If the LPTIM does not support encoder mode feature, this bit is reserved. Please refer to
Section 18.3: LPTIM implementation.

Bit 4 ARROKCF: Autoreload register update OK clear flag

Writing 1 to this bit clears the ARROK flag in the LPTIM_ISR register

Bit 3 CMPOKCF: Compare register update OK clear flag

Writing 1 to this bit clears the CMPOK flag in the LPTIM_ISR register

Low-power timer (LPTIM) RM0401

464/771 RM0401 Rev 3

18.7.3 LPTIM interrupt enable register (LPTIM_IER)

Address offset: 0x008

Reset value: 0x0000 0000

Bit 2 EXTTRIGCF: External trigger valid edge clear flag

Writing 1 to this bit clears the EXTTRIG flag in the LPTIM_ISR register

Bit 1 ARRMCF: Autoreload match clear flag

Writing 1 to this bit clears the ARRM flag in the LPTIM_ISR register

Bit 0 CMPMCF: Compare match clear flag

Writing 1 to this bit clears the CMP flag in the LPTIM_ISR register

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. Res.
DOWNI

E
UPIE

ARRO
KIE

CMPO
KIE

EXT
TRIGIE

ARRM
IE

CMPM
IE

rw rw rw rw rw rw rw

Bits 31:28 Reserved, must be kept at reset value.

Bit 27 Reserved, must be kept at reset value.

Bit 26 Reserved, must be kept at reset value.

Bit 25 Reserved, must be kept at reset value.

Bit 24 Reserved, must be kept at reset value.

Bit 23 Reserved, must be kept at reset value.

Bit 22 Reserved, must be kept at reset value.

Bit 21 Reserved, must be kept at reset value.

Bit 20 Reserved, must be kept at reset value.

Bit 19 Reserved, must be kept at reset value.

Bits 18:17 Reserved, must be kept at reset value.

Bit 16 Reserved, must be kept at reset value.

Bit 15 Reserved, must be kept at reset value.

Bit 14 Reserved, must be kept at reset value.

Bit 13 Reserved, must be kept at reset value.

Bit 12 Reserved, must be kept at reset value.

Bit 11 Reserved, must be kept at reset value.

Bit 10 Reserved, must be kept at reset value.

Bit 9 Reserved, must be kept at reset value.

Bits 8:7 Reserved, must be kept at reset value.

RM0401 Rev 3 465/771

RM0401 Low-power timer (LPTIM)

472

Caution: The LPTIM_IER register must only be modified when the LPTIM is disabled (ENABLE bit reset to ‘0’)

18.7.4 LPTIM configuration register (LPTIM_CFGR)

Address offset: 0x00C

Reset value: 0x0000 0000

Bit 6 DOWNIE: Direction change to down Interrupt Enable

0: DOWN interrupt disabled
1: DOWN interrupt enabled

Note: If the LPTIM does not support encoder mode feature, this bit is reserved. Please refer to
Section 18.3: LPTIM implementation.

Bit 5 UPIE: Direction change to UP Interrupt Enable

0: UP interrupt disabled
1: UP interrupt enabled

Note: If the LPTIM does not support encoder mode feature, this bit is reserved. Please refer to
Section 18.3: LPTIM implementation.

Bit 4 ARROKIE: Autoreload register update OK Interrupt Enable

0: ARROK interrupt disabled
1: ARROK interrupt enabled

Bit 3 CMPOKIE: Compare register update OK Interrupt Enable

0: CMPOK interrupt disabled
1: CMPOK interrupt enabled

Bit 2 EXTTRIGIE: External trigger valid edge Interrupt Enable

0: EXTTRIG interrupt disabled
1: EXTTRIG interrupt enabled

Bit 1 ARRMIE: Autoreload match Interrupt Enable

0: ARRM interrupt disabled
1: ARRM interrupt enabled

Bit 0 CMPMIE: Compare match Interrupt Enable

0: CMPM interrupt disabled
1: CMPM interrupt enabled

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. ENC
COUNT
MODE

PRELOAD WAVPOL WAVE TIMOUT TRIGEN[1:0] Res.

rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TRIGSEL[2:0] Res. PRESC[2:0] Res. TRGFLT[1:0] Res. CKFLT[1:0] CKPOL[1:0] CKSEL

rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:30 Reserved, must be kept at reset value.

Bit 29 Reserved, must be kept at reset value.

Bits 28:25 Reserved, must be kept at reset value.

Low-power timer (LPTIM) RM0401

466/771 RM0401 Rev 3

Bit 24 ENC: Encoder mode enable

The ENC bit controls the Encoder mode
0: Encoder mode disabled
1: Encoder mode enabled

Note: If the LPTIM does not support encoder mode feature, this bit is reserved. Please refer to
Section 18.3: LPTIM implementation.

Bit 23 COUNTMODE: counter mode enabled

The COUNTMODE bit selects which clock source is used by the LPTIM to clock the counter:
0: the counter is incremented following each internal clock pulse
1: the counter is incremented following each valid clock pulse on the LPTIM external Input1

Bit 22 PRELOAD: Registers update mode

The PRELOAD bit controls the LPTIM_ARR and the LPTIM_CMP registers update modality
0: Registers are updated after each APB bus write access
1: Registers are updated at the end of the current LPTIM period

Bit 21 WAVPOL: Waveform shape polarity

The WAVEPOL bit controls the output polarity
0: The LPTIM output reflects the compare results between LPTIM_ARR and LPTIM_CMP

registers
1: The LPTIM output reflects the inverse of the compare results between LPTIM_ARR and

LPTIM_CMP registers

Bit 20 WAVE: Waveform shape

The WAVE bit controls the output shape
0: Deactivate Set-once mode, PWM or One Pulse waveform depending on how the timer was

started, CNTSTRT for PWM or SNGSTRT for One Pulse waveform.
1: Activate the Set-once mode

Bit 19 TIMOUT: Timeout enable

The TIMOUT bit controls the Timeout feature
0: A trigger event arriving when the timer is already started will be ignored
1: A trigger event arriving when the timer is already started will reset and restart the counter

Bits 18:17 TRIGEN[1:0]: Trigger enable and polarity

The TRIGEN bits controls whether the LPTIM counter is started by an external trigger or not. If the
external trigger option is selected, three configurations are possible for the trigger active edge:
00: software trigger (counting start is initiated by software)
01: rising edge is the active edge
10: falling edge is the active edge
11: both edges are active edges

Bit 16 Reserved, must be kept at reset value.

RM0401 Rev 3 467/771

RM0401 Low-power timer (LPTIM)

472

Bits 15:13 TRIGSEL[2:0]: Trigger selector

The TRIGSEL bits select the trigger source that will serve as a trigger event for the LPTIM among
the below 8 available sources:
000: lptim_ext_trig0
001: lptim_ext_trig1
010: lptim_ext_trig2
011: lptim_ext_trig3
100: lptim_ext_trig4
101: lptim_ext_trig5
110: lptim_ext_trig6
111: lptim_ext_trig7
See Section 18.4.2: LPTIM trigger mapping for details.

Bit 12 Reserved, must be kept at reset value.

Bits 11:9 PRESC[2:0]: Clock prescaler

The PRESC bits configure the prescaler division factor. It can be one among the following division
factors:
000: /1
001: /2
010: /4
011: /8
100: /16
101: /32
110: /64
111: /128

Bit 8 Reserved, must be kept at reset value.

Bits 7:6 TRGFLT[1:0]: Configurable digital filter for trigger

The TRGFLT value sets the number of consecutive equal samples that should be detected when a
level change occurs on an internal trigger before it is considered as a valid level transition. An
internal clock source must be present to use this feature
00: any trigger active level change is considered as a valid trigger
01: trigger active level change must be stable for at least 2 clock periods before it is considered as

valid trigger.
10: trigger active level change must be stable for at least 4 clock periods before it is considered as

valid trigger.
11: trigger active level change must be stable for at least 8 clock periods before it is considered as

valid trigger.

Bit 5 Reserved, must be kept at reset value.

Low-power timer (LPTIM) RM0401

468/771 RM0401 Rev 3

Caution: The LPTIM_CFGR register must only be modified when the LPTIM is disabled (ENABLE bit
reset to ‘0’).

18.7.5 LPTIM control register (LPTIM_CR)

Address offset: 0x010

Reset value: 0x0000 0000

Bits 4:3 CKFLT[1:0]: Configurable digital filter for external clock

The CKFLT value sets the number of consecutive equal samples that should be detected when a
level change occurs on an external clock signal before it is considered as a valid level transition. An
internal clock source must be present to use this feature
00: any external clock signal level change is considered as a valid transition
01: external clock signal level change must be stable for at least 2 clock periods before it is

considered as valid transition.
10: external clock signal level change must be stable for at least 4 clock periods before it is

considered as valid transition.
11: external clock signal level change must be stable for at least 8 clock periods before it is

considered as valid transition.

Bits 2:1 CKPOL[1:0]: Clock Polarity

If LPTIM is clocked by an external clock source:

When the LPTIM is clocked by an external clock source, CKPOL bits is used to configure the active
edge or edges used by the counter:
00: the rising edge is the active edge used for counting
01: the falling edge is the active edge used for counting
10: both edges are active edges. When both external clock signal edges are considered active

ones, the LPTIM must also be clocked by an internal clock source with a frequency equal to at
least four time the external clock frequency.

11: not allowed

If the LPTIM is configured in Encoder mode (ENC bit is set):

00: the encoder sub-mode 1 is active
01: the encoder sub-mode 2 is active
10: the encoder sub-mode 3 is active

Refer to Section 18.4.14: Encoder mode for more details about Encoder mode sub-modes.

Bit 0 CKSEL: Clock selector

The CKSEL bit selects which clock source the LPTIM will use:
0: LPTIM is clocked by internal clock source (APB clock or any of the embedded oscillators)
1: LPTIM is clocked by an external clock source through the LPTIM external Input1

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.
CNT
STRT

SNG
STRT

ENA
BLE

rw rw rw

RM0401 Rev 3 469/771

RM0401 Low-power timer (LPTIM)

472

18.7.6 LPTIM compare register (LPTIM_CMP)

Address offset: 0x014

Reset value: 0x0000 0000

Caution: The LPTIM_CMP register must only be modified when the LPTIM is enabled (ENABLE bit
set to ‘1’).

Bits 31:3 Reserved, must be kept at reset value.

Bit 2 CNTSTRT: Timer start in Continuous mode

This bit is set by software and cleared by hardware.
In case of software start (TRIGEN[1:0] = ‘00’), setting this bit starts the LPTIM in Continuous mode.
If the software start is disabled (TRIGEN[1:0] different than ‘00’), setting this bit starts the timer in
Continuous mode as soon as an external trigger is detected.
If this bit is set when a single pulse mode counting is ongoing, then the timer will not stop at the next
match between the LPTIM_ARR and LPTIM_CNT registers and the LPTIM counter keeps counting
in Continuous mode.
This bit can be set only when the LPTIM is enabled. It will be automatically reset by hardware.

Bit 1 SNGSTRT: LPTIM start in Single mode

This bit is set by software and cleared by hardware.
In case of software start (TRIGEN[1:0] = ‘00’), setting this bit starts the LPTIM in single pulse mode.
If the software start is disabled (TRIGEN[1:0] different than ‘00’), setting this bit starts the LPTIM in
single pulse mode as soon as an external trigger is detected.
If this bit is set when the LPTIM is in continuous counting mode, then the LPTIM will stop at the
following match between LPTIM_ARR and LPTIM_CNT registers.
This bit can only be set when the LPTIM is enabled. It will be automatically reset by hardware.

Bit 0 ENABLE: LPTIM enable

The ENABLE bit is set and cleared by software.
0:LPTIM is disabled
1:LPTIM is enabled

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CMP[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 CMP[15:0]: Compare value

CMP is the compare value used by the LPTIM.

Low-power timer (LPTIM) RM0401

470/771 RM0401 Rev 3

18.7.7 LPTIM autoreload register (LPTIM_ARR)

Address offset: 0x018

Reset value: 0x0000 0001

Caution: The LPTIM_ARR register must only be modified when the LPTIM is enabled (ENABLE bit
set to ‘1’).

18.7.8 LPTIM counter register (LPTIM_CNT)

Address offset: 0x01C

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ARR[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 ARR[15:0]: Auto reload value

ARR is the autoreload value for the LPTIM.
This value must be strictly greater than the CMP[15:0] value.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CNT[15:0]

r r r r r r r r r r r r r r r r

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 CNT[15:0]: Counter value

When the LPTIM is running with an asynchronous clock, reading the LPTIM_CNT register may
return unreliable values. So in this case it is necessary to perform two consecutive read accesses
and verify that the two returned values are identical.
It should be noted that for a reliable LPTIM_CNT register read access, two consecutive read
accesses must be performed and compared. A read access can be considered reliable when the
values of the two consecutive read accesses are equal.

RM0401 Rev 3 471/771

RM0401 Low-power timer (LPTIM)

472

18.7.9 LPTIM1 option register (LPTIM1_OR)

Address offset: 0x020

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. OR_1 OR_0

rw rw

Bits 31:2 Reserved, must be kept at reset value.

Bits 1:0 OR_1/0: Low-power timer input 1 remap

These bits are set and cleared by software.
00: LPTIM1 input 1 connected to PB5 (AF1) or PC0 (AF1) for timer input
01: LPTIM1 input 1 is connected to PA4, the input signal depends on the alternate function that has

been selected for PA4
10: LPTIM1 input 1 is connected to PB9, the input signal depends on the alternate function that has

been selected for PB9
11: LPTIM1 input 1 is connected to TIM6/DAC trigger

Low-power timer (LPTIM) RM0401

472/771 RM0401 Rev 3

18.7.10 LPTIM register map

The following table summarizes the LPTIM registers.

Refer to Section 2.2 on page 41 for the register boundary addresses.

Table 77. LPTIM register map and reset values

Offset Register name 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

0x000
LPTIM_ISR

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
D

O
W

N
(1

)

U
P

(1
)

A
R

R
O

K
C

M
P

O
K

E
X

T
T

R
IG

A
R

R
M

C
M

P
M

Reset value 0 0 0 0 0 0 0

0x004
LPTIM_ICR

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
D

O
W

N
C

F
(1

)

U
P

C
F

(1
)

A
R

R
O

K
C

F
C

M
P

O
K

C
F

E
X

T
T

R
IG

C
F

A
R

R
M

C
F

C
M

P
M

C
F

Reset value 0 0 0 0 0 0 0

0x008
LPTIM_IER

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
D

O
W

N
IE

(1
)

U
P

IE
(1

)

A
R

R
O

K
IE

C
M

P
O

K
IE

E
X

T
T

R
IG

IE
A

R
R

M
IE

C
M

P
M

IE

Reset value 0 0 0 0 0 0 0

0x00C
LPTIM_CFGR

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
E

N
C

(1
)

C
O

U
N

T
M

O
D

E
P

R
E

LO
A

D
W

A
V

E
P

O
L

W
A

V
E

T
IM

O
U

T

T
R

IG
E

N

R
es

.

T
R

IG
S

E
L[

2:
0]

R
es

.

P
R

E
S

C

R
es

.

T
R

G
F

LT

R
es

.

C
K

F
LT

C
K

P
O

L

C
K

S
E

L

Reset value 0

0x010
LPTIM_CR

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

S
TA

R
E

R
e

s.
C

N
T

S
T

R
T

S
N

G
S

T
R

T
E

N
A

B
LE

Reset value 0 0 0 0

0x014
LPTIM_CMP

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s. CMP[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x018
LPTIM_ARR

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s. ARR[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0x01C
LPTIM_CNT

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s. CNT[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x020
LPTIM_OR

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

O
R

_
1

O
R

_
0

Reset value 0 0

1. If LPTIM does not support encoder mode feature, this bit is reserved. Please refer to Section 18.3: LPTIM
implementation.

RM0401 Rev 3 473/771

RM0401 Window watchdog (WWDG)

479

19 Window watchdog (WWDG)

19.1 WWDG introduction

The window watchdog is used to detect the occurrence of a software fault, usually
generated by external interference or by unforeseen logical conditions, which causes the
application program to abandon its normal sequence. The watchdog circuit generates an
MCU reset on expiry of a programmed time period, unless the program refreshes the
contents of the downcounter before the T6 bit becomes cleared. An MCU reset is also
generated if the 7-bit downcounter value (in the control register) is refreshed before the
downcounter has reached the window register value. This implies that the counter must be
refreshed in a limited window.

19.2 WWDG main features

• Programmable free-running downcounter

• Conditional reset

– Reset (if watchdog activated) when the downcounter value becomes less than
0x40

– Reset (if watchdog activated) if the downcounter is reloaded outside the window
(see Figure 174)

• Early wakeup interrupt (EWI): triggered (if enabled and the watchdog activated) when
the downcounter is equal to 0x40.

19.3 WWDG functional description

If the watchdog is activated (the WDGA bit is set in the WWDG_CR register) and when the
7-bit downcounter (T[6:0] bits) rolls over from 0x40 to 0x3F (T6 becomes cleared), it initiates
a reset. If the software reloads the counter while the counter is greater than the value stored
in the window register, then a reset is generated.

Window watchdog (WWDG) RM0401

474/771 RM0401 Rev 3

Figure 173. Watchdog block diagram

The application program must write in the WWDG_CR register at regular intervals during
normal operation to prevent an MCU reset. This operation must occur only when the counter
value is lower than the window register value. The value to be stored in the WWDG_CR
register must be between 0xFF and 0xC0.

Enabling the watchdog

The watchdog is always disabled after a reset. It is enabled by setting the WDGA bit in the
WWDG_CR register, then it cannot be disabled again except by a reset.

Controlling the downcounter

This downcounter is free-running, counting down even if the watchdog is disabled. When
the watchdog is enabled, the T6 bit must be set to prevent generating an immediate reset.

The T[5:0] bits contain the number of increments which represents the time delay before the
watchdog produces a reset. The timing varies between a minimum and a maximum value
due to the unknown status of the prescaler when writing to the WWDG_CR register (see
Figure 174). The Configuration register (WWDG_CFR) contains the high limit of the window:
To prevent a reset, the downcounter must be reloaded when its value is lower than the
window register value and greater than 0x3F. Figure 174 describes the window watchdog
process.

Note: The T6 bit can be used to generate a software reset (the WDGA bit is set and the T6 bit is
cleared).

Advanced watchdog interrupt feature

The Early Wakeup Interrupt (EWI) can be used if specific safety operations or data logging
must be performed before the actual reset is generated. The EWI interrupt is enabled by
setting the EWI bit in the WWDG_CFR register. When the downcounter reaches the value
0x40, an EWI interrupt is generated and the corresponding interrupt service routine (ISR)
can be used to trigger specific actions (such as communications or data logging), before
resetting the device.

RM0401 Rev 3 475/771

RM0401 Window watchdog (WWDG)

479

In some applications, the EWI interrupt can be used to manage a software system check
and/or system recovery/graceful degradation, without generating a WWDG reset. In this
case, the corresponding interrupt service routine (ISR) should reload the WWDG counter to
avoid the WWDG reset, then trigger the required actions.

The EWI interrupt is cleared by writing '0' to the EWIF bit in the WWDG_SR register.

Note: When the EWI interrupt cannot be served, e.g. due to a system lock in a higher priority task,
the WWDG reset will eventually be generated.

19.4 How to program the watchdog timeout

The formula in Figure 174 must be used to calculate the WWDG timeout.

Warning: When writing to the WWDG_CR register, always write 1 in the
T6 bit to avoid generating an immediate reset.

Figure 174. Window watchdog timing diagram

The formula to calculate the timeout value is given by:

where:

tWWDG: WWDG timeout

tPCLK1: APB1 clock period measured in ms

4096: value corresponding to internal divider.

tWWDG tPCLK1 4096× 2
WDGTB[1:0]× T5:0] 1+()×= ms()

Window watchdog (WWDG) RM0401

476/771 RM0401 Rev 3

As an example, let us assume APB1 frequency is equal to 24 MHz, WDGTB[1:0] is set to 3
and T[5:0] is set to 63:

Refer to the datasheets for the minimum and maximum values of the tWWDG.

19.5 Debug mode

When the microcontroller enters debug mode (Cortex®-M4 with FPU core halted), the
WWDG counter either continues to work normally or stops, depending on
DBG_WWDG_STOP configuration bit in DBGMCU module. For more details, refer to
Section 26.16.4: Debug MCU APB1 freeze register (DBGMCU_APB1_FZ).

tWWDG 1 24000⁄ 4096× 2
3× 63 1+()× 21.85 ms= =

RM0401 Rev 3 477/771

RM0401 Window watchdog (WWDG)

479

19.6 WWDG registers

Refer to Section 1.2 on page 34 for a list of abbreviations used in register descriptions.

The peripheral registers have to be accessed by half-words (16 bits) or words (32 bits).

19.6.1 Control register (WWDG_CR)

Address offset: 0x00

Reset value: 0x0000 007F

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. WDGA T[6:0]

rs rw

Bits 31:8 Reserved, must be kept at reset value.

Bit 7 WDGA: Activation bit

This bit is set by software and only cleared by hardware after a reset. When WDGA = 1, the
watchdog can generate a reset.
0: Watchdog disabled
1: Watchdog enabled

Bits 6:0 T[6:0]: 7-bit counter (MSB to LSB)

These bits contain the value of the watchdog counter. It is decremented every (4096 x
2WDGTB[1:0]) PCLK1 cycles. A reset is produced when it rolls over from 0x40 to 0x3F (T6
becomes cleared).

Window watchdog (WWDG) RM0401

478/771 RM0401 Rev 3

19.6.2 Configuration register (WWDG_CFR)

Address offset: 0x04

Reset value: 0x0000 007F

19.6.3 Status register (WWDG_SR)

Address offset: 0x08
Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. EWI WDGTB[1:0] W[6:0]

rs rw rw

Bits 31:10 Reserved, must be kept at reset value.

Bit 9 EWI: Early wakeup interrupt

When set, an interrupt occurs whenever the counter reaches the value 0x40. This interrupt is
only cleared by hardware after a reset.

Bits 8:7 WDGTB[1:0]: Timer base

The time base of the prescaler can be modified as follows:
00: CK Counter Clock (PCLK1 div 4096) div 1
01: CK Counter Clock (PCLK1 div 4096) div 2
10: CK Counter Clock (PCLK1 div 4096) div 4
11: CK Counter Clock (PCLK1 div 4096) div 8

Bits 6:0 W[6:0]: 7-bit window value

These bits contain the window value to be compared to the downcounter.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. EWIF

rc_w0

Bits 31:1 Reserved, must be kept at reset value.

Bit 0 EWIF: Early wakeup interrupt flag

This bit is set by hardware when the counter has reached the value 0x40. It must be cleared
by software by writing ‘0’. A write of ‘1’ has no effect. This bit is also set if the interrupt is not
enabled.

RM0401 Rev 3 479/771

RM0401 Window watchdog (WWDG)

479

19.6.4 WWDG register map

The following table gives the WWDG register map and reset values.

Refer to Section 2.2 on page 41 for the register boundary addresses.

Table 78. WWDG register map and reset values

Offset Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

0x00
WWDG_CR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

W
D

G
A

T[6:0]

Reset value 0 1 1 1 1 1 1 1

0x04
WWDG_CFR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

E
W

I

W
D

G
T

B
1

W
D

G
T

B
0

W[6:0]

Reset value 0 0 0 1 1 1 1 1 1 1

0x08
WWDG_SR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

E
W

IF

Reset value 0

Independent watchdog (IWDG) RM0401

480/771 RM0401 Rev 3

20 Independent watchdog (IWDG)

20.1 IWDG introduction

The devices feature two embedded watchdog peripherals that offer a combination of high
safety level, timing accuracy and flexibility of use. Both watchdog peripherals (Independent
and Window) serve to detect and resolve malfunctions due to software failure, and to trigger
system reset or an interrupt (window watchdog only) when the counter reaches a given
timeout value.

The independent watchdog (IWDG) is clocked by its own dedicated low-speed clock (LSI)
and thus stays active even if the main clock fails. The window watchdog (WWDG) clock is
prescaled from the APB1 clock and has a configurable time-window that can be
programmed to detect abnormally late or early application behavior.

The IWDG is best suited for applications that require the watchdog to run as a totally
independent process outside the main application, but have lower timing accuracy
constraints. The WWDG is best suited for applications that require the watchdog to react
within an accurate timing window. For further information on the window watchdog, refer to
Section 19: Window watchdog (WWDG).

20.2 IWDG main features

• Free-running downcounter

• Clocked from an independent RC oscillator (can operate in Standby and Stop modes)

• Reset (if watchdog activated) when the downcounter value of 0x000 is reached

20.3 IWDG functional description

Figure 175 shows the functional blocks of the independent watchdog module.

When the independent watchdog is started by writing the value 0xCCCC in the Key register
(IWDG_KR), the counter starts counting down from the reset value of 0xFFF. When it
reaches the end of count value (0x000) a reset signal is generated (IWDG reset).

Whenever the key value 0xAAAA is written in the IWDG_KR register, the IWDG_RLR value
is reloaded in the counter and the watchdog reset is prevented.

20.3.1 Hardware watchdog

If the “Hardware watchdog” feature is enabled through the device option bits, the watchdog
is automatically enabled at power-on, and will generate a reset unless the Key register is
written by the software before the counter reaches end of count.

20.3.2 Register access protection

Write access to the IWDG_PR and IWDG_RLR registers is protected. To modify them, you
must first write the code 0x5555 in the IWDG_KR register. A write access to this register
with a different value will break the sequence and register access will be protected again.
This implies that it is the case of the reload operation (writing 0xAAAA).

RM0401 Rev 3 481/771

RM0401 Independent watchdog (IWDG)

485

A status register is available to indicate that an update of the prescaler or the down-counter
reload value is on going.

20.3.3 Debug mode

When the microcontroller enters debug mode (Cortex®-M4 with FPU core halted), the IWDG
counter either continues to work normally or stops, depending on DBG_IWDG_STOP
configuration bit in DBGMCU module. For more details, refer to Section 26.16.4: Debug
MCU APB1 freeze register (DBGMCU_APB1_FZ).

Figure 175. Independent watchdog block diagram

Note: The watchdog function is implemented in the VDD voltage domain that is still functional in
Stop and Standby modes.

Table 79. Min/max IWDG timeout period at 32 kHz (LSI)(1)

1. These timings are given for a 32 kHz clock but the microcontroller internal RC frequency can vary. Refers
to LSI oscillator characteristics table in device datasheet for from max and min values.

Prescaler divider PR[2:0] bits
Min timeout (ms) RL[11:0]=

0x000
Max timeout (ms) RL[11:0]=

0xFFF

/4 0 0.125 512

/8 1 0.25 1024

/16 2 0.5 2048

/32 3 1 4096

/64 4 2 8192

/128 5 4 16384

/256 6 8 32768

Independent watchdog (IWDG) RM0401

482/771 RM0401 Rev 3

20.4 IWDG registers

Refer to Section 1.2 on page 34 for a list of abbreviations used in register descriptions.

The peripheral registers have to be accessed by half-words (16 bits) or words (32 bits).

20.4.1 Key register (IWDG_KR)

Address offset: 0x00

Reset value: 0x0000 0000 (reset by Standby mode)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

KEY[15:0]

w w w w w w w w w w w w w w w w

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 KEY[15:0]: Key value (write only, read 0000h)

These bits must be written by software at regular intervals with the key value AAAAh,
otherwise the watchdog generates a reset when the counter reaches 0.
Writing the key value 5555h to enable access to the IWDG_PR and IWDG_RLR registers
(see Section 20.3.2)
Writing the key value CCCCh starts the watchdog (except if the hardware watchdog option is
selected)

RM0401 Rev 3 483/771

RM0401 Independent watchdog (IWDG)

485

20.4.2 Prescaler register (IWDG_PR)

Address offset: 0x04

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. PR[2:0]

rw rw rw

Bits 31:3 Reserved, must be kept at reset value.

Bits 2:0 PR[2:0]: Prescaler divider

These bits are write access protected seeSection 20.3.2. They are written by software to
select the prescaler divider feeding the counter clock. PVU bit of IWDG_SR must be reset in
order to be able to change the prescaler divider.
000: divider /4
001: divider /8
010: divider /16
011: divider /32
100: divider /64
101: divider /128
110: divider /256
111: divider /256

Note: Reading this register returns the prescaler value from the VDD voltage domain. This
value may not be up to date/valid if a write operation to this register is ongoing. For this
reason the value read from this register is valid only when the PVU bit in the IWDG_SR
register is reset.

Independent watchdog (IWDG) RM0401

484/771 RM0401 Rev 3

20.4.3 Reload register (IWDG_RLR)

Address offset: 0x08

Reset value: 0x0000 0FFF (reset by Standby mode)

20.4.4 Status register (IWDG_SR)

Address offset: 0x0C

Reset value: 0x0000 0000 (not reset by Standby mode)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. RL[11:0]

rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:12 Reserved, must be kept at reset value.

Bits11:0 RL[11:0]: Watchdog counter reload value

These bits are write access protected see Section 20.3.2. They are written by software to
define the value to be loaded in the watchdog counter each time the value AAAAh is written
in the IWDG_KR register. The watchdog counter counts down from this value. The timeout
period is a function of this value and the clock prescaler. Refer to Table 79.
The RVU bit in the IWDG_SR register must be reset in order to be able to change the reload
value.

Note: Reading this register returns the reload value from the VDD voltage domain. This value
may not be up to date/valid if a write operation to this register is ongoing on this
register. For this reason the value read from this register is valid only when the RVU bit
in the IWDG_SR register is reset.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. RVU PVU

r r

Bits 31:2 Reserved, must be kept at reset value.

Bit 1 RVU: Watchdog counter reload value update

This bit is set by hardware to indicate that an update of the reload value is ongoing. It is reset
by hardware when the reload value update operation is completed in the VDD voltage domain
(takes up to 5 RC 40 kHz cycles).
Reload value can be updated only when RVU bit is reset.

Bit 0 PVU: Watchdog prescaler value update

This bit is set by hardware to indicate that an update of the prescaler value is ongoing. It is
reset by hardware when the prescaler update operation is completed in the VDD voltage
domain (takes up to 5 RC 40 kHz cycles).
Prescaler value can be updated only when PVU bit is reset.

RM0401 Rev 3 485/771

RM0401 Independent watchdog (IWDG)

485

Note: If several reload values or prescaler values are used by application, it is mandatory to wait
until RVU bit is reset before changing the reload value and to wait until PVU bit is reset
before changing the prescaler value. However, after updating the prescaler and/or the
reload value it is not necessary to wait until RVU or PVU is reset before continuing code
execution (even in case of low-power mode entry, the write operation is taken into account
and will complete)

20.4.5 IWDG register map

The following table gives the IWDG register map and reset values.

Refer to Section 2.2 on page 41 for the register boundary addresses.

Table 80. IWDG register map and reset values

Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x00
IWDG_KR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

KEY[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x04
IWDG_PR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

PR[2:0]

Reset value 0 0 0

0x08
IWDG_RLR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

RL[11:0]

Reset value 1 1 1 1 1 1 1 1 1 1 1 1

0x0C
IWDG_SR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
V

U

P
V

U

Reset value 0 0

Real-time clock (RTC) RM0401

486/771 RM0401 Rev 3

21 Real-time clock (RTC)

21.1 Introduction

The real-time clock (RTC) is an independent BCD timer/counter. The RTC provides a
time-of-day clock/calendar, two programmable alarm interrupts, and a periodic
programmable wakeup flag with interrupt capability. The RTC also includes an automatic
wakeup unit to manage low power modes.

Two 32-bit registers contain the seconds, minutes, hours (12- or 24-hour format), day (day
of week), date (day of month), month, and year, expressed in binary coded decimal format
(BCD). The sub-seconds value is also available in binary format.

Compensations for 28-, 29- (leap year), 30-, and 31-day months are performed
automatically. Daylight saving time compensation can also be performed.

Additional 32-bit registers contain the programmable alarm subseconds, seconds, minutes,
hours, day, and date.

A digital calibration feature is available to compensate for any deviation in crystal oscillator
accuracy.

After backup domain reset, all RTC registers are protected against possible parasitic write
accesses.

As long as the supply voltage remains in the operating range, the RTC never stops,
regardless of the device status (Run mode, low power mode or under reset).

21.2 RTC main features

The RTC unit main features are the following (see Figure 176):

• Calendar with subseconds, seconds, minutes, hours (12 or 24 format), day (day of
week), date (day of month), month, and year.

• Daylight saving compensation programmable by software.

• Two programmable alarms with interrupt function. The alarms can be triggered by any
combination of the calendar fields.

• Automatic wakeup unit generating a periodic flag that triggers an automatic wakeup
interrupt.

• Reference clock detection: a more precise second source clock (50 or 60 Hz) can be
used to enhance the calendar precision.

• Accurate synchronization with an external clock using the subsecond shift feature.

• Maskable interrupts/events:

– Alarm A

– Alarm B

– Wakeup interrupt

– Timestamp

– Tamper detection

• Digital calibration circuit (periodic counter correction)

– 5 ppm accuracy

RM0401 Rev 3 487/771

RM0401 Real-time clock (RTC)

523

– 0.95 ppm accuracy, obtained in a calibration window of several seconds

• Timestamp function for event saving (1 event)

• Tamper detection:

– 2 tamper events with configurable filter and internal pull-up.

• 20 backup registers (80 bytes). The backup registers are reset when a tamper
detection event occurs.

• Alternate function output (RTC_OUT) which selects one of the following two outputs:

– RTC_CALIB: 512 Hz or 1 Hz clock output (with an LSE frequency of 32.768 kHz).

This output is enabled by setting the COE bit in the RTC_CR register. It is routed
to the device RTC_AF1 function.

– RTC_ALARM (Alarm A, Alarm B or wakeup).

This output is selected by configuring the OSEL[1:0] bits in the RTC_CR register.
It is routed to the device RTC_AF1 function.

• RTC alternate function inputs:

– RTC_TS: timestamp event detection. It is routed to the device RTC_AF1.

– RTC_TAMP1: TAMPER1 event detection. It is routed to the device RTC_AF1.

– RTC_REFIN: reference clock input (usually the mains, 50 or 60 Hz).

Figure 176. RTC block diagram

Real-time clock (RTC) RM0401

488/771 RM0401 Rev 3

21.3 RTC functional description

21.3.1 Clock and prescalers

The RTC clock source (RTCCLK) is selected through the clock controller among the LSE
clock, the LSI oscillator clock, and the HSE clock. For more information on the RTC clock
source configuration, refer to Section 6: Reset and clock control (RCC).

A programmable prescaler stage generates a 1 Hz clock which is used to update the
calendar. To minimize power consumption, the prescaler is split into 2 programmable
prescalers (see Figure 176: RTC block diagram):

• A 7-bit asynchronous prescaler configured through the PREDIV_A bits of the
RTC_PRER register.

• A 15-bit synchronous prescaler configured through the PREDIV_S bits of the
RTC_PRER register.

Note: When both prescalers are used, it is recommended to configure the asynchronous prescaler
to a high value to minimize consumption.

The asynchronous prescaler division factor is set to 128, and the synchronous division
factor to 256, to obtain an internal clock frequency of 1 Hz (ck_spre) with an LSE frequency
of 32.768 kHz.

The minimum division factor is 1 and the maximum division factor is 222.

This corresponds to a maximum input frequency of around 4 MHz.

fck_apre is given by the following formula:

The ck_apre clock is used to clock the binary RTC_SSR subseconds downcounter. When it
reaches 0, RTC_SSR is reloaded with the content of PREDIV_S.

fck_spre is given by the following formula:

The ck_spre clock can be used either to update the calendar or as timebase for the 16-bit
wakeup auto-reload timer. To obtain short timeout periods, the 16-bit wakeup auto-reload
timer can also run with the RTCCLK divided by the programmable 4-bit asynchronous
prescaler (see Section 21.3.4 for details).

21.3.2 Real-time clock and calendar

The RTC calendar time and date registers are accessed through shadow registers which
are synchronized with PCLK1 (APB1 clock). They can also be accessed directly in order to
avoid waiting for the synchronization duration.

• RTC_SSR for the subseconds

• RTC_TR for the time

• RTC_DR for the date

fCK_APRE

fRTCCLK

PREDIV_A 1+
---------------------------------------=

fCK_SPRE

fRTCCLK

PREDIV_S 1+() PREDIV_A 1+()×
---=

RM0401 Rev 3 489/771

RM0401 Real-time clock (RTC)

523

Every two RTCCLK periods, the current calendar value is copied into the shadow registers,
and the RSF bit of RTC_ISR register is set (see Section 21.6.4). The copy is not performed
in Stop and Standby mode. When exiting these modes, the shadow registers are updated
after up to two RTCCLK periods.

When the application reads the calendar registers, it accesses the content of the shadow
registers.It is possible to make a direct access to the calendar registers by setting the
BYPSHAD control bit in the RTC_CR register. By default, this bit is cleared, and the user
accesses the shadow registers.

When reading the RTC_SSR, RTC_TR or RTC_DR registers in BYPSHAD=0 mode, the
frequency of the APB clock (fAPB) must be at least 7 times the frequency of the RTC clock
(fRTCCLK).

The shadow registers are reset by system reset.

21.3.3 Programmable alarms

The RTC unit provides two programmable alarms, Alarm A and Alarm B.

The programmable alarm functions are enabled through the ALRAIE and ALRBIE bits in the
RTC_CR register. The ALRAF and ALRBF flags are set to 1 if the calendar subseconds,
seconds, minutes, hours, date or day match the values programmed in the alarm registers
RTC_ALRMASSR/RTC_ALRMAR and RTC_ALRMBSSR/RTC_ALRMBR, respectively.
Each calendar field can be independently selected through the MSKx bits of the
RTC_ALRMAR and RTC_ALRMBR registers, and through the MASKSSx bits of the
RTC_ALRMASSR and RTC_ALRMBSSR registers. The alarm interrupts are enabled
through the ALRAIE and ALRBIE bits in the RTC_CR register.

Alarm A and Alarm B (if enabled by bits OSEL[1:0] in RTC_CR register) can be routed to the
RTC_ALARM output. RTC_ALARM polarity can be configured through bit POL in the
RTC_CR register.

Caution: If the seconds field is selected (MSK0 bit reset in RTC_ALRMAR or RTC_ALRMBR), the
synchronous prescaler division factor set in the RTC_PRER register must be at least 3 to
ensure correct behavior.

21.3.4 Periodic auto-wakeup

The periodic wakeup flag is generated by a 16-bit programmable auto-reload down-counter.
The wakeup timer range can be extended to 17 bits.

The wakeup function is enabled through the WUTE bit in the RTC_CR register.

The wakeup timer clock input can be:

• RTC clock (RTCCLK) divided by 2, 4, 8, or 16.

When RTCCLK is LSE(32.768 kHz), this allows to configure the wakeup interrupt
period from 122 µs to 32 s, with a resolution down to 61µs.

• ck_spre (usually 1 Hz internal clock)

When ck_spre frequency is 1Hz, this allows to achieve a wakeup time from 1 s to
around 36 hours with one-second resolution. This large programmable time range is
divided in 2 parts:

– from 1s to 18 hours when WUCKSEL [2:1] = 10

– and from around 18h to 36h when WUCKSEL[2:1] = 11. In this last case 216 is
added to the 16-bit counter current value.When the initialization sequence is

Real-time clock (RTC) RM0401

490/771 RM0401 Rev 3

complete (see Programming the wakeup timer), the timer starts counting
down.When the wakeup function is enabled, the down-counting remains active in
low power modes. In addition, when it reaches 0, the WUTF flag is set in the
RTC_ISR register, and the wakeup counter is automatically reloaded with its
reload value (RTC_WUTR register value).

The WUTF flag must then be cleared by software.

When the periodic wakeup interrupt is enabled by setting the WUTIE bit in the RTC_CR2
register, it can exit the device from low power modes.

The periodic wakeup flag can be routed to the RTC_ALARM output provided it has been
enabled through bits OSEL[1:0] of RTC_CR register. RTC_ALARM polarity can be
configured through the POL bit in the RTC_CR register.

System reset, as well as low power modes (Sleep, Stop and Standby) have no influence on
the wakeup timer.

21.3.5 RTC initialization and configuration

RTC register access

The RTC registers are 32-bit registers. The APB interface introduces 2 wait-states in RTC
register accesses except on read accesses to calendar shadow registers when
BYPSHAD=0.

RTC register write protection

After system reset, the RTC registers are protected against parasitic write access with the
DBP bit of the PWR power control register (PWR_CR). The DBP bit must be set to enable
RTC registers write access.

After backup domain reset, all the RTC registers are write-protected. Writing to the RTC
registers is enabled by writing a key into the Write Protection register, RTC_WPR.

The following steps are required to unlock the write protection on all the RTC registers
except for RTC_ISR[13:8], RTC_TAFCR, and RTC_BKPxR.

1. Write ‘0xCA’ into the RTC_WPR register.

2. Write ‘0x53’ into the RTC_WPR register.

Writing a wrong key reactivates the write protection.

The protection mechanism is not affected by system reset.

Calendar initialization and configuration

To program the initial time and date calendar values, including the time format and the
prescaler configuration, the following sequence is required:

1. Set INIT bit to 1 in the RTC_ISR register to enter initialization mode. In this mode, the
calendar counter is stopped and its value can be updated.

2. Poll INITF bit of in the RTC_ISR register. The initialization phase mode is entered when
INITF is set to 1. It takes from 1 to 2 RTCCLK clock cycles (due to clock
synchronization).

3. To generate a 1 Hz clock for the calendar counter, program first the synchronous
prescaler factor in RTC_PRER register, and then program the asynchronous prescaler

RM0401 Rev 3 491/771

RM0401 Real-time clock (RTC)

523

factor. Even if only one of the two fields needs to be changed, 2 separate write
accesses must be performed to the RTC_PRER register.

4. Load the initial time and date values in the shadow registers (RTC_TR and RTC_DR),
and configure the time format (12 or 24 hours) through the FMT bit in the RTC_CR
register.

5. Exit the initialization mode by clearing the INIT bit. The actual calendar counter value is
then automatically loaded and the counting restarts after 4 RTCCLK clock cycles.

When the initialization sequence is complete, the calendar starts counting.

Note: After a system reset, the application can read the INITS flag in the RTC_ISR register to
check if the calendar has been initialized or not. If this flag equals 0, the calendar has not
been initialized since the year field is set at its backup domain reset default value (0x00).

To read the calendar after initialization, the software must first check that the RSF flag is set
in the RTC_ISR register.

Daylight saving time

The daylight saving time management is performed through bits SUB1H, ADD1H, and BKP
of the RTC_CR register.

Using SUB1H or ADD1H, the software can subtract or add one hour to the calendar in one
single operation without going through the initialization procedure.

In addition, the software can use the BKP bit to memorize this operation.

Programming the alarm

A similar procedure must be followed to program or update the programmable alarm (Alarm
A or Alarm B):

1. Clear ALRAE or ALRBIE in RTC_CR to disable Alarm A or Alarm B.

2. Poll ALRAWF or ALRBWF in RTC_ISR until it is set to make sure the access to alarm
registers is allowed. This takes 1 to 2 RTCCLK clock cycles (due to clock
synchronization).

3. Program the Alarm A or Alarm B registers (RTC_ALRMASSR/RTC_ALRMAR or
RTC_ALRMBSSR/RTC_ALRMBR).

4. Set ALRAE or ALRBIE in the RTC_CR register to enable Alarm A or Alarm B again.

Note: Each change of the RTC_CR register is taken into account after 1 to 2 RTCCLK clock cycles
due to clock synchronization.

Programming the wakeup timer

The following sequence is required to configure or change the wakeup timer auto-reload
value (WUT[15:0] in RTC_WUTR):

1. Clear WUTE in RTC_CR to disable the wakeup timer.

2. Poll WUTWF until it is set in RTC_ISR to make sure the access to wakeup auto-reload
counter and to WUCKSEL[2:0] bits is allowed. It takes 1 to 2 RTCCLK clock cycles
(due to clock synchronization).

3. Program the wakeup auto-reload value WUT[15:0] and the wakeup clock selection
(WUCKSEL[2:0] bits in RTC_CR).Set WUTE in RTC_CR to enable the timer again.
The wakeup timer restarts down-counting. Due to clock synchronization, the WUTWF
bit is cleared up to 2 RTCCLK clocks cycles after WUTE is cleared.

Real-time clock (RTC) RM0401

492/771 RM0401 Rev 3

21.3.6 Reading the calendar

When BYPSHAD control bit is cleared in the RTC_CR register

To read the RTC calendar registers (RTC_SSR, RTC_TR and RTC_DR) properly, the APB1
clock frequency (fPCLK1) must be equal to or greater than seven times the fRTCCLK RTC
clock frequency. This ensures a secure behavior of the synchronization mechanism.

If the APB1 clock frequency is less than seven times the RTC clock frequency, the software
must read the calendar time and date registers twice. If the second read of the RTC_TR
gives the same result as the first read, this ensures that the data is correct. Otherwise a third
read access must be done. In any case the APB1 clock frequency must never be lower than
the RTC clock frequency.

The RSF bit is set in RTC_ISR register each time the calendar registers are copied into the
RTC_SSR, RTC_TR and RTC_DR shadow registers. The copy is performed every two
RTCCLK cycles. To ensure consistency between the 3 values, reading either RTC_SSR or
RTC_TR locks the values in the higher-order calendar shadow registers until RTC_DR is
read. In case the software makes read accesses to the calendar in a time interval smaller
than 2 RTCCLK periods: RSF must be cleared by software after the first calendar read, and
then the software must wait until RSF is set before reading again the RTC_SSR, RTC_TR
and RTC_DR registers.

After waking up from low power mode (Stop or Standby), RSF must be cleared by software.
The software must then wait until it is set again before reading the RTC_SSR, RTC_TR and
RTC_DR registers.

The RSF bit must be cleared after wakeup and not before entering low power mode.

Note: After a system reset, the software must wait until RSF is set before reading the RTC_SSR,
RTC_TR and RTC_DR registers. Indeed, a system reset resets the shadow registers to
their default values.

After an initialization (refer to Calendar initialization and configuration): the software must
wait until RSF is set before reading the RTC_SSR, RTC_TR and RTC_DR registers.

After synchronization (refer to Section 21.3.8): the software must wait until RSF is set before
reading the RTC_SSR, RTC_TR and RTC_DR registers.

When the BYPSHAD control bit is set in the RTC_CR register (bypass shadow
registers)

Reading the calendar registers gives the values from the calendar counters directly, thus
eliminating the need to wait for the RSF bit to be set. This is especially useful after exiting
from low power modes (STOP or Standby), since the shadow registers are not updated
during these modes.

When the BYPSHAD bit is set to 1, the results of the different registers might not be
coherent with each other if an RTCCLK edge occurs between two read accesses to the
registers. Additionally, the value of one of the registers may be incorrect if an RTCCLK edge
occurs during the read operation. The software must read all the registers twice, and then
compare the results to confirm that the data is coherent and correct. Alternatively, the
software can just compare the two results of the least-significant calendar register.

Note: While BYPSHAD=1, instructions which read the calendar registers require one extra APB
cycle to complete.

RM0401 Rev 3 493/771

RM0401 Real-time clock (RTC)

523

21.3.7 Resetting the RTC

The calendar shadow registers (RTC_SSR, RTC_TR and RTC_DR) and some bits of the
RTC status register (RTC_ISR) are reset to their default values by all available system reset
sources.

On the contrary, the following registers are resetted to their default values by a backup
domain reset and are not affected by a system reset: the RTC current calendar registers,
the RTC control register (RTC_CR), the prescaler register (RTC_PRER), the RTC
calibration registers (RTC_CALIBR or RTC_CALR), the RTC shift register (RTC_SHIFTR),
the RTC timestamp registers (RTC_TSSSR, RTC_TSTR and RTC_TSDR), the RTC tamper
and alternate function configuration register (RTC_TAFCR), the RTC backup registers
(RTC_BKPxR), the wakeup timer register (RTC_WUTR), the Alarm A and Alarm B registers
(RTC_ALRMASSR/RTC_ALRMAR and RTC_ALRMBSSR/RTC_ALRMBR).

In addition, the RTC keeps on running under system reset if the reset source is different
from a backup domain reset. When a backup domain reset occurs, the RTC is stopped and
all the RTC registers are set to their reset values.

21.3.8 RTC synchronization

The RTC can be synchronized to a remote clock with a high degree of precision. After
reading the sub-second field (RTC_SSR or RTC_TSSSR), a calculation can be made of the
precise offset between the times being maintained by the remote clock and the RTC. The
RTC can then be adjusted to eliminate this offset by “shifting” its clock by a fraction of a
second using RTC_SHIFTR.

RTC_SSR contains the value of the synchronous prescaler’s counter. This allows one to
calculate the exact time being maintained by the RTC down to a resolution of
1 / (PREDIV_S + 1) seconds. As a consequence, the resolution can be improved by
increasing the synchronous prescaler value (PREDIV_S[14:0]. The maximum resolution
allowed (30.52 μs with a 32768 Hz clock) is obtained with PREDIV_S set to 0x7FFF.

However, increasing PREDIV_S means that PREDIV_A must be decreased in order to
maintain the synchronous prescaler’s output at 1 Hz. In this way, the frequency of the
asynchronous prescaler’s output increases, which may increase the RTC dynamic
consumption.

The RTC can be finely adjusted using the RTC shift control register (RTC_SHIFTR). Writing
to RTC_SHIFTR can shift (either delay or advance) the clock by up to a second with a
resolution of 1 / (PREDIV_S + 1) seconds. The shift operation consists of adding the
SUBFS[14:0] value to the synchronous prescaler counter SS[15:0]: this will delay the clock.
If at the same time the ADD1S bit is set, this results in adding one second and at the same
time subtracting a fraction of second, so this will advance the clock.

Caution: Before initiating a shift operation, the user must check that SS[15] = 0 in order to ensure that
no overflow will occur.

As soon as a shift operation is initiated by a write to the RTC_SHIFTR register, the SHPF
flag is set by hardware to indicate that a shift operation is pending. This bit is cleared by
hardware as soon as the shift operation has completed.

Caution: This synchronization feature is not compatible with the reference clock detection feature:
firmware must not write to RTC_SHIFTR when REFCKON=1.

Real-time clock (RTC) RM0401

494/771 RM0401 Rev 3

21.3.9 RTC reference clock detection

The RTC calendar update can be synchronized to a reference clock RTC_REFIN, usually
the mains (50 or 60 Hz). The RTC_REFIN reference clock should have a higher precision
than the 32.768 kHz LSE clock. When the RTC_REFIN detection is enabled (REFCKON bit
of RTC_CR set to 1), the calendar is still clocked by the LSE, and RTC_REFIN is used to
compensate for the imprecision of the calendar update frequency (1 Hz).

Each 1 Hz clock edge is compared to the nearest reference clock edge (if one is found
within a given time window). In most cases, the two clock edges are properly aligned. When
the 1 Hz clock becomes misaligned due to the imprecision of the LSE clock, the RTC shifts
the 1 Hz clock a bit so that future 1 Hz clock edges are aligned. Thanks to this mechanism,
the calendar becomes as precise as the reference clock.

The RTC detects if the reference clock source is present by using the 256 Hz clock
(ck_apre) generated from the 32.768 kHz quartz. The detection is performed during a time
window around each of the calendar updates (every 1 s). The window equals 7 ck_apre
periods when detecting the first reference clock edge. A smaller window of 3 ck_apre
periods is used for subsequent calendar updates.

Each time the reference clock is detected in the window, the asynchronous prescaler which
outputs the ck_apre clock is forced to reload. This has no effect when the reference clock
and the 1 Hz clock are aligned because the prescaler is being reloaded at the same
moment. When the clocks are not aligned, the reload shifts future 1 Hz clock edges a little
for them to be aligned with the reference clock.

If the reference clock halts (no reference clock edge occurred during the 3 ck_apre window),
the calendar is updated continuously based solely on the LSE clock. The RTC then waits for
the reference clock using a large 7 ck_apre period detection window centered on the
ck_spre edge.

When the reference clock detection is enabled, PREDIV_A and PREDIV_S must be set to
their default values:

• PREDIV_A = 0x007F

• PREDIV_S = 0x00FF

Note: The reference clock detection is not available in Standby mode.

Caution: The reference clock detection feature cannot be used in conjunction with the coarse digital
calibration: RTC_CALIBR must be kept at 0x0000 0000 when REFCKON=1.

21.3.10 RTC coarse digital calibration

Two digital calibration methods are available: coarse and smooth calibration. To perform
coarse calibration refer to Section 21.6.7: RTC calibration register (RTC_CALIBR).

The two calibration methods are not intended to be used together, the application must
select one of the two methods. Coarse calibration is provided for compatibly reasons. To
perform smooth calibration refer to Section 21.3.11: RTC smooth digital calibration and to
Section 21.6.16: RTC calibration register (RTC_CALR)

The coarse digital calibration can be used to compensate crystal inaccuracy by adding
(positive calibration) or masking (negative calibration) clock cycles at the output of the
asynchronous prescaler (ck_apre).

Positive and negative calibration are selected by setting the DCS bit in RTC_CALIBR
register to ‘0’ and ‘1’, respectively.

RM0401 Rev 3 495/771

RM0401 Real-time clock (RTC)

523

When positive calibration is enabled (DCS = ‘0’), 2 ck_apre cycles are added every minute
(around 15360 ck_apre cycles) for 2xDC minutes. This causes the calendar to be updated
sooner, thereby adjusting the effective RTC frequency to be a bit higher.

When negative calibration is enabled (DCS = ‘1’), 1 ck_apre cycle is removed every minute
(around 15360 ck_apre cycles) for 2xDC minutes. This causes the calendar to be updated
later, thereby adjusting the effective RTC frequency to be a bit lower.

DC is configured through bits DC[4:0] of RTC_CALIBR register. This number ranges from 0
to 31 corresponding to a time interval (2xDC) ranging from 0 to 62.

The coarse digital calibration can be configured only in initialization mode, and starts when
the INIT bit is cleared. The full calibration cycle lasts 64 minutes. The first 2xDC minutes of
the 64 -minute cycle are modified as just described.

Negative calibration can be performed with a resolution of about 2 ppm while positive
calibration can be performed with a resolution of about 4 ppm. The maximum calibration
ranges from -63 ppm to 126 ppm.

The calibration can be performed either on the LSE or on the HSE clock.

Caution: Digital calibration may not work correctly if PREDIV_A < 6.

Case of RTCCLK=32.768 kHz and PREDIV_A+1=128

The following description assumes that ck_apre frequency is 256 Hz obtained with an LSE
clock nominal frequency of 32.768 kHz, and PREDIV_A set to 127 (default value).

The ck_spre clock frequency is only modified during the first 2xDC minutes of the 64-minute
cycle. For example, when DC equals 1, only the first 2 minutes are modified. This means
that the first 2xDC minutes of each 64-minute cycle have, once per minute, one second
either shortened by 256 or lengthened by 128 RTCCLK cycles, given that each ck_apre
cycle represents 128 RTCCLK cycles (with PREDIV_A+1=128).

Therefore each calibration step has the effect of adding 512 or subtracting 256 oscillator
cycles for every 125829120 RTCCLK cycles (64min x 60 s/min x 32768 cycles/s). This is
equivalent to +4.069 ppm or-2.035 ppm per calibration step. As a result, the calibration
resolution is +10.5 or -5.27 seconds per month, and the total calibration ranges from +5.45
to -2.72 minutes per month.

In order to measure the clock deviation, a 512 Hz clock is output for calibration.Refer to
Section 21.3.14: Calibration clock output.

21.3.11 RTC smooth digital calibration

 RTC frequency can be digitally calibrated with a resolution of about 0.954 ppm with a range
from -487.1 ppm to +488.5 ppm. The correction of the frequency is performed using series
of small adjustments (adding and/or subtracting individual RTCCLK pulses). These
adjustments are fairly well distributed so that the RTC is well calibrated even when observed
over short durations of time.

The smooth digital calibration is performed during a cycle of about 220 RTCCLK pulses, or
32 seconds when the input frequency is 32768 Hz. This cycle is maintained by a 20-bit
counter, cal_cnt[19:0], clocked by RTCCLK.

Real-time clock (RTC) RM0401

496/771 RM0401 Rev 3

The smooth calibration register (RTC_CALR) specifies the number of RTCCLK clock cycles
to be masked during the 32-second cycle:

• Setting the bit CALM[0] to 1 causes exactly one pulse to be masked during the 32-
second cycle.

• Setting CALM[1] to 1 causes two additional cycles to be masked

• Setting CALM[2] to 1 causes four additional cycles to be masked

• and so on up to CALM[8] set to 1 which causes 256 clocks to be masked.

Note: CALM[8:0] (RTC_CALRx) specifies the number of RTCCLK pulses to be masked during the
32-second cycle. Setting the bit CALM[0] to ‘1’ causes exactly one pulse to be masked
during the 32-second cycle at the moment when cal_cnt[19:0] is 0x80000; CALM[1]=1
causes two other cycles to be masked (when cal_cnt is 0x40000 and 0xC0000); CALM[2]=1
causes four other cycles to be masked (cal_cnt = 0x20000/0x60000/0xA0000/ 0xE0000);
and so on up to CALM[8]=1 which causes 256 clocks to be masked (cal_cnt = 0xXX800).

While CALM allows the RTC frequency to be reduced by up to 487.1 ppm with fine
resolution, the bit CALP can be used to increase the frequency by 488.5 ppm. Setting CALP
to ‘1’ effectively inserts an extra RTCCLK pulse every 211 RTCCLK cycles, which means
that 512 clocks are added during every 32-second cycle.

Using CALM together with CALP, an offset ranging from -511 to +512 RTCCLK cycles can
be added during the 32-second cycle, which translates to a calibration range of -487.1 ppm
to +488.5 ppm with a resolution of about 0.954 ppm.

The formula to calculate the effective calibrated frequency (FCAL) given the input frequency
(FRTCCLK) is as follows:

FCAL = FRTCCLK x [1 + (CALP x 512 - CALM) / (220 + CALM - CALP x 512)]

Calibration when PREDIV_A<3

The CALP bit can not be set to 1 when the asynchronous prescaler value (PREDIV_A bits in
RTC_PRER register) is less than 3. If CALP was already set to 1 and PREDIV_A bits are
set to a value less than 3, CALP is ignored and the calibration operates as if CALP was
equal to 0.

To perform a calibration with PREDIV_A less than 3, the synchronous prescaler value
(PREDIV_S) should be reduced so that each second is accelerated by 8 RTCCLK clock
cycles, which is equivalent to adding 256 clock cycles every 32 seconds. As a result,
between 255 and 256 clock pulses (corresponding to a calibration range from 243.3 to
244.1 ppm) can effectively be added during each 32-second cycle using only the CALM bits.

With a nominal RTCCLK frequency of 32768 Hz, when PREDIV_A equals 1 (division factor
of 2), PREDIV_S should be set to 16379 rather than 16383 (4 less). The only other
interesting case is when PREDIV_A equals 0, PREDIV_S should be set to 32759 rather
than 32767 (8 less).

If PREDIV_S is reduced in this way, the formula given the effective frequency of the

calibrated input clock is as follows:

FCAL = FRTCCLK x [1 + (256 - CALM) / (220 + CALM - 256)]

In this case, CALM[7:0] equals 0x100 (the midpoint of the CALM range) is the correct
setting if RTCCLK is exactly 32768.00 Hz.

RM0401 Rev 3 497/771

RM0401 Real-time clock (RTC)

523

Verifying the RTC calibration

RTC precision is performed by measuring the precise frequency of RTCCLK and calculating
the correct CALM value and CALP values. An optional 1 Hz output is provided to allow
applications to measure and verify the RTC precision.

Measuring the precise frequency of the RTC over a limited interval can result in a
measurement error of up to 2 RTCCLK clock cycles over the measurement period,
depending on how the digital calibration cycle is aligned with the measurement period.

However, this measurement error can be eliminated if the measurement period is the same
length as the calibration cycle period. In this case, the only error observed is the error due to
the resolution of the digital calibration.

• By default, the calibration cycle period is 32 seconds.

Using this mode and measuring the accuracy of the 1 Hz output over exactly 32
seconds guarantees that the measure is within 0.477 ppm (0.5 RTCCLK cycles over 32
seconds, due to the limitation of the calibration resolution).

• CALW16 bit of the RTC_CALR register can be set to 1 to force a 16- second calibration
cycle period.

In this case, the RTC precision can be measured during 16 seconds with a maximum
error of 0.954 ppm (0.5 RTCCLK cycles over 16 seconds). However, since the
calibration resolution is reduced, the long term RTC precision is also reduced to 0.954
ppm: CALM[0] bit is stuck at 0 when CALW16 is set to 1.

• CALW8 bit of the RTC_CALR register can be set to 1 to force a 8- second calibration
cycle period.

In this case, the RTC precision can be measured during 8 seconds with a maximum
error of 1.907 ppm (0.5 RTCCLK cycles over 8s). The long term RTC precision is also
reduced to 1.907 ppm: CALM[1:0] bits are stuck at 00 when CALW8 is set to 1.

Re-calibration on-the-fly

The calibration register (RTC_CALR) can be updated on-the-fly while RTC_ISR/INITF=0, by
using the follow process:

1. Poll the RTC_ISR/RECALPF (re-calibration pending flag).

2. If it is set to 0, write a new value to RTC_CALR, if necessary. RECALPF is then
automatically set to 1

3. Within three ck_apre cycles after the write operation to RTC_CALR, the new calibration
settings take effect.

21.3.12 Timestamp function

Timestamp is enabled by setting the TSE bit of RTC_CR register to 1.

The calendar is saved in the timestamp registers (RTC_TSSSR, RTC_TSTR, RTC_TSDR)
when a timestamp event is detected on the pin to which the TIMESTAMP alternate function
is mapped. When a timestamp event occurs, the timestamp flag bit (TSF) in RTC_ISR
register is set.

By setting the TSIE bit in the RTC_CR register, an interrupt is generated when a timestamp
event occurs.

Real-time clock (RTC) RM0401

498/771 RM0401 Rev 3

If a new timestamp event is detected while the timestamp flag (TSF) is already set, the
timestamp overflow flag (TSOVF) flag is set and the timestamp registers (RTC_TSTR and
RTC_TSDR) maintain the results of the previous event.

Note: TSF is set 2 ck_apre cycles after the timestamp event occurs due to synchronization
process.

There is no delay in the setting of TSOVF. This means that if two timestamp events are
close together, TSOVF can be seen as '1' while TSF is still '0'. As a consequence, it is
recommended to poll TSOVF only after TSF has been set.

Caution: If a timestamp event occurs immediately after the TSF bit is supposed to be cleared, then
both TSF and TSOVF bits are set. To avoid masking a timestamp event occurring at the
same moment, the application must not write ‘0’ into TSF bit unless it has already read it to
‘1’.

Optionally, a tamper event can cause a timestamp to be recorded. See the description of the
TAMPTS control bit in Section 21.6.17: RTC tamper and alternate function configuration
register (RTC_TAFCR). If the timestamp event is on the same pin as a tamper event
configured in filtered mode (TAMPFLT set to a non-zero value), the timestamp on tamper
detection event mode must be selected by setting TAMPTS='1' in RTC_TAFCR register.

TIMESTAMP alternate function

The TIMESTAMP additional function is mapped to RTC_AF1.

21.3.13 Tamper detection

Two tamper detection inputs are available. They can be configured either for edge detection,
or for level detection with filtering.

RTC backup registers

The backup registers (RTC_BKPxR) are twenty 32-bit registers for storing 80 bytes of user
application data. They are implemented in the backup domain that remains powered-on by
VBAT when the VDD power is switched off. They are not reset by system reset or when the
device wakes up from Standby mode. They are reset by a backup domain reset

The backup registers are reset when a tamper detection event occurs (see Section 21.6.20:
RTC backup registers (RTC_BKPxR) and Tamper detection initialization on page 498.

Tamper detection initialization

Each tamper detection input is associated with the TAMP1F/TAMP2F flags in the RTC_ISR2
register. Each input can be enabled by setting the corresponding TAMP1E/TAMP2E bits to 1
in the RTC_TAFCR register.

A tamper detection event resets all backup registers (RTC_BKPxR).

By setting the TAMPIE bit in the RTC_TAFCR register, an interrupt is generated when a
tamper detection event occurs.

Timestamp on tamper event

With TAMPTS set to ‘1 , any tamper event causes a timestamp to occur. In this case, either
the TSF bit or the TSOVF bit are set in RTC_ISR, in the same manner as if a normal
timestamp event occurs. The affected tamper flag register (TAMP1F, TAMP2F) is set at the
same time that TSF or TSOVF is set.

RM0401 Rev 3 499/771

RM0401 Real-time clock (RTC)

523

Edge detection on tamper inputs

If the TAMPFLT bits are “00”, the TAMPER pins generate tamper detection events
(RTC_TAMP[2:1]) when either a rising edge is observed or an falling edge is observed
depending on the corresponding TAMPxTRG bit. The internal pull-up resistors on the
TAMPER inputs are deactivated when edge detection is selected.

Caution: To avoid losing tamper detection events, the signal used for edge detection is logically
ANDed with TAMPxE in order to detect a tamper detection event in case it occurs before the
TAMPERx pin is enabled.

• When TAMPxTRG = 0: if the TAMPERx alternate function is already high before
tamper detection is enabled (TAMPxE bit set to 1), a tamper event is detected as soon
as TAMPERx is enabled, even if there was no rising edge on TAMPERx after TAMPxE
was set.

• When TAMPxTRG = 1: if the TAMPERx alternate function is already low before tamper
detection is enabled, a tamper event is detected as soon as TAMPERx is enabled
(even if there was no falling edge on TAMPERx after TAMPxE was set.

After a tamper event has been detected and cleared, the TAMPERx alternate function
should be disabled and then re-enabled (TAMPxE set to 1) before re-programming the
backup registers (RTC_BKPxR). This prevents the application from writing to the backup
registers while the TAMPERx value still indicates a tamper detection. This is equivalent to a
level detection on the TAMPERx alternate function.

Note: Tamper detection is still active when VDD power is switched off. To avoid unwanted resetting
of the backup registers, the pin to which the TAMPER alternate function is mapped should
be externally tied to the correct level.

Level detection with filtering on tamper inputs

Level detection with filtering is performed by setting TAMPFLT to a non-zero value. A tamper
detection event is generated when either 2, 4, or 8 (depending on TAMPFLT) consecutive
samples are observed at the level designated by the TAMPxTRG bits
(TAMP1TRG/TAMP2TRG).

The TAMPER inputs are pre-charged through the I/O internal pull-up resistance before its
state is sampled, unless disabled by setting TAMPPUDIS to 1,The duration of the precharge
is determined by the TAMPPRCH bits, allowing for larger capacitances on the tamper
inputs.

The trade-off between tamper detection latency and power consumption through the pull-up
can be optimized by using TAMPFREQ to determine the frequency of the sampling for level
detection.

Note: Refer to the datasheets for the electrical characteristics of the pull-up resistors.

TAMPER alternate function detection

The TAMPER1 additional function is mapped to RTC_AF1 pin.

21.3.14 Calibration clock output

When the COE bit is set to 1 in the RTC_CR register, a reference clock is provided on the
RTC_CALIB device output. If the COSEL bit in the RTC_CR register is reset and
PREDIV_A = 0x7F, the RTC_CALIB frequency is fRTCCLK/64. This corresponds to a
calibration output at 512 Hz for an RTCCLK frequency at 32.768 kHz.

Real-time clock (RTC) RM0401

500/771 RM0401 Rev 3

The RTC_CALIB output is not impacted by the calibration value programmed in
RTC_CALIBR register. The RTC_CALIB duty cycle is irregular: there is a light jitter on falling
edges. It is therefore recommended to use rising edges.

If COSEL is set and “PREDIV_S+1” is a non-zero multiple of 256 (i.e: PREDIV_S[7:0] =
0xFF), the RTC_CALIB frequency is fRTCCLK/(256 * (PREDIV_A+1)). This corresponds to a
calibration output at 1 Hz for prescaler default values (PREDIV_A = Ox7F, PREDIV_S =
0xFF), with an RTCCLK frequency at 32.768 kHz.

Calibration alternate function output

When the COE bit in the RTC_CR register is set to 1, the calibration alternate function
(RTC_CALIB) is enabled on RTC_AF1.

Note: When RTC_CALIB or RTC_ALARM is selected, RTC_AF1 is automatically configured in
output alternate function.

21.3.15 Alarm output

Three functions can be selected on Alarm output: ALRAF, ALRBF and WUTF. These
functions reflect the contents of the corresponding flags in the RTC_ISR register.

The OSEL[1:0] control bits in the RTC_CR register are used to activate the alarm alternate
function output (RTC_ALARM) in RTC_AF1, and to select the function which is output on
RTC_ALARM.

The polarity of the output is determined by the POL control bit in RTC_CR so that the
opposite of the selected flag bit is output when POL is set to 1.

Alarm alternate function output

RTC_ALARM can be configured in output open drain or output push-pull using the control
bit ALARMOUTTYPE in the RTC_TAFCR register.

Note: Once RTC_ALARM is enabled, it has priority over RTC_CALIB (COE bit is don't care on
RTC_AF1).

When RTC_CALIB or RTC_ALARM is selected, RTC_AF1 is automatically configured in
output alternate function.

21.4 RTC and low power modes

Table 81. Effect of low power modes on RTC

Mode Description

Sleep
No effect
RTC interrupts cause the device to exit the Sleep mode.

Stop
The RTC remains active when the RTC clock source is LSE or LSI. RTC alarm, RTC
tamper event, RTC time stamp event, and RTC Wakeup cause the device to exit the Stop
mode.

Standby
The RTC remains active when the RTC clock source is LSE or LSI. RTC alarm, RTC
tamper event, RTC time stamp event, and RTC Wakeup cause the device to exit the
Standby mode.

RM0401 Rev 3 501/771

RM0401 Real-time clock (RTC)

523

21.5 RTC interrupts

All RTC interrupts are connected to the EXTI controller.

To enable the RTC Alarm interrupt, the following sequence is required:

1. Configure and enable the EXTI Line 17 in interrupt mode and select the rising edge
sensitivity.

2. Configure and enable the RTC_Alarm IRQ channel in the NVIC.

3. Configure the RTC to generate RTC alarms (Alarm A or Alarm B).

To enable the RTC Wakeup interrupt, the following sequence is required:

1. Configure and enable the EXTI Line 22 in interrupt mode and select the rising edge
sensitivity.

2. Configure and enable the RTC_WKUP IRQ channel in the NVIC.

3. Configure the RTC to generate the RTC wakeup timer event.

To enable the RTC Tamper interrupt, the following sequence is required:

1. Configure and enable the EXTI Line 21 in interrupt mode and select the rising edge
sensitivity.

2. Configure and Enable the TAMP_STAMP IRQ channel in the NVIC.

3. Configure the RTC to detect the RTC tamper event.

To enable the RTC TimeStamp interrupt, the following sequence is required:

1. Configure and enable the EXTI Line 21 in interrupt mode and select the rising edge
sensitivity.

2. Configure and Enable the TAMP_STAMP IRQ channel in the NVIC.

3. Configure the RTC to detect the RTC timestamp event.

Table 82. Interrupt control bits

Interrupt event Event flag
Enable
control

bit

Exit the
Sleep
mode

Exit the
Stop
mode

Exit the
Standby

mode

Alarm A ALRAF ALRAIE yes yes(1)

1. Wakeup from STOP and Standby modes is possible only when the RTC clock source is LSE or LSI.

yes(1)

Alarm B ALRBF ALRBIE yes yes(1) yes(1)

Wakeup WUTF WUTIE yes yes(1) yes(1)

TimeStamp TSF TSIE yes yes(1) yes(1)

Tamper1 detection TAMP1F TAMPIE yes yes(1) yes(1)

Tamper2 detection(2)

2. If RTC_TAMPER2 pin is present. Refer to device datasheet pinout.

TAMP2F TAMPIE yes yes(1) yes(1)

Real-time clock (RTC) RM0401

502/771 RM0401 Rev 3

21.6 RTC registers

Refer to Section 1.2 on page 34 of this reference manual for a list of abbreviations used in
register descriptions.

The peripheral registers have to be accessed by words (32 bits).

21.6.1 RTC time register (RTC_TR)

The RTC_TR is the calendar time shadow register. This register must be written in
initialization mode only. Refer to Calendar initialization and configuration and Reading the
calendar.

Address offset: 0x00

Backup domain reset value: 0x0000 0000

System reset: 0x0000 0000 when BYPSHAD = 0. Not affected when BYPSHAD = 1.

Note: This register is write protected. The write access procedure is described in RTC register
write protection.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. PM HT[1:0] HU[3:0]

rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. MNT[2:0] MNU[3:0] Res. ST[2:0] SU[3:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31-24 Reserved, must be kept at reset value

Bit 23 Reserved, must be kept at reset value.

Bit 22 PM: AM/PM notation

0: AM or 24-hour format
1: PM

Bits 21:20 HT[1:0]: Hour tens in BCD format

Bits 19:16 HU[3:0]: Hour units in BCD format

Bit 15 Reserved, must be kept at reset value.

Bits 14:12 MNT[2:0]: Minute tens in BCD format

Bits 11:8 MNU[3:0]: Minute units in BCD format

Bit 7 Reserved, must be kept at reset value.

Bits 6:4 ST[2:0]: Second tens in BCD format

Bits 3:0 SU[3:0]: Second units in BCD format

RM0401 Rev 3 503/771

RM0401 Real-time clock (RTC)

523

21.6.2 RTC date register (RTC_DR)

The RTC_DR is the calendar date shadow register. This register must be written in
initialization mode only. Refer to Calendar initialization and configuration and Reading the
calendar.

Address offset: 0x04

Backup domain reset value: 0x0000_2101

System reset: 0x0000 2101 when BYPSHAD = 0. Not affected when BYPSHAD = 1.

Note: This register is write protected. The write access procedure is described in RTC register
write protection.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. YT[3:0] YU[3:0]

rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

WDU[2:0] MT MU[3:0] Res. Res. DT[1:0] DU[3:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31-24 Reserved, must be kept at reset value

Bits 23:20 YT[3:0]: Year tens in BCD format

Bits 19:16 YU[3:0]: Year units in BCD format

Bits 15:13 WDU[2:0]: Week day units

000: forbidden
001: Monday
...
111: Sunday

Bit 12 MT: Month tens in BCD format

Bits 11:8 MU: Month units in BCD format

Bits 7:6 Reserved, must be kept at reset value.

Bits 5:4 DT[1:0]: Date tens in BCD format

Bits 3:0 DU[3:0]: Date units in BCD format

Real-time clock (RTC) RM0401

504/771 RM0401 Rev 3

21.6.3 RTC control register (RTC_CR)

Address offset: 0x08

Backup domain reset value: 0x0000 0000

System reset: not affected

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. COE OSEL[1:0] POL COSEL BKP SUB1H ADD1H

rw rw rw rw rw rw w w

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TSIE WUTIE ALRBIE ALRAIE TSE WUTE ALRBE ALRAE DCE FMT BYPSHAD REFCKON TSEDGE WUCKSEL[2:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:24 Reserved, must be kept at reset value.

Bit 23 COE: Calibration output enable

This bit enables the RTC_CALIB output
0: Calibration output disabled
1: Calibration output enabled

Bits 22:21 OSEL[1:0]: Output selection

These bits are used to select the flag to be routed to RTC_ALARM output
00: Output disabled
01: Alarm A output enabled
10:Alarm B output enabled
11: Wakeup output enabled

Bit 20 POL: Output polarity

This bit is used to configure the polarity of RTC_ALARM output
0: The pin is high when ALRAF/ALRBF/WUTF is asserted (depending on OSEL[1:0])
1: The pin is low when ALRAF/ALRBF/WUTF is asserted (depending on OSEL[1:0]).

Bit 19 COSEL: Calibration output selection

When COE=1, this bit selects which signal is output on RTC_CALIB.
0: Calibration output is 512 Hz
1: Calibration output is 1 Hz
These frequencies are valid for RTCCLK at 32.768 kHz and prescalers at their default
values (PREDIV_A=127 and PREDIV_S=255). Refer to Section 21.3.14: Calibration clock
output

Bit 18 BKP: Backup

This bit can be written by the user to memorize whether the daylight saving time change has
been performed or not.

Bit 17 SUB1H: Subtract 1 hour (winter time change)

When this bit is set outside initialization mode, 1 hour is subtracted to the calendar time if the
current hour is not 0. This bit is always read as 0.
Setting this bit has no effect when current hour is 0.
0: No effect
1: Subtracts 1 hour to the current time. This can be used for winter time change.

RM0401 Rev 3 505/771

RM0401 Real-time clock (RTC)

523

Bit 16 ADD1H: Add 1 hour (summer time change)

When this bit is set outside initialization mode, 1 hour is added to the calendar time. This bit
is always read as 0.
0: No effect
1: Adds 1 hour to the current time. This can be used for summer time change

Bit 15 TSIE: Timestamp interrupt enable

0: Timestamp Interrupt disable
1: Timestamp Interrupt enable

Bit 14 WUTIE: Wakeup timer interrupt enable

0: Wakeup timer interrupt disabled
1: Wakeup timer interrupt enabled

Bit 13 ALRBIE: Alarm B interrupt enable

0: Alarm B Interrupt disable
1: Alarm B Interrupt enable

Bit 12 ALRAIE: Alarm A interrupt enable

0: Alarm A interrupt disabled
1: Alarm A interrupt enabled

Bit 11 TSE: Time stamp enable

0: Time stamp disable
1: Time stamp enable

Bit 10 WUTE: Wakeup timer enable

0: Wakeup timer disabled
1: Wakeup timer enabled

Bit 9 ALRBE: Alarm B enable

0: Alarm B disabled
1: Alarm B enabled

Bit 8 ALRAE: Alarm A enable

0: Alarm A disabled
1: Alarm A enabled

Bit 7 DCE: Coarse digital calibration enable

0: Digital calibration disabled
1: Digital calibration enabled
PREDIV_A must be 6 or greater

Bit 6 FMT: Hour format

0: 24 hour/day format
1: AM/PM hour format

Bit 5 BYPSHAD: Bypass the shadow registers

0: Calendar values (when reading from RTC_SSR, RTC_TR, and RTC_DR) are taken from
the shadow registers, which are updated once every two RTCCLK cycles.
1: Calendar values (when reading from RTC_SSR, RTC_TR, and RTC_DR) are taken
directly from the calendar counters.

Note: If the frequency of the APB1 clock is less than seven times the frequency of RTCCLK,
BYPSHAD must be set to ‘1’.

Real-time clock (RTC) RM0401

506/771 RM0401 Rev 3

Note: WUT = Wakeup unit counter value. WUT = (0x0000 to 0xFFFF) + 0x10000 added when
WUCKSEL[2:1 = 11].

Bits 7, 6 and 4 of this register can be written in initialization mode only (RTC_ISR/INITF = 1).

Bits 2 to 0 of this register can be written only when RTC_CR WUTE bit = 0 and RTC_ISR
WUTWF bit = 1.

It is recommended not to change the hour during the calendar hour increment as it could
mask the incrementation of the calendar hour.

ADD1H and SUB1H changes are effective in the next second.

This register is write protected. The write access procedure is described in RTC register
write protection.

21.6.4 RTC initialization and status register (RTC_ISR)

Address offset: 0x0C

Backup domain reset value: 0x0000 0007

System reset value: Not affected except INIT, INITF and RSF which are cleared to 0.

Bit 4 REFCKON: Reference clock detection enable (50 or 60 Hz)

0: Reference clock detection disabled
1: Reference clock detection enabled

Note: PREDIV_S must be 0x00FF.

Bit 3 TSEDGE: Timestamp event active edge

0: TIMESTAMP rising edge generates a timestamp event
1: TIMESTAMP falling edge generates a timestamp event
TSE must be reset when TSEDGE is changed to avoid unwanted TSF setting

Bits 2:0 WUCKSEL[2:0]: Wakeup clock selection

000: RTC/16 clock is selected
001: RTC/8 clock is selected
010: RTC/4 clock is selected
011: RTC/2 clock is selected
10x: ck_spre (usually 1 Hz) clock is selected
11x: ck_spre (usually 1 Hz) clock is selected and 216 is added to the WUT counter value
(see note below)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. RECALPF

r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. TAMP2F TAMP1F TSOVF TSF WUTF ALRBF ALRAF INIT INITF RSF INITS SHPF WUT WF ALRB WF ALRA WF

rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rw r rc_w0 r r r r r

Bits 31:17 Reserved, must be kept at reset value

Bit 16 RECALPF: Recalibration pending Flag

The RECALPF status flag is automatically set to ‘1’ when software writes to the RTC_CALR
register, indicating that the RTC_CALR register is blocked. When the new calibration
settings are taken into account, this bit returns to ‘0’. Refer to Re-calibration on-the-fly.

Bit 15 Reserved, must be kept at reset value.

RM0401 Rev 3 507/771

RM0401 Real-time clock (RTC)

523

Bit 14 TAMP2F: TAMPER2 detection flag

This flag is set by hardware when a tamper detection event is detected on tamper input 2.
It is cleared by software writing 0.

Bit 13 TAMP1F: Tamper detection flag

This flag is set by hardware when a tamper detection event is detected.
It is cleared by software writing 0.

Bit 12 TSOVF: Timestamp overflow flag

This flag is set by hardware when a timestamp event occurs while TSF is already set.
This flag is cleared by software by writing 0. It is recommended to check and then clear
TSOVF only after clearing the TSF bit. Otherwise, an overflow might not be noticed if a
timestamp event occurs immediately before the TSF bit is cleared.

Bit 11 TSF: Timestamp flag

This flag is set by hardware when a timestamp event occurs.
This flag is cleared by software by writing 0.

Bit 10 WUTF: Wakeup timer flag

This flag is set by hardware when the wakeup auto-reload counter reaches 0.
This flag is cleared by software by writing 0.
This flag must be cleared by software at least 1.5 RTCCLK periods before WUTF is set to 1
again.

Bit 9 ALRBF: Alarm B flag

This flag is set by hardware when the time/date registers (RTC_TR and RTC_DR) match the
Alarm B register (RTC_ALRMBR).
This flag is cleared by software by writing 0.

Bit 8 ALRAF: Alarm A flag

This flag is set by hardware when the time/date registers (RTC_TR and RTC_DR) match the
Alarm A register (RTC_ALRMAR).
This flag is cleared by software by writing 0.

Bit 7 INIT: Initialization mode

0: Free running mode
1: Initialization mode used to program time and date register (RTC_TR and RTC_DR), and
prescaler register (RTC_PRER). Counters are stopped and start counting from the new
value when INIT is reset.

Bit 6 INITF: Initialization flag

When this bit is set to 1, the RTC is in initialization state, and the time, date and prescaler
registers can be updated.
0: Calendar registers update is not allowed
1: Calendar registers update is allowed.

Bit 5 RSF: Registers synchronization flag

This bit is set by hardware each time the calendar registers are copied into the shadow
registers (RTC_SSRx, RTC_TRx and RTC_DRx). This bit is cleared by hardware in
initialization mode, while a shift operation is pending (SHPF=1), or when in bypass shadow
register mode (BYPSHAD=1). This bit can also be cleared by software.
0: Calendar shadow registers not yet synchronized
1: Calendar shadow registers synchronized

Real-time clock (RTC) RM0401

508/771 RM0401 Rev 3

Note: The ALRAF, ALRBF, WUTF and TSF bits are cleared 2 APB clock cycles after programming
them to 0.

This register is write protected (except for RTC_ISR[13:8] bits). The write access procedure
is described in RTC register write protection.

21.6.5 RTC prescaler register (RTC_PRER)

Address offset: 0x10

Backup domain reset value: 0x007F 00FF

System reset: not affected

Bit 4 INITS: Initialization status flag

This bit is set by hardware when the calendar year field is different from 0 (backup domain
reset value state).
0: Calendar has not been initialized
1: Calendar has been initialized

Bit 3 SHPF: Shift operation pending

0: No shift operation is pending
1: A shift operation is pending
This flag is set by hardware as soon as a shift operation is initiated by a write to the
RTC_SHIFTR. It is cleared by hardware when the corresponding shift operation has been
executed. Writing to SHPF has no effect.

Bit 2 WUTWF: Wakeup timer write flag

This bit is set by hardware up to 2 RTCCLK cycles after the WUTE bit has been set to 0 in
RTC_CR. It is cleared up to 2 RTCCLK cycles after the WUTE bit has been set to 1. The
wakeup timer values can be changed when WUTE bit is cleared and WUTWF is set.
0: Wakeup timer configuration update not allowed
1: Wakeup timer configuration update allowed

Bit 1 ALRBWF: Alarm B write flag

This bit is set by hardware when Alarm B values can be changed, after the ALRBIE bit has
been set to 0 in RTC_CR.
It is cleared by hardware in initialization mode.
0: Alarm B update not allowed
1: Alarm B update allowed.

Bit 0 ALRAWF: Alarm A write flag

This bit is set by hardware when Alarm A values can be changed, after the ALRAE bit has
been set to 0 in RTC_CR.
It is cleared by hardware in initialization mode.
0: Alarm A update not allowed
1: Alarm A update allowed

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. PREDIV_A[6:0]

rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. PREDIV_S[14:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

RM0401 Rev 3 509/771

RM0401 Real-time clock (RTC)

523

Note: This register must be written in initialization mode only. The initialization must be performed
in two separate write accesses. Refer to Calendar initialization and configuration

This register is write protected. The write access procedure is described in RTC register
write protection.

21.6.6 RTC wakeup timer register (RTC_WUTR)

Address offset: 0x14

Backup domain reset value: 0x0000 FFFF

System reset: not affected

Note: This register can be written only when WUTWF is set to 1 in RTC_ISR.

This register is write protected. The write access procedure is described in RTC register
write protection.

21.6.7 RTC calibration register (RTC_CALIBR)

Address offset: 0x18

Backup domain reset value: 0x0000 0000

System reset: not affected

Bits 31:23 Reserved, must be kept at reset value

Bits 22:16 PREDIV_A[6:0]: Asynchronous prescaler factor

This is the asynchronous division factor:
ck_apre frequency = RTCCLK frequency/(PREDIV_A+1)

Bit 15 Reserved, must be kept at reset value.

Bits 14:0 PREDIV_S[14:0]: Synchronous prescaler factor

This is the synchronous division factor:
ck_spre frequency = ck_apre frequency/(PREDIV_S+1)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

WUT[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved, must be kept at reset value

Bits 15:0 WUT[15:0]: Wakeup auto-reload value bits

When the wakeup timer is enabled (WUTE set to 1), the WUTF flag is set every (WUT[15:0]
+ 1) ck_wut cycles. The ck_wut period is selected through WUCKSEL[2:0] bits of the
RTC_CR register
When WUCKSEL[2] = 1, the wakeup timer becomes 17-bits and WUCKSEL[1] effectively
becomes WUT[16] the most-significant bit to be reloaded into the timer.

Note: The first assertion of WUTF occurs (WUT+1) ck_wut cycles after WUTE is set. Setting
WUT[15:0] to 0x0000 with WUCKSEL[2:0] =011 (RTCCLK/2) is forbidden.

Real-time clock (RTC) RM0401

510/771 RM0401 Rev 3

Note: This register can be written in initialization mode only (RTC_ISR/INITF = ‘1’).

This register is write protected. The write access procedure is described in RTC register
write protection.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. DCS Res. Res. DC[4:0]

rw rw rw rw rw rw

Bits 31:8 Reserved, must be kept at reset value

Bit 7 DCS: Digital calibration sign

0: Positive calibration: calendar update frequency is increased
1: Negative calibration: calendar update frequency is decreased

Bits 6:5 Reserved, must be kept at reset value.

Bits 4:0 DC[4:0]: Digital calibration

DCS = 0 (positive calibration)
00000: +0 ppm
00001: +4 ppm (rounded value)
00010: +8 ppm (rounded value)
..
11111: +126 ppm (rounded value)
DCS = 1 (negative calibration)
00000: -0 ppm
00001: -2 ppm (rounded value)
00010: -4 ppm (rounded value)
..
11111: - 63 ppm (rounded value)
Refer to Case of RTCCLK=32.768 kHz and PREDIV_A+1=128 for the exact step value.

RM0401 Rev 3 511/771

RM0401 Real-time clock (RTC)

523

21.6.8 RTC alarm A register (RTC_ALRMAR)

Address offset: 0x1C

Backup domain reset value: 0x0000 0000

System reset: not affected

Note: This register can be written only when ALRAWF is set to 1 in RTC_ISR, or in initialization
mode.

This register is write protected. The write access procedure is described in RTC register
write protection.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

MSK4 WDSEL DT[1:0] DU[3:0] MSK3 PM HT[1:0] HU[3:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MSK2 MNT[2:0] MNU[3:0] MSK1 ST[2:0] SU[3:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 31 MSK4: Alarm A date mask

0: Alarm A set if the date/day match
1: Date/day don’t care in Alarm A comparison

Bit 30 WDSEL: Week day selection

0: DU[3:0] represents the date units
1: DU[3:0] represents the week day. DT[1:0] is don’t care.

Bits 29:28 DT[1:0]: Date tens in BCD format.

Bits 27:24 DU[3:0]: Date units or day in BCD format.

Bit 23 MSK3: Alarm A hours mask

0: Alarm A set if the hours match
1: Hours don’t care in Alarm A comparison

Bit 22 PM: AM/PM notation

0: AM or 24-hour format
1: PM

Bits 21:20 HT[1:0]: Hour tens in BCD format.

Bits 19:16 HU[3:0]: Hour units in BCD format.

Bit 15 MSK2: Alarm A minutes mask

0: Alarm A set if the minutes match
1: Minutes don’t care in Alarm A comparison

Bits 14:12 MNT[2:0]: Minute tens in BCD format.

Bits 11:8 MNU[3:0]: Minute units in BCD format.

Bit 7 MSK1: Alarm A seconds mask

0: Alarm A set if the seconds match
1: Seconds don’t care in Alarm A comparison

Bits 6:4 ST[2:0]: Second tens in BCD format.

Bits 3:0 SU[3:0]: Second units in BCD format.

Real-time clock (RTC) RM0401

512/771 RM0401 Rev 3

21.6.9 RTC alarm B register (RTC_ALRMBR)

Address offset: 0x20

Backup domain reset value: 0x0000 0000

System reset: not affected

Note: This register can be written only when ALRBWF is set to 1 in RTC_ISR, or in initialization
mode.

This register is write protected. The write access procedure is described in RTC register
write protection.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

MSK4 WDSEL DT[1:0] DU[3:0] MSK3 PM HT[1:0] HU[3:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MSK2 MNT[2:0] MNU[3:0] MSK1 ST[2:0] SU[3:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 31 MSK4: Alarm B date mask

0: Alarm B set if the date and day match
1: Date and day don’t care in Alarm B comparison

Bit 30 WDSEL: Week day selection

0: DU[3:0] represents the date units
1: DU[3:0] represents the week day. DT[1:0] is don’t care.

Bits 29:28 DT[1:0]: Date tens in BCD format

Bits 27:24 DU[3:0]: Date units or day in BCD format

Bit 23 MSK3: Alarm B hours mask

0: Alarm B set if the hours match
1: Hours don’t care in Alarm B comparison

Bit 22 PM: AM/PM notation

0: AM or 24-hour format
1: PM

Bits 21:20 HT[1:0]: Hour tens in BCD format

Bits 19:16 HU[3:0]: Hour units in BCD format

Bit 15 MSK2: Alarm B minutes mask

0: Alarm B set if the minutes match
1: Minutes don’t care in Alarm B comparison

Bits 14:12 MNT[2:0]: Minute tens in BCD format

Bits 11:8 MNU[3:0]: Minute units in BCD format

Bit 7 MSK1: Alarm B seconds mask

0: Alarm B set if the seconds match
1: Seconds don’t care in Alarm B comparison

Bits 6:4 ST[2:0]: Second tens in BCD format

Bits 3:0 SU[3:0]: Second units in BCD format

RM0401 Rev 3 513/771

RM0401 Real-time clock (RTC)

523

21.6.10 RTC write protection register (RTC_WPR)

Address offset: 0x24

Backup domain reset value: 0x0000 0000

21.6.11 RTC sub second register (RTC_SSR)

Address offset: 0x28

Backup domain reset value: 0x0000 0000

System reset: 0x0000 0000 when BYPSHAD = 0. Not affected when BYPSHAD = 1

.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. KEY

w w w w w w w w

Bits 31:8 Reserved, must be kept at reset value.

Bits 7:0 KEY: Write protection key

This byte is written by software.
Reading this byte always returns 0x00.
Refer to RTC register write protection for a description of how to unlock RTC register write
protection.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

r r r r r r r r r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SS[15:0]

r r r r r r r r r r r r r r r r

Bits 31:16 Reserved, must be kept at reset value

Bits 15:0 SS: Sub second value

SS[15:0] is the value in the synchronous prescaler’s counter. The fraction of a second is
given by the formula below:
Second fraction = (PREDIV_S - SS) / (PREDIV_S + 1)

Note: SS can be larger than PREDIV_S only after a shift operation. In that case, the correct
time/date is one second less than as indicated by RTC_TR/RTC_DR.

Real-time clock (RTC) RM0401

514/771 RM0401 Rev 3

21.6.12 RTC shift control register (RTC_SHIFTR)

Address offset: 0x2C

Backup domain reset value: 0x0000 0000

System reset: not affected

Note: This register is write protected. The write access procedure is described in RTC register
write protection

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

ADD1S Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

w

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. SUBFS[14:0]

w w w w w w w w w w w w w w w

Bit 31 ADD1S: Add one second

0: No effect
1: Add one second to the clock/calendar
This bit is write only and is always read as zero. Writing to this bit has no effect when a shift
operation is pending (when SHPF=1, in RTC_ISR).
This function is intended to be used with SUBFS (see description below) in order to
effectively add a fraction of a second to the clock in an atomic operation.

Bits 30:15 Reserved, must be kept at reset value

Bits 14:0 SUBFS: Subtract a fraction of a second

These bits are write only and is always read as zero. Writing to this bit has no effect when a
shift operation is pending (when SHPF=1, in RTC_ISR).
The value which is written to SUBFS is added to the synchronous prescaler’s counter. Since
this counter counts down, this operation effectively subtracts from (delays) the clock by:
Delay (seconds) = SUBFS / (PREDIV_S + 1)
A fraction of a second can effectively be added to the clock (advancing the clock) when the
ADD1S function is used in conjunction with SUBFS, effectively advancing the clock by:
Advance (seconds) = (1 - (SUBFS / (PREDIV_S + 1))) .

Note: Writing to SUBFS causes RSF to be cleared. Software can then wait until RSF=1 to be
sure that the shadow registers have been updated with the shifted time.

Refer to Section 21.3.8: RTC synchronization.

RM0401 Rev 3 515/771

RM0401 Real-time clock (RTC)

523

21.6.13 RTC time stamp time register (RTC_TSTR)

Address offset: 0x30

Backup domain reset value: 0x0000 0000

System reset: not affected

Note: The content of this register is valid only when TSF is set to 1 in RTC_ISR. It is cleared when
TSF bit is reset.

21.6.14 RTC time stamp date register (RTC_TSDR)

Address offset: 0x34

Backup domain reset value: 0x0000 0000

System reset: not affected

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. PM HT[1:0] HU[3:0]

r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. MNT[2:0] MNU[3:0] Res. ST[2:0] SU[3:0]

r r r r r r r r r r r r r r

Bits 31:23 Reserved, must be kept at reset value.

Bit 22 PM: AM/PM notation

0: AM or 24-hour format
1: PM

Bits 21:20 HT[1:0]: Hour tens in BCD format.

Bits 19:16 HU[3:0]: Hour units in BCD format.

Bit 15 Reserved, must be kept at reset value.

Bits 14:12 MNT[2:0]: Minute tens in BCD format.

Bits 11:8 MNU[3:0]: Minute units in BCD format.

Bit 7 Reserved, must be kept at reset value.

Bits 6:4 ST[2:0]: Second tens in BCD format.

Bits 3:0 SU[3:0]: Second units in BCD format.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

WDU[1:0] MT MU[3:0] Res. Res. DT[1:0] DU[3:0]

r r r r r r r r r r r r r r

Real-time clock (RTC) RM0401

516/771 RM0401 Rev 3

Note: The content of this register is valid only when TSF is set to 1 in RTC_ISR. It is cleared when
TSF bit is reset.

21.6.15 RTC timestamp sub second register (RTC_TSSSR)

Address offset: 0x38

Backup domain reset value: 0x0000 0000

System reset: not affected

Note: The content of this register is valid only when RTC_ISR/TSF is set. It is cleared when the
RTC_ISR/TSF bit is reset.

21.6.16 RTC calibration register (RTC_CALR)

Address offset: 0x3C

Backup domain reset value: 0x0000 0000

System reset: not affected

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:13 WDU[1:0]: Week day units

Bit 12 MT: Month tens in BCD format

Bits 11:8 MU[3:0]: Month units in BCD format

Bits 7:6 Reserved, must be kept at reset value.

Bits 5:4 DT[1:0]: Date tens in BCD format

Bits 3:0 DU[3:0]: Date units in BCD format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

r r r r r r r r r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SS[15:0]

r r r r r r r r r r r r r r r r

Bits 31:16 Reserved

Bits 15:0 SS: Sub second value

SS[15:0] is the value of the synchronous prescaler’s counter when the timestamp event
occurred.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

r r r r r r r r r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CALP CALW8 CALW16 Res. Res. Res. Res. CALM[8:0]

rw rw rw r r r r rw rw rw rw rw rw rw rw rw

RM0401 Rev 3 517/771

RM0401 Real-time clock (RTC)

523

Note: This register is write protected. The write access procedure is described in RTC register
write protection.

21.6.17 RTC tamper and alternate function configuration register
(RTC_TAFCR)

Address offset: 0x40

Backup domain reset value: 0x0000 0000

System reset: not affected

Bits 31:16 Reserved, must be kept at reset value

Bit 15 CALP: Increase frequency of RTC by 488.5 ppm

0: No RTCCLK pulses are added.
1: One RTCCLK pulse is effectively inserted every 211 pulses (frequency increased by
488.5 ppm).
This feature is intended to be used in conjunction with CALM, which lowers the frequency of
the calendar with a fine resolution. if the input frequency is 32768 Hz, the number of
RTCCLK pulses added during a 32-second window is calculated as follows: (512 * CALP) -
CALM.

Refer to Section 21.3.11: RTC smooth digital calibration.

Bit 14 CALW8: Use an 8-second calibration cycle period

When CALW8 is set to ‘1’, the 8-second calibration cycle period is selected.
CALM[1:0] are stuck at “00” when CALW8=’1’.
Refer to Section 21.3.11: RTC smooth digital calibration.

Bit 13 CALW16: Use a 16-second calibration cycle period

When CALW16 is set to ‘1’, the 16-second calibration cycle period is selected. This bit must
not be set to ‘1’ if CALW8=1.

Note: CALM[0] is stuck at ‘0’ when CALW16=’1’.

Refer to Section 21.3.11: RTC smooth digital calibration.

Bits 12:9 Reserved, must be kept at reset value

Bits 8:0 CALM[8:0]: Calibration minus

The frequency of the calendar is reduced by masking CALM out of 220 RTCCLK pulses (32
seconds if the input frequency is 32768 Hz). This decreases the frequency of the calendar
with a resolution of 0.9537 ppm.
To increase the frequency of the calendar, this feature should be used in conjunction with
CALP.
See Section 21.3.11: RTC smooth digital calibration on page 495.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.
ALARMOUT

TYPE
TSIN
SEL

TAMP1I
NSEL

rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TAMP
PUDIS

TAMP
PRCH[1:0]

TAMP
FLT[1:0]

TAMP
FREQ[2:0]

TAMPTS Res. Res.
TAMP2

TRG
TAMP2E TAMPIE TAMP1TRG TAMP1E

rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Real-time clock (RTC) RM0401

518/771 RM0401 Rev 3

Bits 31:19 Reserved, must be kept at reset value. Always read as 0.

Bit 18 ALARMOUTTYPE: RTC_ALARM output type

0: RTC_ALARM is an open-drain output
1: RTC_ALARM is a push-pull output

Bit 17 TSINSEL: TIMESTAMP mapping

0: RTC_AF1 used as TIMESTAMP
1: Reserved

Bit 16 TAMP1INSEL: TAMPER1 mapping

0: RTC_AF1 used as TAMPER1
1: Reserved

Note: TAMP1E must be reset when TAMP1INSEL is changed to avoid unwanted setting of
TAMP1F.

Bit 15 TAMPPUDIS: TAMPER pull-up disable

This bit determines if each of the tamper pins are pre-charged before each sample.
0: Precharge tamper pins before sampling (enable internal pull-up)

1: Disable precharge of tamper pins

Note:

Bits 14:13 TAMPPRCH[1:0]: Tamper precharge duration

These bit determines the duration of time during which the pull-up/is activated before each
sample. TAMPPRCH is valid for each of the tamper inputs.
0x0: 1 RTCCLK cycle
0x1: 2 RTCCLK cycles
0x2: 4 RTCCLK cycles
0x3: 8 RTCCLK cycles

Bits 12:11 TAMPFLT[1:0]: Tamper filter count

These bits determines the number of consecutive samples at the specified level
(TAMP*TRG) necessary to activate a Tamper event. TAMPFLT is valid for each of the tamper
inputs.
0x0: Tamper is activated on edge of tamper input transitions to the active level (no internal
pull-up on tamper input).
0x1: Tamper is activated after 2 consecutive samples at the active level.
0x2: Tamper is activated after 4 consecutive samples at the active level.
0x3: Tamper is activated after 8 consecutive samples at the active level.

Bits 10:8 TAMPFREQ[2:0]: Tamper sampling frequency

Determines the frequency at which each of the tamper inputs are sampled.
0x0: RTCCLK / 32768 (1 Hz when RTCCLK = 32768 Hz)
0x1: RTCCLK / 16384 (2 Hz when RTCCLK = 32768 Hz)
0x2: RTCCLK / 8192 (4 Hz when RTCCLK = 32768 Hz)
0x3: RTCCLK / 4096 (8 Hz when RTCCLK = 32768 Hz)
0x4: RTCCLK / 2048 (16 Hz when RTCCLK = 32768 Hz)
0x5: RTCCLK / 1024 (32 Hz when RTCCLK = 32768 Hz)
0x6: RTCCLK / 512 (64 Hz when RTCCLK = 32768 Hz)
0x7: RTCCLK / 256 (128 Hz when RTCCLK = 32768 Hz)

Bit 7 TAMPTS: Activate timestamp on tamper detection event

0: Tamper detection event does not cause a timestamp to be saved
1: Save timestamp on tamper detection event
TAMPTS is valid even if TSE=0 in the RTC_CR register.

RM0401 Rev 3 519/771

RM0401 Real-time clock (RTC)

523

21.6.18 RTC alarm A sub second register (RTC_ALRMASSR)

Address offset: 0x44

Backup domain reset value: 0x0000 0000

System reset: not affected

Bits 6:5 Reserved. Always read as 0.

Bit 4 TAMP2TRG: Active level for tamper 2

if TAMPFLT != 00
0: TAMPER2 staying low triggers a tamper detection event.
1: TAMPER2 staying high triggers a tamper detection event.
if TAMPFLT = 00:
0: TAMPER2 rising edge triggers a tamper detection event.
1: TAMPER2 falling edge triggers a tamper detection event.

Bit 3 TAMP2E: Tamper 2 detection enable

0: Tamper 2 detection disabled

1: Tamper 2 detection enabled

Bit 2 TAMPIE: Tamper interrupt enable

0: Tamper interrupt disabled
1: Tamper interrupt enabled

Bit 1 TAMP1TRG: Active level for tamper 1

if TAMPFLT != 00:
0: TAMPER1 staying low triggers a tamper detection event.
1: TAMPER1 staying high triggers a tamper detection event.
if TAMPFLT = 00:
0: TAMPER1 rising edge triggers a tamper detection event.
1: TAMPER1 falling edge triggers a tamper detection event.

Caution: When TAMPFLT = 0, TAMP1E must be reset when TAMP1TRG is changed to avoid
spuriously setting TAMP1F.

Bit 0 TAMP1E: Tamper 1 detection enable

0: Tamper 1 detection disabled
1: Tamper 1 detection enabled

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. MASKSS[3:0] Res. Res. Res. Res. Res. Res. Res. Res.

rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. SS[14:0]

rw rw rw rw rw rw rw rw rw rw rw rw w rw rw

Real-time clock (RTC) RM0401

520/771 RM0401 Rev 3

Note: This register can be written only when ALRAE is reset in RTC_CR register, or in initialization
mode.

This register is write protected. The write access procedure is described in RTC register
write protection on page 490

21.6.19 RTC alarm B sub second register (RTC_ALRMBSSR)

Address offset: 0x48

Backup domain reset value: 0x0000 0000

System reset: not affected

Bits 31:28 Reserved, must be kept at reset value

Bits 27:24 MASKSS[3:0]: Mask the most-significant bits starting at this bit

0: No comparison on sub seconds for Alarm A. The alarm is set when the seconds unit is
incremented (assuming that the rest of the fields match).
1: SS[14:1] are don’t care in Alarm A comparison. Only SS[0] is compared.
2: SS[14:2] are don’t care in Alarm A comparison. Only SS[1:0] are compared.
3: SS[14:3] are don’t care in Alarm A comparison. Only SS[2:0] are compared.
...
12: SS[14:12] are don’t care in Alarm A comparison. SS[11:0] are compared.
13: SS[14:13] are don’t care in Alarm A comparison. SS[12:0] are compared.
14: SS[14] is don’t care in Alarm A comparison. SS[13:0] are compared.
15: All 15 SS bits are compared and must match to activate alarm.
The overflow bits of the synchronous counter (bits 15) is never compared. This bit can be
different from 0 only after a shift operation.

Bits 23:15 Reserved, must be kept at reset value

Bits 14:0 SS[14:0]: Sub seconds value

This value is compared with the contents of the synchronous prescaler’s counter to
determine if Alarm A is to be activated. Only bits 0 up MASKSS-1 are compared.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. MASKSS[3:0] Res. Res. Res. Res. Res. Res. Res. Res.

r r r r rw rw rw rw r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. SS[14:0]

r rw rw rw rw rw rw rw rw rw rw rw rw w rw rw

RM0401 Rev 3 521/771

RM0401 Real-time clock (RTC)

523

Note: This register can be written only when ALRBIE is reset in RTC_CR register, or in
initialization mode.

This register is write protected.The write access procedure is described in RTC register
write protection

21.6.20 RTC backup registers (RTC_BKPxR)

Address offset: 0x50 to 0x9C

Backup domain reset value: 0x0000 0000

System reset: not affected

Bits 31:28 Reserved, must be kept at reset value

Bits 27:24 MASKSS[3:0]: Mask the most-significant bits starting at this bit

0x0: No comparison on sub seconds for Alarm B. The alarm is set when the seconds unit is
incremented (assuming that the rest of the fields match).
0x1: SS[14:1] are don’t care in Alarm B comparison. Only SS[0] is compared.
0x2: SS[14:2] are don’t care in Alarm B comparison. Only SS[1:0] are compared.
0x3: SS[14:3] are don’t care in Alarm B comparison. Only SS[2:0] are compared.
...
0xC: SS[14:12] are don’t care in Alarm B comparison. SS[11:0] are compared.
0xD: SS[14:13] are don’t care in Alarm B comparison. SS[12:0] are compared.
0xE: SS[14] is don’t care in Alarm B comparison. SS[13:0] are compared.
0xF: All 15 SS bits are compared and must match to activate alarm.
The overflow bits of the synchronous counter (bits 15) is never compared. This bit can be
different from 0 only after a shift operation.

Bits 23:15 Reserved, must be kept at reset value

Bits 14:0 SS[14:0]: Sub seconds value

This value is compared with the contents of the synchronous prescaler’s counter to
determine if Alarm B is to be activated. Only bits 0 up to MASKSS-1 are compared.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

BKP[31:16]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BKP[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw w rw rw

Bits 31:0 BKP[31:0]

The application can write or read data to and from these registers.
They are powered-on by VBAT when VDD is switched off, so that they are not reset by
System reset, and their contents remain valid when the device operates in low-power mode.
This register is reset on a tamper detection event, as long as TAMPxF=1.

Real-time clock (RTC) RM0401

522/771 RM0401 Rev 3

21.6.21 RTC register map

Table 83. RTC register map and reset values

Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x00
RTC_TR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

P
M HT

[1:0]
HU[3:0]

R
es

.

MNT[2:0] MNU[3:0]

R
es

.

ST[2:0] SU[3:0]

Reset value 0

0x04
RTC_DR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

YT[3:0] YU[3:0] WDU[2:0] M
T MU[3:0]

R
es

.

R
es

. DT
[1:0]

DU[3:0]

Reset value 0 0 1 0 0 0 0 1 0 0 0 0 0 1

0x08
RTC_CR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

C
O

E OSEL
[1:0] P

O
L

C
O

S
E

L

B
K

P

S
U

B
1

H

A
D

D
1H

T
S

IE

W
U

T
IE

A
LR

B
IE

A
LR

A
IE

T
S

E

W
U

T
E

A
L

R
B

E

A
L

R
A

E

D
C

E

F
M

T

B
Y

P
S

H
A

D

R
E

F
C

K
O

N

T
S

E
D

G
E

WCKSEL
[2:0]

Reset value 0

0x0C
RTC_ISR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

TA
M

P
2

F

TA
M

P
1

F

T
S

O
V

F

T
S

F

W
U

T
F

A
L

R
B

F

A
L

R
A

F

IN
IT

IN
IT

F

R
S

F

IN
IT

S

S
H

P
F

W
U

T
W

F

A
L

R
B

W
F

A
L

R
A

W
F

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1

0x10
RTC_PRER

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

PREDIV_A[6:0]
R

es
.

PREDIV_S[14:0]

Reset value 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

0x14
RTC_WUTR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

WUT[15:0]

Reset value 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0x18
RTC_CALIBR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

D
C

S

R
es

.

R
es

.

DC[4:0]

Reset value 0 0 0 0 0 0

0x1C
RTC_ALRMAR

M
S

K
4

W
D

S
E

L

DT
[1:0]

DU[3:0]

M
S

K
3

P
M HT

[1:0]
HU[3:0]

M
S

K
2

MNT[2:0] MNU[3:0]

M
S

K
1

ST[2:0] SU[3:0]

Reset value 0

0x20
RTC_ALRMBR

M
S

K
4

W
D

S
E

L

DT
[1:0]

DU[3:0]

M
S

K
3

P
M HT

[1:0]
HU[3:0]

M
S

K
2

MNT[2:0] MNU[3:0]

M
S

K
2

ST[2:0] SU[3:0]

Reset value 0

0x24
RTC_WPR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

KEY[7:0]

Reset value 0 0 0 0 0 0 0 0

0x28
RTC_SSR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

SS[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x2C
RTC_SHIFTR

A
D

D
1S

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

SUBFS[14:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

RM0401 Rev 3 523/771

RM0401 Real-time clock (RTC)

523

Refer to Section 2.2 on page 41 for the register boundary addresses.

Caution: In Table 83, the reset value is the value after a backup domain reset. The majority of the
registers are not affected by a system reset. For more information, refer to Section 21.3.7:
Resetting the RTC.

0x30
RTC_TSTR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

P
M

H
T

[1
:0

]

HU[3:0]

R
es

.

M
N

T
[2

:0
]

MNU[3:0]

R
es

.

ST[2:0] SU[3:0]

Reset value 0

0x38
RTC_TSSSR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

SS[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x3C
RTC_ CALR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

C
A

L
P

C
A

LW
8

C
A

LW
1

6

R
es

.

R
es

.

R
es

.

R
es

.

CALM[8:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0

0x40
RTC_TAFCR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

A
L

A
R

M
O

U
T

T
Y

P
E

T
S

IN
S

E
L

TA
M

P
1I

N
S

E
L

TA
M

P
P

U
D

IS

TA
M

P
P

R
C

H
[1

:0
]

TA
M

P
F

LT
[1

:0
]

TA
M

P
F

R
E

Q
[2

:0
]

TA
M

P
T

S

R
es

.

R
es

.

TA
M

P
2

T
R

G

TA
M

P
2

E

TA
M

P
IE

TA
M

P
1

E
T

R
G

TA
M

P
1

E

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x44

RTC_
ALRMASSR R

es
.

R
es

.

R
es

.

R
es

.

MASKSS[3:0]

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

SS[14:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x48

RTC_
ALRMBSSR R

es
.

R
es

.

R
es

.

R
es

.

MASKSS[3:0]

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

SS[14:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x50
to 0x9C

RTC_BKP0R BKP[31:0]

Reset value 0

to
RTC_BKP19R

BKP[31:0]

Reset value 0

Table 83. RTC register map and reset values (continued)

Offset Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

Fast-mode Plus Inter-integrated circuit (FMPI2C) interface RM0401

524/771 RM0401 Rev 3

22 Fast-mode Plus Inter-integrated circuit (FMPI2C)
interface

22.1 Introduction

The I2C (inter-integrated circuit) bus interface handles communications between the
microcontroller and the serial I2C bus. It provides multimaster capability, and controls all I2C
bus-specific sequencing, protocol, arbitration and timing. It supports Standard-mode (Sm),
Fast-mode (Fm) and Fast-mode Plus (Fm+).

It is also SMBus (system management bus) and PMBus (power management bus)
compatible.

DMA can be used to reduce CPU overload.

22.2 FMPI2C main features

• I2C bus specification rev03 compatibility:

– Slave and master modes

– Multimaster capability

– Standard-mode (up to 100 kHz)

– Fast-mode (up to 400 kHz)

– Fast-mode Plus (up to 1 MHz)

– 7-bit and 10-bit addressing mode

– Multiple 7-bit slave addresses (2 addresses, 1 with configurable mask)

– All 7-bit addresses acknowledge mode

– General call

– Programmable setup and hold times

– Easy to use event management

– Optional clock stretching

– Software reset

• 1-byte buffer with DMA capability

• Programmable analog and digital noise filters

RM0401 Rev 3 525/771

RM0401 Fast-mode Plus Inter-integrated circuit (FMPI2C) interface

591

The following additional features are also available depending on the product
implementation (see Section 22.3: FMPI2C implementation):

• SMBus specification rev 3.0 compatibility:

– Hardware PEC (Packet Error Checking) generation and verification with ACK
control

– Command and data acknowledge control

– Address resolution protocol (ARP) support

– Host and Device support

– SMBus alert

– Timeouts and idle condition detection

• PMBus rev 1.3 standard compatibility

• Independent clock: a choice of independent clock sources allowing the FMPI2C
communication speed to be independent from the PCLK reprogramming

22.3 FMPI2C implementation

This manual describes the full set of features implemented in FMPI2C1

22.4 FMPI2C functional description

In addition to receiving and transmitting data, this interface converts it from serial to parallel
format and vice versa. The interrupts are enabled or disabled by software. The interface is
connected to the I2C bus by a data pin (SDA) and by a clock pin (SCL). It can be connected
with a standard (up to 100 kHz), Fast-mode (up to 400 kHz) or Fast-mode Plus (up to
1 MHz) I2C bus.

This interface can also be connected to a SMBus with the data pin (SDA) and clock pin
(SCL).

If SMBus feature is supported: the additional optional SMBus Alert pin (SMBA) is also
available.

Table 84. STM32F410 FMPI2C implementation

I2C features(1)

1. X = supported.

I2C4

7-bit addressing mode X

10-bit addressing mode X

Standard-mode (up to 100 kbit/s) X

Fast-mode (up to 400 kbit/s) X

Fast-mode Plus (2)(up to 1 Mbit/s)

2. 20 mA output drive for Fm+ mode is not supported.

X

Independent clock X

Wakeup from Stop mode -

SMBus/PMBus X

Fast-mode Plus Inter-integrated circuit (FMPI2C) interface RM0401

526/771 RM0401 Rev 3

22.4.1 FMPI2C block diagram

The block diagram of the FMPI2C interface is shown in Figure 177.

Figure 177. FMPI2C block diagram

The FMPI2C is clocked by an independent clock source which allows to the FMPI2C to
operate independently from the PCLK frequency.

For I2C I/Os supporting 20 mA output current drive for Fast-mode Plus operation, the driving
capability is enabled through control bits in the system configuration controller (SYSCFG).
Refer to Section 22.3: FMPI2C implementation.

RM0401 Rev 3 527/771

RM0401 Fast-mode Plus Inter-integrated circuit (FMPI2C) interface

591

22.4.2 FMPI2C pins and internal signals

22.4.3 FMPI2C clock requirements

The FMPI2C kernel is clocked by FMPI2CCLK.

The FMPI2CCLK period tI2CCLK must respect the following conditions:

tI2CCLK < (tLOW - tfilters) / 4 and tI2CCLK < tHIGH

with:

tLOW: SCL low time and tHIGH: SCL high time

tfilters: when enabled, sum of the delays brought by the analog filter and by the digital filter.

Analog filter delay is maximum 260 ns. Digital filter delay is DNF x tI2CCLK.

The PCLK clock period tPCLK must respect the following condition:

tPCLK < 4/3 tSCL

with tSCL: SCL period

Caution: When the FMPI2C kernel is clocked by PCLK, this clock must respect the conditions for
tI2CCLK.

Table 85. FMPI2C input/output pins

Pin name Signal type Description

I2C_SDA Bidirectional I2C data

I2C_SCL Bidirectional I2C clock

I2C_SMBA Bidirectional SMBus Alert

Table 86. FMPI2C internal input/output signals

Internal signal name Signal type Description

i2c_ker_ck Input
I2C kernel clock, also named I2CCLK in this
document

i2c_pclk Input I2C APB clock

i2c_it Output
I2C interrupts, refer to Table 99: FMPI2C
Interrupt requests for the full list of interrupt
sources

i2c_rx_dma Output I2C Receive Data DMA request (I2C_RX)

i2c_tx_dma Output I2C Transmit Data DMA request (I2C_TX)

Fast-mode Plus Inter-integrated circuit (FMPI2C) interface RM0401

528/771 RM0401 Rev 3

22.4.4 Mode selection

The interface can operate in one of the four following modes:

• Slave transmitter

• Slave receiver

• Master transmitter

• Master receiver

By default, it operates in slave mode. The interface automatically switches from slave to
master when it generates a START condition, and from master to slave if an arbitration loss
or a STOP generation occurs, allowing multimaster capability.

Communication flow

In Master mode, the FMPI2C interface initiates a data transfer and generates the clock
signal. A serial data transfer always begins with a START condition and ends with a STOP
condition. Both START and STOP conditions are generated in master mode by software.

In Slave mode, the interface is capable of recognizing its own addresses (7 or 10-bit), and
the General Call address. The General Call address detection can be enabled or disabled
by software. The reserved SMBus addresses can also be enabled by software.

Data and addresses are transferred as 8-bit bytes, MSB first. The first byte(s) following the
START condition contain the address (one in 7-bit mode, two in 10-bit mode). The address
is always transmitted in Master mode.

A 9th clock pulse follows the 8 clock cycles of a byte transfer, during which the receiver must
send an acknowledge bit to the transmitter. Refer to the following figure.

Figure 178. I2C bus protocol

Acknowledge can be enabled or disabled by software. The FMPI2C interface addresses can
be selected by software.

22.4.5 FMPI2C initialization

Enabling and disabling the peripheral

The FMPI2C peripheral clock must be configured and enabled in the clock controller.

Then the FMPI2C can be enabled by setting the PE bit in the FMPI2C_CR1 register.

RM0401 Rev 3 529/771

RM0401 Fast-mode Plus Inter-integrated circuit (FMPI2C) interface

591

When the FMPI2C is disabled (PE=0), the I2C performs a software reset. Refer to
Section 22.4.6: Software reset for more details.

Noise filters

Before enabling the FMPI2C peripheral by setting the PE bit in FMPI2C_CR1 register, the
user must configure the noise filters, if needed. By default, an analog noise filter is present
on the SDA and SCL inputs. This analog filter is compliant with the I2C specification which
requires the suppression of spikes with a pulse width up to 50 ns in Fast-mode and Fast-
mode Plus. The user can disable this analog filter by setting the ANFOFF bit, and/or select a
digital filter by configuring the DNF[3:0] bit in the FMPI2C_CR1 register.

When the digital filter is enabled, the level of the SCL or the SDA line is internally changed
only if it remains stable for more than DNF x FMPI2CCLK periods. This allows to suppress
spikes with a programmable length of 1 to 15 FMPI2CCLK periods.

Caution: Changing the filter configuration is not allowed when the FMPI2C is enabled.

Table 87. Comparison of analog vs. digital filters

- Analog filter Digital filter

Pulse width of
suppressed spikes

≥ 50 ns
Programmable length from 1 to 15 I2C peripheral
clocks

Fast-mode Plus Inter-integrated circuit (FMPI2C) interface RM0401

530/771 RM0401 Rev 3

FMPI2C timings

The timings must be configured in order to guarantee a correct data hold and setup time,
used in master and slave modes. This is done by programming the PRESC[3:0],
SCLDEL[3:0] and SDADEL[3:0] bits in the FMPI2C_TIMINGR register.

The STM32CubeMX tool calculates and provides the I2C_TIMINGR content in the I2C
configuration window

Figure 179. Setup and hold timings

RM0401 Rev 3 531/771

RM0401 Fast-mode Plus Inter-integrated circuit (FMPI2C) interface

591

• When the SCL falling edge is internally detected, a delay is inserted before sending
SDA output. This delay is tSDADEL = SDADEL x tPRESC + tI2CCLK where tPRESC = (PRESC+1)
x tI2CCLK.

TSDADEL impacts the hold time tHD;DAT.

The total SDA output delay is:

tSYNC1 + {[SDADEL x (PRESC+1) + 1] x tI2CCLK }

tSYNC1 duration depends on these parameters:

– SCL falling slope

– When enabled, input delay brought by the analog filter: tAF(min) < tAF < tAF(max)

– When enabled, input delay brought by the digital filter: tDNF = DNF x tI2CCLK

– Delay due to SCL synchronization to FMPI2CCLK clock (2 to 3 FMPI2CCLK
periods)

In order to bridge the undefined region of the SCL falling edge, the user must program
SDADEL in such a way that:

{tf (max) +tHD;DAT (min) -tAF(min) - [(DNF +3) x tI2CCLK]} / {(PRESC +1) x tI2CCLK } ≤ SDADEL

SDADEL ≤ {tHD;DAT (max) -tAF(max) - [(DNF+4) x tI2CCLK]} / {(PRESC +1) x tI2CCLK }

Note: tAF(min) / tAF(max) are part of the equation only when the analog filter is enabled. Refer to
device datasheet for tAF values.

The maximum tHD;DAT can be 3.45 µs, 0.9 µs and 0.45 µs for Standard-mode, Fast-mode
and Fast-mode Plus, but must be less than the maximum of tVD;DAT by a transition time.
This maximum must only be met if the device does not stretch the LOW period (tLOW) of the
SCL signal. If the clock stretches the SCL, the data must be valid by the set-up time before
it releases the clock.

The SDA rising edge is usually the worst case, so in this case the previous equation
becomes:

SDADEL ≤ {tVD;DAT (max) -tr (max) -260 ns - [(DNF+4) x tI2CCLK]} / {(PRESC +1) x tI2CCLK }.

Note: This condition can be violated when NOSTRETCH=0, because the device stretches SCL
low to guarantee the set-up time, according to the SCLDEL value.

Refer to Table 88: I2C-SMBUS specification data setup and hold times for tf, tr, tHD;DAT and
tVD;DAT standard values.

• After tSDADEL delay, or after sending SDA output in case the slave had to stretch the
clock because the data was not yet written in I2C_TXDR register, SCL line is kept at
low level during the setup time. This setup time is tSCLDEL = (SCLDEL+1) x tPRESC where
tPRESC = (PRESC+1) x tI2CCLK.

tSCLDEL impacts the setup time tSU;DAT .

In order to bridge the undefined region of the SDA transition (rising edge usually worst
case), the user must program SCLDEL in such a way that:

{[tr (max) + tSU;DAT (min)] / [(PRESC+1)] x tI2CCLK]} - 1 <= SCLDEL

Refer to Table 88: I2C-SMBUS specification data setup and hold times for tr and tSU;DAT
standard values.

Fast-mode Plus Inter-integrated circuit (FMPI2C) interface RM0401

532/771 RM0401 Rev 3

The SDA and SCL transition time values to be used are the ones in the application. Using
the maximum values from the standard increases the constraints for the SDADEL and
SCLDEL calculation, but ensures the feature whatever the application.

Note: At every clock pulse, after SCL falling edge detection, the I2C master or slave stretches SCL
low during at least [(SDADEL+SCLDEL+1) x (PRESC+1) + 1] x tI2CCLK, in both transmission
and reception modes. In transmission mode, in case the data is not yet written in I2C_TXDR
when SDADEL counter is finished, the I2C keeps on stretching SCL low until the next data
is written. Then new data MSB is sent on SDA output, and SCLDEL counter starts,
continuing stretching SCL low to guarantee the data setup time.

If NOSTRETCH=1 in slave mode, the SCL is not stretched. Consequently the SDADEL
must be programmed in such a way to guarantee also a sufficient setup time.

Additionally, in master mode, the SCL clock high and low levels must be configured by
programming the PRESC[3:0], SCLH[7:0] and SCLL[7:0] bits in the FMPI2C_TIMINGR
register.

• When the SCL falling edge is internally detected, a delay is inserted before releasing
the SCL output. This delay is tSCLL = (SCLL+1) x tPRESC where tPRESC = (PRESC+1) x
tI2CCLK.

tSCLL impacts the SCL low time tLOW .

• When the SCL rising edge is internally detected, a delay is inserted before forcing the
SCL output to low level. This delay is tSCLH = (SCLH+1) x tPRESC where tPRESC =
(PRESC+1) x tI2CCLK. tSCLH impacts the SCL high time tHIGH .

Refer to FMPI2C master initialization for more details.

Caution: Changing the timing configuration is not allowed when the FMPI2C is enabled.

The FMPI2C slave NOSTRETCH mode must also be configured before enabling the
peripheral. Refer to FMPI2C slave initialization for more details.

Caution: Changing the NOSTRETCH configuration is not allowed when the FMPI2C is enabled.

Table 88. I2C-SMBUS specification data setup and hold times

Symbol Parameter

Standard-mode
(Sm)

Fast-mode
(Fm)

Fast-mode Plus
(Fm+)

SMBUS
Unit

Min. Max Min. Max Min. Max Min. Max

tHD;DAT Data hold time 0 - 0 - 0 - 0.3 -
µs

tVD;DAT Data valid time - 3.45 - 0.9 - 0.45 - -

tSU;DAT Data setup time 250 - 100 - 50 - 250 -

ns
tr

Rise time of both SDA
and SCL signals

- 1000 - 300 - 120 - 1000

tf
Fall time of both SDA
and SCL signals

- 300 - 300 - 120 - 300

RM0401 Rev 3 533/771

RM0401 Fast-mode Plus Inter-integrated circuit (FMPI2C) interface

591

Figure 180. FMPI2C initialization flowchart

22.4.6 Software reset

A software reset can be performed by clearing the PE bit in the FMPI2C_CR1 register. In
that case FMPI2C lines SCL and SDA are released. Internal states machines are reset and
communication control bits, as well as status bits come back to their reset value. The
configuration registers are not impacted.

Here is the list of impacted register bits:

1. FMPI2C_CR2 register: START, STOP, NACK

2. FMPI2C_ISR register: BUSY, TXE, TXIS, RXNE, ADDR, NACKF, TCR, TC, STOPF,
BERR, ARLO, OVR

and in addition when the SMBus feature is supported:

1. FMPI2C_CR2 register: PECBYTE

2. FMPI2C_ISR register: PECERR, TIMEOUT, ALERT

PE must be kept low during at least 3 APB clock cycles in order to perform the software
reset. This is ensured by writing the following software sequence: - Write PE=0 - Check
PE=0 - Write PE=1.

Fast-mode Plus Inter-integrated circuit (FMPI2C) interface RM0401

534/771 RM0401 Rev 3

22.4.7 Data transfer

The data transfer is managed through transmit and receive data registers and a shift
register.

Reception

The SDA input fills the shift register. After the 8th SCL pulse (when the complete data byte is
received), the shift register is copied into FMPI2C_RXDR register if it is empty (RXNE=0). If
RXNE=1, meaning that the previous received data byte has not yet been read, the SCL line
is stretched low until FMPI2C_RXDR is read. The stretch is inserted between the 8th and
9th SCL pulse (before the Acknowledge pulse).

Figure 181. Data reception

RM0401 Rev 3 535/771

RM0401 Fast-mode Plus Inter-integrated circuit (FMPI2C) interface

591

Transmission

If the FMPI2C_TXDR register is not empty (TXE=0), its content is copied into the shift
register after the 9th SCL pulse (the Acknowledge pulse). Then the shift register content is
shifted out on SDA line. If TXE=1, meaning that no data is written yet in FMPI2C_TXDR,
SCL line is stretched low until FMPI2C_TXDR is written. The stretch is done after the 9th
SCL pulse.

Figure 182. Data transmission

Hardware transfer management

The FMPI2C has a byte counter embedded in hardware in order to manage byte transfer
and to close the communication in various modes such as:

– NACK, STOP and ReSTART generation in master mode

– ACK control in slave receiver mode

– PEC generation/checking when SMBus feature is supported

The byte counter is always used in master mode. By default it is disabled in slave mode, but
it can be enabled by software by setting the SBC (Slave Byte Control) bit in the
FMPI2C_CR2 register.

The number of bytes to be transferred is programmed in the NBYTES[7:0] bit field in the
FMPI2C_CR2 register. If the number of bytes to be transferred (NBYTES) is greater than
255, or if a receiver wants to control the acknowledge value of a received data byte, the
reload mode must be selected by setting the RELOAD bit in the FMPI2C_CR2 register. In
this mode, TCR flag is set when the number of bytes programmed in NBYTES has been
transferred, and an interrupt is generated if TCIE is set. SCL is stretched as long as TCR
flag is set. TCR is cleared by software when NBYTES is written to a non-zero value.

When the NBYTES counter is reloaded with the last number of bytes, RELOAD bit must be
cleared.

Fast-mode Plus Inter-integrated circuit (FMPI2C) interface RM0401

536/771 RM0401 Rev 3

When RELOAD=0 in master mode, the counter can be used in 2 modes:

• Automatic end mode (AUTOEND = ‘1’ in the FMPI2C_CR2 register). In this mode, the
master automatically sends a STOP condition once the number of bytes programmed
in the NBYTES[7:0] bit field has been transferred.

• Software end mode (AUTOEND = ‘0’ in the FMPI2C_CR2 register). In this mode,
software action is expected once the number of bytes programmed in the NBYTES[7:0]
bit field has been transferred; the TC flag is set and an interrupt is generated if the
TCIE bit is set. The SCL signal is stretched as long as the TC flag is set. The TC flag is
cleared by software when the START or STOP bit is set in the FMPI2C_CR2 register.
This mode must be used when the master wants to send a RESTART condition.

Caution: The AUTOEND bit has no effect when the RELOAD bit is set.

22.4.8 FMPI2C slave mode

FMPI2C slave initialization

In order to work in slave mode, the user must enable at least one slave address. Two
registers FMPI2C_OAR1 and FMPI2C_OAR2 are available in order to program the slave
own addresses OA1 and OA2.

• OA1 can be configured either in 7-bit mode (by default) or in 10-bit addressing mode by
setting the OA1MODE bit in the FMPI2C_OAR1 register.

OA1 is enabled by setting the OA1EN bit in the FMPI2C_OAR1 register.

• If additional slave addresses are required, the 2nd slave address OA2 can be
configured. Up to 7 OA2 LSB can be masked by configuring the OA2MSK[2:0] bits in
the FMPI2C_OAR2 register. Therefore for OA2MSK configured from 1 to 6, only
OA2[7:2], OA2[7:3], OA2[7:4], OA2[7:5], OA2[7:6] or OA2[7] are compared with the
received address. As soon as OA2MSK is not equal to 0, the address comparator for
OA2 excludes the FMPI2C reserved addresses (0000 XXX and 1111 XXX), which are
not acknowledged. If OA2MSK=7, all received 7-bit addresses are acknowledged
(except reserved addresses). OA2 is always a 7-bit address.

These reserved addresses can be acknowledged if they are enabled by the specific
enable bit, if they are programmed in the FMPI2C_OAR1 or FMPI2C_OAR2 register
with OA2MSK=0.

OA2 is enabled by setting the OA2EN bit in the FMPI2C_OAR2 register.

• The General Call address is enabled by setting the GCEN bit in the FMPI2C_CR1
register.

When the FMPI2C is selected by one of its enabled addresses, the ADDR interrupt status
flag is set, and an interrupt is generated if the ADDRIE bit is set.

Table 89. FMPI2C configuration

Function SBC bit RELOAD bit AUTOEND bit

Master Tx/Rx NBYTES + STOP x 0 1

Master Tx/Rx + NBYTES + RESTART x 0 0

Slave Tx/Rx

all received bytes ACKed
0 x x

Slave Rx with ACK control 1 1 x

RM0401 Rev 3 537/771

RM0401 Fast-mode Plus Inter-integrated circuit (FMPI2C) interface

591

By default, the slave uses its clock stretching capability, which means that it stretches the
SCL signal at low level when needed, in order to perform software actions. If the master
does not support clock stretching, the FMPI2C must be configured with NOSTRETCH=1 in
the FMPI2C_CR1 register.

After receiving an ADDR interrupt, if several addresses are enabled the user must read the
ADDCODE[6:0] bits in the FMPI2C_ISR register in order to check which address matched.
DIR flag must also be checked in order to know the transfer direction.

Slave clock stretching (NOSTRETCH = 0)

In default mode, the FMPI2C slave stretches the SCL clock in the following situations:

• When the ADDR flag is set: the received address matches with one of the enabled
slave addresses. This stretch is released when the ADDR flag is cleared by software
setting the ADDRCF bit.

• In transmission, if the previous data transmission is completed and no new data is
written in FMPI2C_TXDR register, or if the first data byte is not written when the ADDR
flag is cleared (TXE=1). This stretch is released when the data is written to the
FMPI2C_TXDR register.

• In reception when the FMPI2C_RXDR register is not read yet and a new data reception
is completed. This stretch is released when FMPI2C_RXDR is read.

• When TCR = 1 in Slave Byte Control mode, reload mode (SBC=1 and RELOAD=1),
meaning that the last data byte has been transferred. This stretch is released when
then TCR is cleared by writing a non-zero value in the NBYTES[7:0] field.

• After SCL falling edge detection, the FMPI2C stretches SCL low during
[(SDADEL+SCLDEL+1) x (PRESC+1) + 1] x tI2CCLK.

Slave without clock stretching (NOSTRETCH = 1)

When NOSTRETCH = 1 in the FMPI2C_CR1 register, the FMPI2C slave does not stretch
the SCL signal.

• The SCL clock is not stretched while the ADDR flag is set.

• In transmission, the data must be written in the FMPI2C_TXDR register before the first
SCL pulse corresponding to its transfer occurs. If not, an underrun occurs, the OVR
flag is set in the FMPI2C_ISR register and an interrupt is generated if the ERRIE bit is
set in the FMPI2C_CR1 register. The OVR flag is also set when the first data
transmission starts and the STOPF bit is still set (has not been cleared). Therefore, if
the user clears the STOPF flag of the previous transfer only after writing the first data to
be transmitted in the next transfer, he ensures that the OVR status is provided, even for
the first data to be transmitted.

• In reception, the data must be read from the FMPI2C_RXDR register before the 9th
SCL pulse (ACK pulse) of the next data byte occurs. If not an overrun occurs, the OVR
flag is set in the FMPI2C_ISR register and an interrupt is generated if the ERRIE bit is
set in the FMPI2C_CR1 register.

Fast-mode Plus Inter-integrated circuit (FMPI2C) interface RM0401

538/771 RM0401 Rev 3

Slave Byte Control mode

In order to allow byte ACK control in slave reception mode, Slave Byte Control mode must
be enabled by setting the SBC bit in the FMPI2C_CR1 register. This is required to be
compliant with SMBus standards.

Reload mode must be selected in order to allow byte ACK control in slave reception mode
(RELOAD=1). To get control of each byte, NBYTES must be initialized to 0x1 in the ADDR
interrupt subroutine, and reloaded to 0x1 after each received byte. When the byte is
received, the TCR bit is set, stretching the SCL signal low between the 8th and 9th SCL
pulses. The user can read the data from the FMPI2C_RXDR register, and then decide to
acknowledge it or not by configuring the ACK bit in the FMPI2C_CR2 register. The SCL
stretch is released by programming NBYTES to a non-zero value: the acknowledge or not-
acknowledge is sent and next byte can be received.

NBYTES can be loaded with a value greater than 0x1, and in this case, the reception flow is
continuous during NBYTES data reception.

Note: The SBC bit must be configured when the FMPI2C is disabled, or when the slave is not
addressed, or when ADDR=1.

The RELOAD bit value can be changed when ADDR=1, or when TCR=1.

Caution: Slave Byte Control mode is not compatible with NOSTRETCH mode. Setting SBC when
NOSTRETCH=1 is not allowed.

Figure 183. Slave initialization flowchart

RM0401 Rev 3 539/771

RM0401 Fast-mode Plus Inter-integrated circuit (FMPI2C) interface

591

Slave transmitter

A transmit interrupt status (TXIS) is generated when the FMPI2C_TXDR register becomes
empty. An interrupt is generated if the TXIE bit is set in the FMPI2C_CR1 register.

The TXIS bit is cleared when the FMPI2C_TXDR register is written with the next data byte
to be transmitted.

When a NACK is received, the NACKF bit is set in the FMPI2C_ISR register and an
interrupt is generated if the NACKIE bit is set in the FMPI2C_CR1 register. The slave
automatically releases the SCL and SDA lines in order to let the master perform a STOP or
a RESTART condition. The TXIS bit is not set when a NACK is received.

When a STOP is received and the STOPIE bit is set in the FMPI2C_CR1 register, the
STOPF flag is set in the FMPI2C_ISR register and an interrupt is generated. In most
applications, the SBC bit is usually programmed to ‘0’. In this case, If TXE = 0 when the
slave address is received (ADDR=1), the user can choose either to send the content of the
FMPI2C_TXDR register as the first data byte, or to flush the FMPI2C_TXDR register by
setting the TXE bit in order to program a new data byte.

In Slave Byte Control mode (SBC=1), the number of bytes to be transmitted must be
programmed in NBYTES in the address match interrupt subroutine (ADDR=1). In this case,
the number of TXIS events during the transfer corresponds to the value programmed in
NBYTES.

Caution: When NOSTRETCH=1, the SCL clock is not stretched while the ADDR flag is set, so the
user cannot flush the FMPI2C_TXDR register content in the ADDR subroutine, in order to
program the first data byte. The first data byte to be sent must be previously programmed in
the FMPI2C_TXDR register:

• This data can be the data written in the last TXIS event of the previous transmission
message.

• If this data byte is not the one to be sent, the FMPI2C_TXDR register can be flushed by
setting the TXE bit in order to program a new data byte. The STOPF bit must be
cleared only after these actions, in order to guarantee that they are executed before the
first data transmission starts, following the address acknowledge.

If STOPF is still set when the first data transmission starts, an underrun error is
generated (the OVR flag is set).

If a TXIS event is needed, (Transmit Interrupt or Transmit DMA request), the user must
set the TXIS bit in addition to the TXE bit, in order to generate a TXIS event.

Fast-mode Plus Inter-integrated circuit (FMPI2C) interface RM0401

540/771 RM0401 Rev 3

Figure 184. Transfer sequence flowchart for FMPI2C slave transmitter,
NOSTRETCH= 0

RM0401 Rev 3 541/771

RM0401 Fast-mode Plus Inter-integrated circuit (FMPI2C) interface

591

Figure 185. Transfer sequence flowchart for FMPI2C slave transmitter,
NOSTRETCH= 1

Fast-mode Plus Inter-integrated circuit (FMPI2C) interface RM0401

542/771 RM0401 Rev 3

Figure 186. Transfer bus diagrams for FMPI2C slave transmitter

RM0401 Rev 3 543/771

RM0401 Fast-mode Plus Inter-integrated circuit (FMPI2C) interface

591

Slave receiver

RXNE is set in FMPI2C_ISR when the FMPI2C_RXDR is full, and generates an interrupt if
RXIE is set in FMPI2C_CR1. RXNE is cleared when FMPI2C_RXDR is read.

When a STOP is received and STOPIE is set in FMPI2C_CR1, STOPF is set in
FMPI2C_ISR and an interrupt is generated.

Figure 187. Transfer sequence flowchart for slave receiver with NOSTRETCH=0

Fast-mode Plus Inter-integrated circuit (FMPI2C) interface RM0401

544/771 RM0401 Rev 3

Figure 188. Transfer sequence flowchart for slave receiver with NOSTRETCH=1

Figure 189. Transfer bus diagrams for FMPI2C slave receiver

RM0401 Rev 3 545/771

RM0401 Fast-mode Plus Inter-integrated circuit (FMPI2C) interface

591

22.4.9 FMPI2C master mode

FMPI2C master initialization

Before enabling the peripheral, the FMPI2C master clock must be configured by setting the
SCLH and SCLL bits in the FMPI2C_TIMINGR register.

The STM32CubeMX tool calculates and provides the I2C_TIMINGR content in the I2C
Configuration window.

A clock synchronization mechanism is implemented in order to support multi-master
environment and slave clock stretching.

In order to allow clock synchronization:

• The low level of the clock is counted using the SCLL counter, starting from the SCL low
level internal detection.

• The high level of the clock is counted using the SCLH counter, starting from the SCL
high level internal detection.

The FMPI2C detects its own SCL low level after a tSYNC1 delay depending on the SCL falling
edge, SCL input noise filters (analog + digital) and SCL synchronization to the I2CxCLK
clock. The FMPI2C releases SCL to high level once the SCLL counter reaches the value
programmed in the SCLL[7:0] bits in the FMPI2C_TIMINGR register.

The FMPI2C detects its own SCL high level after a tSYNC2 delay depending on the SCL rising
edge, SCL input noise filters (analog + digital) and SCL synchronization to I2CxCLK clock.
The FMPI2C ties SCL to low level once the SCLH counter is reached reaches the value
programmed in the SCLH[7:0] bits in the FMPI2C_TIMINGR register.

Consequently the master clock period is:

tSCL = tSYNC1 + tSYNC2 + {[(SCLH+1) + (SCLL+1)] x (PRESC+1) x tI2CCLK}

The duration of tSYNC1 depends on these parameters:

– SCL falling slope

– When enabled, input delay induced by the analog filter.

– When enabled, input delay induced by the digital filter: DNF x tI2CCLK

– Delay due to SCL synchronization with FMPI2CCLK clock (2 to 3 FMPI2CCLK
periods)

The duration of tSYNC2 depends on these parameters:

– SCL rising slope

– When enabled, input delay induced by the analog filter.

– When enabled, input delay induced by the digital filter: DNF x tI2CCLK

– Delay due to SCL synchronization with FMPI2CCLK clock (2 to 3 FMPI2CCLK
periods)

Fast-mode Plus Inter-integrated circuit (FMPI2C) interface RM0401

546/771 RM0401 Rev 3

Figure 190. Master clock generation

Caution: In order to be I2C or SMBus compliant, the master clock must respect the timings given
below:

RM0401 Rev 3 547/771

RM0401 Fast-mode Plus Inter-integrated circuit (FMPI2C) interface

591

Note: SCLL is also used to generate the tBUF and tSU:STA timings.

SCLH is also used to generate the tHD:STA and tSU:STO timings.

Refer to Section 22.4.10: FMPI2C_TIMINGR register configuration examples for examples
of FMPI2C_TIMINGR settings vs. FMPI2CCLK frequency.

Master communication initialization (address phase)

In order to initiate the communication, the user must program the following parameters for
the addressed slave in the FMPI2C_CR2 register:

• Addressing mode (7-bit or 10-bit): ADD10

• Slave address to be sent: SADD[9:0]

• Transfer direction: RD_WRN

• In case of 10-bit address read: HEAD10R bit. HEAD10R must be configure to indicate
if the complete address sequence must be sent, or only the header in case of a
direction change.

• The number of bytes to be transferred: NBYTES[7:0]. If the number of bytes is equal to
or greater than 255 bytes, NBYTES[7:0] must initially be filled with 0xFF.

The user must then set the START bit in FMPI2C_CR2 register. Changing all the above bits
is not allowed when START bit is set.

Then the master automatically sends the START condition followed by the slave address as
soon as it detects that the bus is free (BUSY = 0) and after a delay of tBUF.

In case of an arbitration loss, the master automatically switches back to slave mode and can
acknowledge its own address if it is addressed as a slave.

Note: The START bit is reset by hardware when the slave address has been sent on the bus,
whatever the received acknowledge value. The START bit is also reset by hardware if an
arbitration loss occurs.
In 10-bit addressing mode, when the Slave Address first 7 bits is NACKed by the slave, the

Table 90. I2C-SMBUS specification clock timings

Symbol Parameter

Standard-
mode (Sm)

Fast-mode
(Fm)

Fast-mode
Plus (Fm+)

SMBUS
Unit

Min Max Min Max Min Max Min Max

fSCL SCL clock frequency - 100 - 400 - 1000 - 100 kHz

tHD:STA Hold time (repeated) START condition 4.0 - 0.6 - 0.26 - 4.0 - µs

tSU:STA
Set-up time for a repeated START
condition

4.7 - 0.6 - 0.26 - 4.7 - µs

tSU:STO Set-up time for STOP condition 4.0 - 0.6 - 0.26 - 4.0 - µs

tBUF
Bus free time between a STOP and
START condition

4.7 - 1.3 - 0.5 - 4.7 - µs

tLOW Low period of the SCL clock 4.7 - 1.3 - 0.5 - 4.7 - µs

tHIGH Period of the SCL clock 4.0 - 0.6 - 0.26 - 4.0 50 µs

tr Rise time of both SDA and SCL signals - 1000 - 300 - 120 - 1000 ns

tf Fall time of both SDA and SCL signals - 300 - 300 - 120 - 300 ns

Fast-mode Plus Inter-integrated circuit (FMPI2C) interface RM0401

548/771 RM0401 Rev 3

master re-launches automatically the slave address transmission until ACK is received. In
this case ADDRCF must be set if a NACK is received from the slave, in order to stop
sending the slave address.
If the FMPI2C is addressed as a slave (ADDR=1) while the START bit is set, the FMPI2C
switches to slave mode and the START bit is cleared, when the ADDRCF bit is set.

Note: The same procedure is applied for a Repeated Start condition. In this case BUSY=1.

Figure 191. Master initialization flowchart

Initialization of a master receiver addressing a 10-bit address slave

• If the slave address is in 10-bit format, the user can choose to send the complete read
sequence by clearing the HEAD10R bit in the FMPI2C_CR2 register. In this case the
master automatically sends the following complete sequence after the START bit is set:
(Re)Start + Slave address 10-bit header Write + Slave address 2nd byte + REStart +
Slave address 10-bit header Read

Figure 192. 10-bit address read access with HEAD10R=0

RM0401 Rev 3 549/771

RM0401 Fast-mode Plus Inter-integrated circuit (FMPI2C) interface

591

• If the master addresses a 10-bit address slave, transmits data to this slave and then
reads data from the same slave, a master transmission flow must be done first. Then a
repeated start is set with the 10 bit slave address configured with HEAD10R=1. In this
case the master sends this sequence: ReStart + Slave address 10-bit header Read.

Figure 193. 10-bit address read access with HEAD10R=1

Master transmitter

In the case of a write transfer, the TXIS flag is set after each byte transmission, after the 9th
SCL pulse when an ACK is received.

A TXIS event generates an interrupt if the TXIE bit is set in the FMPI2C_CR1 register. The
flag is cleared when the FMPI2C_TXDR register is written with the next data byte to be
transmitted.

The number of TXIS events during the transfer corresponds to the value programmed in
NBYTES[7:0]. If the total number of data bytes to be sent is greater than 255, reload mode
must be selected by setting the RELOAD bit in the FMPI2C_CR2 register. In this case,
when NBYTES data have been transferred, the TCR flag is set and the SCL line is stretched
low until NBYTES[7:0] is written to a non-zero value.

The TXIS flag is not set when a NACK is received.

• When RELOAD=0 and NBYTES data have been transferred:

– In automatic end mode (AUTOEND=1), a STOP is automatically sent.

– In software end mode (AUTOEND=0), the TC flag is set and the SCL line is
stretched low in order to perform software actions:

A RESTART condition can be requested by setting the START bit in the
FMPI2C_CR2 register with the proper slave address configuration, and number of
bytes to be transferred. Setting the START bit clears the TC flag and the START
condition is sent on the bus.

A STOP condition can be requested by setting the STOP bit in the FMPI2C_CR2
register. Setting the STOP bit clears the TC flag and the STOP condition is sent on
the bus.

• If a NACK is received: the TXIS flag is not set, and a STOP condition is automatically
sent after the NACK reception. the NACKF flag is set in the FMPI2C_ISR register, and
an interrupt is generated if the NACKIE bit is set.

Fast-mode Plus Inter-integrated circuit (FMPI2C) interface RM0401

550/771 RM0401 Rev 3

Figure 194. Transfer sequence flowchart for FMPI2C master transmitter for N≤255
bytes

RM0401 Rev 3 551/771

RM0401 Fast-mode Plus Inter-integrated circuit (FMPI2C) interface

591

Figure 195. Transfer sequence flowchart for FMPI2C master transmitter for N>255
bytes

Fast-mode Plus Inter-integrated circuit (FMPI2C) interface RM0401

552/771 RM0401 Rev 3

Figure 196. Transfer bus diagrams for FMPI2C master transmitter

RM0401 Rev 3 553/771

RM0401 Fast-mode Plus Inter-integrated circuit (FMPI2C) interface

591

Master receiver

In the case of a read transfer, the RXNE flag is set after each byte reception, after the 8th
SCL pulse. An RXNE event generates an interrupt if the RXIE bit is set in the FMPI2C_CR1
register. The flag is cleared when FMPI2C_RXDR is read.

If the total number of data bytes to be received is greater than 255, reload mode must be
selected by setting the RELOAD bit in the FMPI2C_CR2 register. In this case, when
NBYTES[7:0] data have been transferred, the TCR flag is set and the SCL line is stretched
low until NBYTES[7:0] is written to a non-zero value.

• When RELOAD=0 and NBYTES[7:0] data have been transferred:

– In automatic end mode (AUTOEND=1), a NACK and a STOP are automatically
sent after the last received byte.

– In software end mode (AUTOEND=0), a NACK is automatically sent after the last
received byte, the TC flag is set and the SCL line is stretched low in order to allow
software actions:

A RESTART condition can be requested by setting the START bit in the
FMPI2C_CR2 register with the proper slave address configuration, and number of
bytes to be transferred. Setting the START bit clears the TC flag and the START
condition, followed by slave address, are sent on the bus.

A STOP condition can be requested by setting the STOP bit in the FMPI2C_CR2
register. Setting the STOP bit clears the TC flag and the STOP condition is sent on
the bus.

Fast-mode Plus Inter-integrated circuit (FMPI2C) interface RM0401

554/771 RM0401 Rev 3

Figure 197. Transfer sequence flowchart for FMPI2C master receiver for N≤255 bytes

RM0401 Rev 3 555/771

RM0401 Fast-mode Plus Inter-integrated circuit (FMPI2C) interface

591

Figure 198. Transfer sequence flowchart for FMPI2C master receiver for N >255 bytes

Fast-mode Plus Inter-integrated circuit (FMPI2C) interface RM0401

556/771 RM0401 Rev 3

Figure 199. Transfer bus diagrams for FMPI2C master receiver

RM0401 Rev 3 557/771

RM0401 Fast-mode Plus Inter-integrated circuit (FMPI2C) interface

591

22.4.10 FMPI2C_TIMINGR register configuration examples

The tables below provide examples of how to program the FMPI2C_TIMINGR to obtain
timings compliant with the I2C specification. In order to get more accurate configuration
values, the STM32CubeMX tool (I2C Configuration window) must be used.

Table 91. Examples of timing settings for fI2CCLK = 8 MHz

Parameter
Standard-mode (Sm) Fast-mode (Fm) Fast-mode Plus (Fm+)

10 kHz 100 kHz 400 kHz 500 kHz

PRESC 1 1 0 0

SCLL 0xC7 0x13 0x9 0x6

tSCLL 200x250 ns = 50 µs 20x250 ns = 5.0 µs 10x125 ns = 1250 ns 7x125 ns = 875 ns

SCLH 0xC3 0xF 0x3 0x3

tSCLH 196x250 ns = 49 µs 16x250 ns = 4.0µs 4x125ns = 500ns 4x125 ns = 500 ns

tSCL
(1) ~100 µs(2) ~10 µs(2) ~2500 ns(3) ~2000 ns(4)

SDADEL 0x2 0x2 0x1 0x0

tSDADEL 2x250 ns = 500 ns 2x250 ns = 500 ns 1x125 ns = 125 ns 0 ns

SCLDEL 0x4 0x4 0x3 0x1

tSCLDEL 5x250 ns = 1250 ns 5x250 ns = 1250 ns 4x125 ns = 500 ns 2x125 ns = 250 ns

1. SCL period tSCL is greater than tSCLL + tSCLH due to SCL internal detection delay. Values provided for tSCL are examples
only.

2. tSYNC1 + tSYNC2 minimum value is 4 x tI2CCLK = 500 ns. Example with tSYNC1 + tSYNC2 = 1000 ns.

3. tSYNC1 + tSYNC2 minimum value is 4 x tI2CCLK = 500 ns. Example with tSYNC1 + tSYNC2 = 750 ns.

4. tSYNC1 + tSYNC2 minimum value is 4 x tI2CCLK = 500 ns. Example with tSYNC1 + tSYNC2 = 655 ns.

Table 92. Examples of timings settings for fI2CCLK = 16 MHz

Parameter
Standard-mode (Sm) Fast-mode (Fm) Fast-mode Plus (Fm+)

10 kHz 100 kHz 400 kHz 1000 kHz

PRESC 3 3 1 0

SCLL 0xC7 0x13 0x9 0x4

tSCLL 200 x 250 ns = 50 µs 20 x 250 ns = 5.0 µs 10 x 125 ns = 1250 ns 5 x 62.5 ns = 312.5 ns

SCLH 0xC3 0xF 0x3 0x2

tSCLH 196 x 250 ns = 49 µs 16 x 250 ns = 4.0 µs 4 x 125ns = 500 ns 3 x 62.5 ns = 187.5 ns

tSCL
(1) ~100 µs(2) ~10 µs(2) ~2500 ns(3) ~1000 ns(4)

SDADEL 0x2 0x2 0x2 0x0

tSDADEL 2 x 250 ns = 500 ns 2 x 250 ns = 500 ns 2 x 125 ns = 250 ns 0 ns

SCLDEL 0x4 0x4 0x3 0x2

tSCLDEL 5 x 250 ns = 1250 ns 5 x 250 ns = 1250 ns 4 x 125 ns = 500 ns 3 x 62.5 ns = 187.5 ns

1. SCL period tSCL is greater than tSCLL + tSCLH due to SCL internal detection delay. Values provided for tSCL are examples
only.

Fast-mode Plus Inter-integrated circuit (FMPI2C) interface RM0401

558/771 RM0401 Rev 3

22.4.11 SMBus specific features

This section is relevant only when SMBus feature is supported. Refer to Section 22.3:
FMPI2C implementation.

Introduction

The System Management Bus (SMBus) is a two-wire interface through which various
devices can communicate with each other and with the rest of the system. It is based on I2C
principles of operation. SMBus provides a control bus for system and power management
related tasks.

This peripheral is compatible with the SMBUS specification (http://smbus.org).

The System Management Bus Specification refers to three types of devices.

• A slave is a device that receives or responds to a command.

• A master is a device that issues commands, generates the clocks and terminates the
transfer.

• A host is a specialized master that provides the main interface to the system’s CPU. A
host must be a master-slave and must support the SMBus host notify protocol. Only
one host is allowed in a system.

This peripheral can be configured as master or slave device, and also as a host.

Bus protocols

There are eleven possible command protocols for any given device. A device may use any
or all of the eleven protocols to communicate. The protocols are Quick Command, Send
Byte, Receive Byte, Write Byte, Write Word, Read Byte, Read Word, Process Call, Block
Read, Block Write and Block Write-Block Read Process Call. These protocols should be
implemented by the user software.

For more details of these protocols, refer to SMBus specification (http://smbus.org).

Address resolution protocol (ARP)

SMBus slave address conflicts can be resolved by dynamically assigning a new unique
address to each slave device. In order to provide a mechanism to isolate each device for the
purpose of address assignment each device must implement a unique device identifier
(UDID). This 128-bit number is implemented by software.

This peripheral supports the Address Resolution Protocol (ARP). The SMBus Device
Default Address (0b1100 001) is enabled by setting SMBDEN bit in FMPI2C_CR1 register.
The ARP commands should be implemented by the user software.

Arbitration is also performed in slave mode for ARP support.

For more details of the SMBus Address Resolution Protocol, refer to SMBus specification
(http://smbus.org).

2. tSYNC1 + tSYNC2 minimum value is 4 x tI2CCLK = 250 ns. Example with tSYNC1 + tSYNC2 = 1000 ns.

3. tSYNC1 + tSYNC2 minimum value is 4 x tI2CCLK = 250 ns. Example with tSYNC1 + tSYNC2 = 750 ns.

4. tSYNC1 + tSYNC2 minimum value is 4 x tI2CCLK = 250 ns. Example with tSYNC1 + tSYNC2 = 500 ns.

RM0401 Rev 3 559/771

RM0401 Fast-mode Plus Inter-integrated circuit (FMPI2C) interface

591

Received Command and Data acknowledge control

A SMBus receiver must be able to NACK each received command or data. In order to allow
the ACK control in slave mode, the Slave Byte Control mode must be enabled by setting
SBC bit in FMPI2C_CR1 register. Refer to Slave Byte Control mode on page 538 for more
details.

Host Notify protocol

This peripheral supports the Host Notify protocol by setting the SMBHEN bit in the
FMPI2C_CR1 register. In this case the host acknowledges the SMBus Host address
(0b0001 000).

When this protocol is used, the device acts as a master and the host as a slave.

SMBus alert

The SMBus ALERT optional signal is supported. A slave-only device can signal the host
through the SMBALERT# pin that it wants to talk. The host processes the interrupt and
simultaneously accesses all SMBALERT# devices through the Alert Response Address
(0b0001 100). Only the device(s) which pulled SMBALERT# low acknowledges the Alert
Response Address.

When configured as a slave device(SMBHEN=0), the SMBA pin is pulled low by setting the
ALERTEN bit in the FMPI2C_CR1 register. The Alert Response Address is enabled at the
same time.

When configured as a host (SMBHEN=1), the ALERT flag is set in the FMPI2C_ISR register
when a falling edge is detected on the SMBA pin and ALERTEN=1. An interrupt is
generated if the ERRIE bit is set in the FMPI2C_CR1 register. When ALERTEN=0, the
ALERT line is considered high even if the external SMBA pin is low.

If the SMBus ALERT pin is not needed, the SMBA pin can be used as a standard GPIO if
ALERTEN=0.

Packet error checking

A packet error checking mechanism has been introduced in the SMBus specification to
improve reliability and communication robustness. Packet Error Checking is implemented
by appending a Packet Error Code (PEC) at the end of each message transfer. The PEC is
calculated by using the C(x) = x8 + x2 + x + 1 CRC-8 polynomial on all the message bytes
(including addresses and read/write bits).

The peripheral embeds a hardware PEC calculator and allows to send a Not Acknowledge
automatically when the received byte does not match with the hardware calculated PEC.

Fast-mode Plus Inter-integrated circuit (FMPI2C) interface RM0401

560/771 RM0401 Rev 3

Timeouts

This peripheral embeds hardware timers in order to be compliant with the 3 timeouts defined
in SMBus specification.

Figure 200. Timeout intervals for tLOW:SEXT, tLOW:MEXT.

Table 93. SMBus timeout specifications

Symbol Parameter
Limits

Unit
Min Max

tTIMEOUT Detect clock low timeout 25 35 ms

tLOW:SEXT
(1)

1. tLOW:SEXT is the cumulative time a given slave device is allowed to extend the clock cycles in one message
from the initial START to the STOP. It is possible that, another slave device or the master also extends the
clock causing the combined clock low extend time to be greater than tLOW:SEXT. Therefore, this parameter is
measured with the slave device as the sole target of a full-speed master.

Cumulative clock low extend time (slave device) - 25 ms

tLOW:MEXT
(2)

2. tLOW:MEXT is the cumulative time a master device is allowed to extend its clock cycles within each byte of a
message as defined from START-to-ACK, ACK-to-ACK, or ACK-to-STOP. It is possible that a slave device
or another master also extends the clock causing the combined clock low time to be greater than tLOW:MEXT
on a given byte. Therefore, this parameter is measured with a full speed slave device as the sole target of
the master.

Cumulative clock low extend time (master device) - 10 ms

RM0401 Rev 3 561/771

RM0401 Fast-mode Plus Inter-integrated circuit (FMPI2C) interface

591

Bus idle detection

A master can assume that the bus is free if it detects that the clock and data signals have
been high for tIDLE greater than tHIGH,MAX. (refer to Table 88: I2C-SMBUS specification data
setup and hold times)

This timing parameter covers the condition where a master has been dynamically added to
the bus and may not have detected a state transition on the SMBCLK or SMBDAT lines. In
this case, the master must wait long enough to ensure that a transfer is not currently in
progress. The peripheral supports a hardware bus idle detection.

22.4.12 SMBus initialization

This section is relevant only when SMBus feature is supported. Refer to Section 22.3:
FMPI2C implementation.

In addition to FMPI2C initialization, some other specific initialization must be done in order
to perform SMBus communication:

Received Command and Data Acknowledge control (Slave mode)

A SMBus receiver must be able to NACK each received command or data. In order to allow
ACK control in slave mode, the Slave Byte Control mode must be enabled by setting the
SBC bit in the FMPI2C_CR1 register. Refer to Slave Byte Control mode on page 538 for
more details.

Specific address (Slave mode)

The specific SMBus addresses must be enabled if needed. Refer to Bus idle detection on
page 561 for more details.

• The SMBus Device Default address (0b1100 001) is enabled by setting the SMBDEN
bit in the FMPI2C_CR1 register.

• The SMBus Host address (0b0001 000) is enabled by setting the SMBHEN bit in the
FMPI2C_CR1 register.

• The Alert Response Address (0b0001100) is enabled by setting the ALERTEN bit in the
FMPI2C_CR1 register.

Packet error checking

PEC calculation is enabled by setting the PECEN bit in the FMPI2C_CR1 register. Then the
PEC transfer is managed with the help of a hardware byte counter: NBYTES[7:0] in the
FMPI2C_CR2 register. The PECEN bit must be configured before enabling the FMPI2C.

The PEC transfer is managed with the hardware byte counter, so the SBC bit must be set
when interfacing the SMBus in slave mode. The PEC is transferred after NBYTES-1 data
have been transferred when the PECBYTE bit is set and the RELOAD bit is cleared. If
RELOAD is set, PECBYTE has no effect.

Caution: Changing the PECEN configuration is not allowed when the FMPI2C is enabled.

Fast-mode Plus Inter-integrated circuit (FMPI2C) interface RM0401

562/771 RM0401 Rev 3

Timeout detection

The timeout detection is enabled by setting the TIMOUTEN and TEXTEN bits in the
FMPI2C_TIMEOUTR register. The timers must be programmed in such a way that they
detect a timeout before the maximum time given in the SMBus specification.

• tTIMEOUT check

In order to enable the tTIMEOUT check, the 12-bit TIMEOUTA[11:0] bits must be
programmed with the timer reload value in order to check the tTIMEOUT parameter. The
TIDLE bit must be configured to ‘0’ in order to detect the SCL low level timeout.

Then the timer is enabled by setting the TIMOUTEN in the FMPI2C_TIMEOUTR
register.

If SCL is tied low for a time greater than (TIMEOUTA+1) x 2048 x tI2CCLK, the TIMEOUT
flag is set in the FMPI2C_ISR register.

Refer to Table 95: Examples of TIMEOUTA settings for various FMPI2CCLK
frequencies (max tTIMEOUT = 25 ms).

Caution: Changing the TIMEOUTA[11:0] bits and TIDLE bit configuration is not allowed when the
TIMEOUTEN bit is set.

• tLOW:SEXT and tLOW:MEXT check

Depending on if the peripheral is configured as a master or as a slave, The 12-bit
TIMEOUTB timer must be configured in order to check tLOW:SEXT for a slave and
tLOW:MEXT for a master. As the standard specifies only a maximum, the user can choose
the same value for the both.

Then the timer is enabled by setting the TEXTEN bit in the FMPI2C_TIMEOUTR
register.

If the SMBus peripheral performs a cumulative SCL stretch for a time greater than
(TIMEOUTB+1) x 2048 x tI2CCLK, and in the timeout interval described in Bus idle
detection on page 561 section, the TIMEOUT flag is set in the FMPI2C_ISR register.

Refer to Table 96: Examples of TIMEOUTB settings for various FMPI2CCLK
frequencies

Caution: Changing the TIMEOUTB configuration is not allowed when the TEXTEN bit is set.

Bus Idle detection

In order to enable the tIDLE check, the 12-bit TIMEOUTA[11:0] field must be programmed
with the timer reload value in order to obtain the tIDLE parameter. The TIDLE bit must be
configured to ‘1 in order to detect both SCL and SDA high level timeout.

Then the timer is enabled by setting the TIMOUTEN bit in the FMPI2C_TIMEOUTR register.

If both the SCL and SDA lines remain high for a time greater than (TIMEOUTA+1) x 4 x
tI2CCLK, the TIMEOUT flag is set in the FMPI2C_ISR register.

Table 94. SMBUS with PEC configuration

Mode SBC bit RELOAD bit AUTOEND bit PECBYTE bit

Master Tx/Rx NBYTES + PEC+ STOP x 0 1 1

Master Tx/Rx NBYTES + PEC + ReSTART x 0 0 1

Slave Tx/Rx with PEC 1 0 x 1

RM0401 Rev 3 563/771

RM0401 Fast-mode Plus Inter-integrated circuit (FMPI2C) interface

591

Refer to Table 97: Examples of TIMEOUTA settings for various FMPI2CCLK frequencies
(max tIDLE = 50 µs)

Caution: Changing the TIMEOUTA and TIDLE configuration is not allowed when the TIMEOUTEN is
set.

22.4.13 SMBus: FMPI2C_TIMEOUTR register configuration examples

This section is relevant only when SMBus feature is supported. Refer to Section 22.3:
FMPI2C implementation.

• Configuring the maximum duration of tTIMEOUT to 25 ms:

• Configuring the maximum duration of tLOW:SEXT and tLOW:MEXT to 8 ms:

• Configuring the maximum duration of tIDLE to 50 µs

22.4.14 SMBus slave mode

This section is relevant only when SMBus feature is supported. Refer to Section 22.3:
FMPI2C implementation.

In addition to FMPI2C slave transfer management (refer to Section 22.4.8: FMPI2C slave
mode) some additional software flowcharts are provided to support SMBus.

SMBus Slave transmitter

When the IP is used in SMBus, SBC must be programmed to ‘1’ in order to allow the PEC
transmission at the end of the programmed number of data bytes. When the PECBYTE bit
is set, the number of bytes programmed in NBYTES[7:0] includes the PEC transmission. In
that case the total number of TXIS interrupts is NBYTES-1 and the content of the

Table 95. Examples of TIMEOUTA settings for various FMPI2CCLK frequencies
(max tTIMEOUT = 25 ms)

 fI2CCLK TIMEOUTA[11:0] bits TIDLE bit TIMEOUTEN bit tTIMEOUT

8 MHz 0x61 0 1 98 x 2048 x 125 ns = 25 ms

16 MHz 0xC3 0 1 196 x 2048 x 62.5 ns = 25 ms

Table 96. Examples of TIMEOUTB settings for various FMPI2CCLK frequencies

 fI2CCLK TIMEOUTB[11:0] bits TEXTEN bit tLOW:EXT

8 MHz 0x1F 1 32 x 2048 x 125 ns = 8 ms

16 MHz 0x3F 1 64 x 2048 x 62.5 ns = 8 ms

Table 97. Examples of TIMEOUTA settings for various FMPI2CCLK frequencies
(max tIDLE = 50 µs)

 fI2CCLK TIMEOUTA[11:0] bits TIDLE bit TIMEOUTEN bit tTIDLE

8 MHz 0x63 1 1 100 x 4 x 125 ns = 50 µs

16 MHz 0xC7 1 1 200 x 4 x 62.5 ns = 50 µs

Fast-mode Plus Inter-integrated circuit (FMPI2C) interface RM0401

564/771 RM0401 Rev 3

FMPI2C_PECR register is automatically transmitted if the master requests an extra byte
after the NBYTES-1 data transfer.

Caution: The PECBYTE bit has no effect when the RELOAD bit is set.

Figure 201. Transfer sequence flowchart for SMBus slave transmitter N bytes + PEC

RM0401 Rev 3 565/771

RM0401 Fast-mode Plus Inter-integrated circuit (FMPI2C) interface

591

Figure 202. Transfer bus diagrams for SMBus slave transmitter (SBC=1)

SMBus Slave receiver

When the FMPI2C is used in SMBus mode, SBC must be programmed to ‘1’ in order to
allow the PEC checking at the end of the programmed number of data bytes. In order to
allow the ACK control of each byte, the reload mode must be selected (RELOAD=1). Refer
to Slave Byte Control mode on page 538 for more details.

In order to check the PEC byte, the RELOAD bit must be cleared and the PECBYTE bit
must be set. In this case, after NBYTES-1 data have been received, the next received byte
is compared with the internal FMPI2C_PECR register content. A NACK is automatically
generated if the comparison does not match, and an ACK is automatically generated if the
comparison matches, whatever the ACK bit value. Once the PEC byte is received, it is
copied into the FMPI2C_RXDR register like any other data, and the RXNE flag is set.

In the case of a PEC mismatch, the PECERR flag is set and an interrupt is generated if the
ERRIE bit is set in the FMPI2C_CR1 register.

If no ACK software control is needed, the user can program PECBYTE=1 and, in the same
write operation, program NBYTES with the number of bytes to be received in a continuous
flow. After NBYTES-1 are received, the next received byte is checked as being the PEC.

Caution: The PECBYTE bit has no effect when the RELOAD bit is set.

Fast-mode Plus Inter-integrated circuit (FMPI2C) interface RM0401

566/771 RM0401 Rev 3

Figure 203. Transfer sequence flowchart for SMBus slave receiver N Bytes + PEC

RM0401 Rev 3 567/771

RM0401 Fast-mode Plus Inter-integrated circuit (FMPI2C) interface

591

Figure 204. Bus transfer diagrams for SMBus slave receiver (SBC=1)

This section is relevant only when SMBus feature is supported. Refer to Section 22.3:
FMPI2C implementation.

In addition to FMPI2C master transfer management (refer to Section 22.4.9: FMPI2C
master mode) some additional software flowcharts are provided to support SMBus.

SMBus Master transmitter

When the SMBus master wants to transmit the PEC, the PECBYTE bit must be set and the
number of bytes must be programmed in the NBYTES[7:0] field, before setting the START
bit. In this case the total number of TXIS interrupts is NBYTES-1. So if the PECBYTE bit is
set when NBYTES=0x1, the content of the FMPI2C_PECR register is automatically
transmitted.

If the SMBus master wants to send a STOP condition after the PEC, automatic end mode
must be selected (AUTOEND=1). In this case, the STOP condition automatically follows the
PEC transmission.

Fast-mode Plus Inter-integrated circuit (FMPI2C) interface RM0401

568/771 RM0401 Rev 3

When the SMBus master wants to send a RESTART condition after the PEC, software
mode must be selected (AUTOEND=0). In this case, once NBYTES-1 have been
transmitted, the FMPI2C_PECR register content is transmitted and the TC flag is set after
the PEC transmission, stretching the SCL line low. The RESTART condition must be
programmed in the TC interrupt subroutine.

Caution: The PECBYTE bit has no effect when the RELOAD bit is set.

Figure 205. Bus transfer diagrams for SMBus master transmitter

RM0401 Rev 3 569/771

RM0401 Fast-mode Plus Inter-integrated circuit (FMPI2C) interface

591

SMBus Master receiver

When the SMBus master wants to receive the PEC followed by a STOP at the end of the
transfer, automatic end mode can be selected (AUTOEND=1). The PECBYTE bit must be
set and the slave address must be programmed, before setting the START bit. In this case,
after NBYTES-1 data have been received, the next received byte is automatically checked
versus the FMPI2C_PECR register content. A NACK response is given to the PEC byte,
followed by a STOP condition.

When the SMBus master receiver wants to receive the PEC byte followed by a RESTART
condition at the end of the transfer, software mode must be selected (AUTOEND=0). The
PECBYTE bit must be set and the slave address must be programmed, before setting the
START bit. In this case, after NBYTES-1 data have been received, the next received byte is
automatically checked versus the FMPI2C_PECR register content. The TC flag is set after
the PEC byte reception, stretching the SCL line low. The RESTART condition can be
programmed in the TC interrupt subroutine.

Caution: The PECBYTE bit has no effect when the RELOAD bit is set.

Fast-mode Plus Inter-integrated circuit (FMPI2C) interface RM0401

570/771 RM0401 Rev 3

Figure 206. Bus transfer diagrams for SMBus master receiver

22.4.15 Error conditions

The following are the error conditions which may cause communication to fail.

Bus error (BERR)

A bus error is detected when a START or a STOP condition is detected and is not located
after a multiple of 9 SCL clock pulses. A START or a STOP condition is detected when a
SDA edge occurs while SCL is high.

The bus error flag is set only if the FMPI2C is involved in the transfer as master or
addressed slave (i.e not during the address phase in slave mode).

RM0401 Rev 3 571/771

RM0401 Fast-mode Plus Inter-integrated circuit (FMPI2C) interface

591

In case of a misplaced START or RESTART detection in slave mode, the FMPI2C enters
address recognition state like for a correct START condition.

When a bus error is detected, the BERR flag is set in the FMPI2C_ISR register, and an
interrupt is generated if the ERRIE bit is set in the FMPI2C_CR1 register.

Arbitration lost (ARLO)

An arbitration loss is detected when a high level is sent on the SDA line, but a low level is
sampled on the SCL rising edge.

• In master mode, arbitration loss is detected during the address phase, data phase and
data acknowledge phase. In this case, the SDA and SCL lines are released, the
START control bit is cleared by hardware and the master switches automatically to
slave mode.

• In slave mode, arbitration loss is detected during data phase and data acknowledge
phase. In this case, the transfer is stopped, and the SCL and SDA lines are released.

When an arbitration loss is detected, the ARLO flag is set in the FMPI2C_ISR register, and
an interrupt is generated if the ERRIE bit is set in the FMPI2C_CR1 register.

Overrun/underrun error (OVR)

An overrun or underrun error is detected in slave mode when NOSTRETCH=1 and:

• In reception when a new byte is received and the RXDR register has not been read yet.
The new received byte is lost, and a NACK is automatically sent as a response to the
new byte.

• In transmission:

– When STOPF=1 and the first data byte should be sent. The content of the
FMPI2C_TXDR register is sent if TXE=0, 0xFF if not.

– When a new byte must be sent and the FMPI2C_TXDR register has not been
written yet, 0xFF is sent.

When an overrun or underrun error is detected, the OVR flag is set in the FMPI2C_ISR
register, and an interrupt is generated if the ERRIE bit is set in the FMPI2C_CR1 register.

Packet Error Checking Error (PECERR)

This section is relevant only when the SMBus feature is supported. Refer to Section 22.3:
FMPI2C implementation.

A PEC error is detected when the received PEC byte does not match with the
FMPI2C_PECR register content. A NACK is automatically sent after the wrong PEC
reception.

When a PEC error is detected, the PECERR flag is set in the FMPI2C_ISR register, and an
interrupt is generated if the ERRIE bit is set in the FMPI2C_CR1 register.

Fast-mode Plus Inter-integrated circuit (FMPI2C) interface RM0401

572/771 RM0401 Rev 3

Timeout Error (TIMEOUT)

This section is relevant only when the SMBus feature is supported. Refer to Section 22.3:
FMPI2C implementation.

A timeout error occurs for any of these conditions:

• TIDLE=0 and SCL remained low for the time defined in the TIMEOUTA[11:0] bits: this is
used to detect a SMBus timeout.

• TIDLE=1 and both SDA and SCL remained high for the time defined in the TIMEOUTA
[11:0] bits: this is used to detect a bus idle condition.

• Master cumulative clock low extend time reached the time defined in the
TIMEOUTB[11:0] bits (SMBus tLOW:MEXT parameter)

• Slave cumulative clock low extend time reached the time defined in TIMEOUTB[11:0]
bits (SMBus tLOW:SEXT parameter)

When a timeout violation is detected in master mode, a STOP condition is automatically
sent.

When a timeout violation is detected in slave mode, SDA and SCL lines are automatically
released.

When a timeout error is detected, the TIMEOUT flag is set in the FMPI2C_ISR register, and
an interrupt is generated if the ERRIE bit is set in the FMPI2C_CR1 register.

Alert (ALERT)

This section is relevant only when the SMBus feature is supported. Refer to Section 22.3:
FMPI2C implementation.

The ALERT flag is set when the FMPI2C interface is configured as a Host (SMBHEN=1),
the alert pin detection is enabled (ALERTEN=1) and a falling edge is detected on the SMBA
pin. An interrupt is generated if the ERRIE bit is set in the FMPI2C_CR1 register.

22.4.16 DMA requests

Transmission using DMA

DMA (Direct Memory Access) can be enabled for transmission by setting the TXDMAEN bit
in the FMPI2C_CR1 register. Data is loaded from an SRAM area configured using the DMA
peripheral (see Section 8: Direct memory access controller (DMA) on page 162) to the
FMPI2C_TXDR register whenever the TXIS bit is set.

Only the data are transferred with DMA.

• In master mode: the initialization, the slave address, direction, number of bytes and
START bit are programmed by software (the transmitted slave address cannot be
transferred with DMA). When all data are transferred using DMA, the DMA must be
initialized before setting the START bit. The end of transfer is managed with the

RM0401 Rev 3 573/771

RM0401 Fast-mode Plus Inter-integrated circuit (FMPI2C) interface

591

NBYTES counter. Refer to Master transmitter on page 549.

• In slave mode:

– With NOSTRETCH=0, when all data are transferred using DMA, the DMA must be
initialized before the address match event, or in ADDR interrupt subroutine, before
clearing ADDR.

– With NOSTRETCH=1, the DMA must be initialized before the address match
event.

• For instances supporting SMBus: the PEC transfer is managed with NBYTES counter.
Refer to SMBus Slave transmitter on page 563 and SMBus Master transmitter on
page 567.

Note: If DMA is used for transmission, the TXIE bit does not need to be enabled.

Reception using DMA

DMA (Direct Memory Access) can be enabled for reception by setting the RXDMAEN bit in
the FMPI2C_CR1 register. Data is loaded from the FMPI2C_RXDR register to an SRAM
area configured using the DMA peripheral (refer to Section 8: Direct memory access
controller (DMA)) whenever the RXNE bit is set. Only the data (including PEC) are
transferred with DMA.

• In master mode, the initialization, the slave address, direction, number of bytes and
START bit are programmed by software. When all data are transferred using DMA, the
DMA must be initialized before setting the START bit. The end of transfer is managed
with the NBYTES counter.

• In slave mode with NOSTRETCH=0, when all data are transferred using DMA, the
DMA must be initialized before the address match event, or in the ADDR interrupt
subroutine, before clearing the ADDR flag.

• If SMBus is supported (see Section 22.3: FMPI2C implementation): the PEC transfer is
managed with the NBYTES counter. Refer to SMBus Slave receiver on page 565 and
SMBus Master receiver on page 569.

Note: If DMA is used for reception, the RXIE bit does not need to be enabled.

22.4.17 Debug mode

When the microcontroller enters debug mode (core halted), the SMBus timeout either
continues to work normally or stops, depending on the DBG_I2Cx_ configuration bits in the
DBGMCU module.

22.5 FMPI2C low-power modes

Table 98. Effect of low-power modes on the FMPI2C

Mode Description

Sleep
No effect
FMPI2C interrupts cause the device to exit the Sleep mode.

Stop The contents of FMPI2C registers are kept.

Standby The FMPI2C peripheral is powered down and must be reinitialized after exiting Standby.

Fast-mode Plus Inter-integrated circuit (FMPI2C) interface RM0401

574/771 RM0401 Rev 3

22.6 FMPI2C interrupts

The table below gives the list of FMPI2C interrupt requests.

Table 99. FMPI2C Interrupt requests

Interrupt
acronym

Interrupt
event

Event
flag

Enable
control bit

Interrupt clear
method

Exit the
Sleep
mode

Exit the
Stop
mode

Exit the
Standby
modes

FMP
I2C

FMPI2C
_EV

Receive buffer
not empty

RXNE RXIE
Read

FMPI2C_RXDR
register

Yes

No

No

Transmit buffer
interrupt status

TXIS TXIE
Write

FMPI2C_TXDR
register

Stop detection
interrupt flag

STOPF STOPIE
Write

STOPCF=1

Transfer
Complete
Reload

TCR

TCIE

Write
FMPI2C_CR2

with
NBYTES[7:0] ≠ 0

Transfer
complete

TC
Write START=1

or STOP=1

Address
matched

ADDR ADDRIE
Write

ADDRCF=1

NACK
reception

NACKF NACKIE
Write

NACKCF=1

FMPI2C
_ER

Bus error BERR

ERRIE

Write
BERRCF=1

Yes
No No

Arbitration loss ARLO
Write

ARLOCF=1

Overrun/Under
run

OVR Write OVRCF=1

PEC error PECERR
Write

PECERRCF=1

Timeout/tLOW
error

TIMEOUT
Write

TIMEOUTCF=1

SMBus Alert ALERT
Write

ALERTCF=1

RM0401 Rev 3 575/771

RM0401 Fast-mode Plus Inter-integrated circuit (FMPI2C) interface

591

22.7 FMPI2C registers

Refer to Section 1.2 on page 34 for a list of abbreviations used in register descriptions.

The peripheral registers are accessed by words (32-bit).

22.7.1 FMPI2C control register 1 (FMPI2C_CR1)

Address offset: 0x00

Reset value: 0x0000 0000

Access: No wait states, except if a write access occurs while a write access to this register is
ongoing. In this case, wait states are inserted in the second write access until the previous
one is completed. The latency of the second write access can be up to
2 x PCLK1 + 6 x FMPI2CCLK.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. PECEN
ALERT

EN
SMBD

EN
SMBH

EN
GCEN Res.

NOSTR
ETCH

SBC

rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RXDMA
EN

TXDMA
EN

Res.
ANF
OFF

DNF[3:0] ERRIE TCIE
STOP

IE
NACK

IE
ADDR

IE
RXIE TXIE PE

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:24 Reserved, must be kept at reset value.

Bit 23 PECEN: PEC enable

0: PEC calculation disabled
1: PEC calculation enabled

Note: If the SMBus feature is not supported, this bit is reserved and forced by hardware to ‘0’.
Refer to Section 22.3: FMPI2C implementation.

Bit 22 ALERTEN: SMBus alert enable

Device mode (SMBHEN=0):
0: Releases SMBA pin high and Alert Response Address Header disabled: 0001100x
followed by NACK.
1: Drives SMBA pin low and Alert Response Address Header enables: 0001100x followed by
ACK.
Host mode (SMBHEN=1):
0: SMBus Alert pin (SMBA) not supported.
1: SMBus Alert pin (SMBA) supported.

Note: When ALERTEN=0, the SMBA pin can be used as a standard GPIO.

If the SMBus feature is not supported, this bit is reserved and forced by hardware to ‘0’.
Refer to Section 22.3: FMPI2C implementation.

Bit 21 SMBDEN: SMBus Device Default address enable

0: Device default address disabled. Address 0b1100001x is NACKed.
1: Device default address enabled. Address 0b1100001x is ACKed.

Note: If the SMBus feature is not supported, this bit is reserved and forced by hardware to ‘0’.
Refer to Section 22.3: FMPI2C implementation.

Fast-mode Plus Inter-integrated circuit (FMPI2C) interface RM0401

576/771 RM0401 Rev 3

Bit 20 SMBHEN: SMBus Host address enable

0: Host address disabled. Address 0b0001000x is NACKed.
1: Host address enabled. Address 0b0001000x is ACKed.

Note: If the SMBus feature is not supported, this bit is reserved and forced by hardware to ‘0’.
Refer to Section 22.3: FMPI2C implementation.

Bit 19 GCEN: General call enable

0: General call disabled. Address 0b00000000 is NACKed.
1: General call enabled. Address 0b00000000 is ACKed.

Bit 18 Reserved, must be kept at reset value.

Bit 17 NOSTRETCH: Clock stretching disable

This bit is used to disable clock stretching in slave mode. It must be kept cleared in master
mode.
0: Clock stretching enabled
1: Clock stretching disabled

Note: This bit can only be programmed when the I2C is disabled (PE = 0).

Bit 16 SBC: Slave byte control

This bit is used to enable hardware byte control in slave mode.
0: Slave byte control disabled
1: Slave byte control enabled

Bit 15 RXDMAEN: DMA reception requests enable

0: DMA mode disabled for reception
1: DMA mode enabled for reception

Bit 14 TXDMAEN: DMA transmission requests enable

0: DMA mode disabled for transmission
1: DMA mode enabled for transmission

Bit 13 Reserved, must be kept at reset value.

Bit 12 ANFOFF: Analog noise filter OFF

0: Analog noise filter enabled
1: Analog noise filter disabled

Note: This bit can only be programmed when the FMPI2C is disabled (PE = 0).

Bits 11:8 DNF[3:0]: Digital noise filter

These bits are used to configure the digital noise filter on SDA and SCL input. The digital
filter, filters spikes with a length of up to DNF[3:0] * tI2CCLK
0000: Digital filter disabled
0001: Digital filter enabled and filtering capability up to 1 tI2CCLK

...
1111: digital filter enabled and filtering capability up to15 tI2CCLK

Note: If the analog filter is also enabled, the digital filter is added to the analog filter.

This filter can only be programmed when the FMPI2C is disabled (PE = 0).

RM0401 Rev 3 577/771

RM0401 Fast-mode Plus Inter-integrated circuit (FMPI2C) interface

591

Bit 7 ERRIE: Error interrupts enable

0: Error detection interrupts disabled
1: Error detection interrupts enabled

Note: Any of these errors generate an interrupt:

Arbitration Loss (ARLO)

Bus Error detection (BERR)

Overrun/Underrun (OVR)

Timeout detection (TIMEOUT)

PEC error detection (PECERR)

Alert pin event detection (ALERT)

Bit 6 TCIE: Transfer Complete interrupt enable

0: Transfer Complete interrupt disabled
1: Transfer Complete interrupt enabled

Note: Any of these events generate an interrupt:

Transfer Complete (TC)

Transfer Complete Reload (TCR)

Bit 5 STOPIE: Stop detection Interrupt enable

0: Stop detection (STOPF) interrupt disabled
1: Stop detection (STOPF) interrupt enabled

Bit 4 NACKIE: Not acknowledge received Interrupt enable

0: Not acknowledge (NACKF) received interrupts disabled
1: Not acknowledge (NACKF) received interrupts enabled

Bit 3 ADDRIE: Address match Interrupt enable (slave only)

0: Address match (ADDR) interrupts disabled
1: Address match (ADDR) interrupts enabled

Bit 2 RXIE: RX Interrupt enable

0: Receive (RXNE) interrupt disabled
1: Receive (RXNE) interrupt enabled

Bit 1 TXIE: TX Interrupt enable

0: Transmit (TXIS) interrupt disabled
1: Transmit (TXIS) interrupt enabled

Bit 0 PE: Peripheral enable

0: Peripheral disable
1: Peripheral enable

Note: When PE=0, the FMPI2C SCL and SDA lines are released. Internal state machines and
status bits are put back to their reset value. When cleared, PE must be kept low for at
least 3 APB clock cycles.

Fast-mode Plus Inter-integrated circuit (FMPI2C) interface RM0401

578/771 RM0401 Rev 3

22.7.2 FMPI2C control register 2 (FMPI2C_CR2)

Address offset: 0x04

Reset value: 0x0000 0000

Access: No wait states, except if a write access occurs while a write access to this register is
ongoing. In this case, wait states are inserted in the second write access until the previous
one is completed. The latency of the second write access can be up to 2 x PCLK1 + 6 x
FMPI2CCLK.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res.
PEC

BYTE
AUTOE

ND
RE

LOAD
NBYTES[7:0]

rs rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NACK STOP START
HEAD1

0R
ADD10

RD_
WRN

SADD[9:0]

rs rs rs rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:27 Reserved, must be kept at reset value.

Bit 26 PECBYTE: Packet error checking byte

This bit is set by software, and cleared by hardware when the PEC is transferred, or when a
STOP condition or an Address matched is received, also when PE=0.
0: No PEC transfer.
1: PEC transmission/reception is requested

Note: Writing ‘0’ to this bit has no effect.

This bit has no effect when RELOAD is set.

This bit has no effect is slave mode when SBC=0.

If the SMBus feature is not supported, this bit is reserved and forced by hardware to ‘0’.
Refer to Section 22.3: FMPI2C implementation.

Bit 25 AUTOEND: Automatic end mode (master mode)

This bit is set and cleared by software.
0: software end mode: TC flag is set when NBYTES data are transferred, stretching SCL low.
1: Automatic end mode: a STOP condition is automatically sent when NBYTES data are
transferred.

Note: This bit has no effect in slave mode or when the RELOAD bit is set.

Bit 24 RELOAD: NBYTES reload mode

This bit is set and cleared by software.
0: The transfer is completed after the NBYTES data transfer (STOP or RESTART follows).
1: The transfer is not completed after the NBYTES data transfer (NBYTES is reloaded). TCR
flag is set when NBYTES data are transferred, stretching SCL low.

Bits 23:16 NBYTES[7:0]: Number of bytes

The number of bytes to be transmitted/received is programmed there. This field is don’t care
in slave mode with SBC=0.

Note: Changing these bits when the START bit is set is not allowed.

RM0401 Rev 3 579/771

RM0401 Fast-mode Plus Inter-integrated circuit (FMPI2C) interface

591

Bit 15 NACK: NACK generation (slave mode)

The bit is set by software, cleared by hardware when the NACK is sent, or when a STOP
condition or an Address matched is received, or when PE=0.
0: an ACK is sent after current received byte.
1: a NACK is sent after current received byte.

Note: Writing ‘0’ to this bit has no effect.

This bit is used in slave mode only: in master receiver mode, NACK is automatically
generated after last byte preceding STOP or RESTART condition, whatever the NACK
bit value.

When an overrun occurs in slave receiver NOSTRETCH mode, a NACK is
automatically generated whatever the NACK bit value.

When hardware PEC checking is enabled (PECBYTE=1), the PEC acknowledge value
does not depend on the NACK value.

Bit 14 STOP: Stop generation (master mode)

The bit is set by software, cleared by hardware when a STOP condition is detected, or when
PE = 0.
In Master Mode:
0: No Stop generation.
1: Stop generation after current byte transfer.

Note: Writing ‘0’ to this bit has no effect.

Bit 13 START: Start generation

This bit is set by software, and cleared by hardware after the Start followed by the address
sequence is sent, by an arbitration loss, by a timeout error detection, or when PE = 0. It can
also be cleared by software by writing ‘1’ to the ADDRCF bit in the FMPI2C_ICR register.
0: No Start generation.
1: Restart/Start generation:
If the FMPI2C is already in master mode with AUTOEND = 0, setting this bit generates a
Repeated Start condition when RELOAD=0, after the end of the NBYTES transfer.
Otherwise setting this bit generates a START condition once the bus is free.

Note: Writing ‘0’ to this bit has no effect.

The START bit can be set even if the bus is BUSY or FMPI2C is in slave mode.

This bit has no effect when RELOAD is set.

Bit 12 HEAD10R: 10-bit address header only read direction (master receiver mode)

0: The master sends the complete 10 bit slave address read sequence: Start + 2 bytes 10bit
address in write direction + Restart + 1st 7 bits of the 10 bit address in read direction.
1: The master only sends the 1st 7 bits of the 10 bit address, followed by Read direction.

Note: Changing this bit when the START bit is set is not allowed.

Bit 11 ADD10: 10-bit addressing mode (master mode)

0: The master operates in 7-bit addressing mode,
1: The master operates in 10-bit addressing mode

Note: Changing this bit when the START bit is set is not allowed.

Bit 10 RD_WRN: Transfer direction (master mode)

0: Master requests a write transfer.
1: Master requests a read transfer.

Note: Changing this bit when the START bit is set is not allowed.

Fast-mode Plus Inter-integrated circuit (FMPI2C) interface RM0401

580/771 RM0401 Rev 3

Bits 9:8 SADD[9:8]: Slave address bit 9:8 (master mode)

In 7-bit addressing mode (ADD10 = 0):
These bits are don’t care
In 10-bit addressing mode (ADD10 = 1):
These bits should be written with bits 9:8 of the slave address to be sent

Note: Changing these bits when the START bit is set is not allowed.

Bits 7:1 SADD[7:1]: Slave address bit 7:1 (master mode)

In 7-bit addressing mode (ADD10 = 0):
These bits should be written with the 7-bit slave address to be sent
In 10-bit addressing mode (ADD10 = 1):
These bits should be written with bits 7:1 of the slave address to be sent.

Note: Changing these bits when the START bit is set is not allowed.

Bit 0 SADD0: Slave address bit 0 (master mode)

In 7-bit addressing mode (ADD10 = 0):
This bit is don’t care
In 10-bit addressing mode (ADD10 = 1):
This bit should be written with bit 0 of the slave address to be sent

Note: Changing these bits when the START bit is set is not allowed.

RM0401 Rev 3 581/771

RM0401 Fast-mode Plus Inter-integrated circuit (FMPI2C) interface

591

22.7.3 FMPI2C own address 1 register (FMPI2C_OAR1)

Address offset: 0x08

Reset value: 0x0000 0000

Access: No wait states, except if a write access occurs while a write access to this register is
ongoing. In this case, wait states are inserted in the second write access until the previous
one is completed. The latency of the second write access can be up to 2 x PCLK1 + 6 x
FMPI2CCLK.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OA1EN Res. Res. Res. Res.
OA1

MODE
OA1[9:8] OA1[7:1] OA1[0]

rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved, must be kept at reset value.

Bit 15 OA1EN: Own Address 1 enable

0: Own address 1 disabled. The received slave address OA1 is NACKed.
1: Own address 1 enabled. The received slave address OA1 is ACKed.

Bits 14:11 Reserved, must be kept at reset value.

Bit 10 OA1MODE: Own Address 1 10-bit mode

0: Own address 1 is a 7-bit address.
1: Own address 1 is a 10-bit address.

Note: This bit can be written only when OA1EN=0.

Bits 9:8 OA1[9:8]: Interface address

7-bit addressing mode: do not care
10-bit addressing mode: bits 9:8 of address

Note: These bits can be written only when OA1EN=0.

Bits 7:1 OA1[7:1]: Interface address

7-bit addressing mode: 7-bit address
10-bit addressing mode: bits 7:1 of 10-bit address

Note: These bits can be written only when OA1EN=0.

Bit 0 OA1[0]: Interface address

7-bit addressing mode: do not care
10-bit addressing mode: bit 0 of address

Note: This bit can be written only when OA1EN=0.

Fast-mode Plus Inter-integrated circuit (FMPI2C) interface RM0401

582/771 RM0401 Rev 3

22.7.4 FMPI2C own address 2 register (FMPI2C_OAR2)

Address offset: 0x0C

Reset value: 0x0000 0000

Access: No wait states, except if a write access occurs while a write access to this register is
ongoing. In this case, wait states are inserted in the second write access until the previous
one is completed. The latency of the second write access can be up to 2 x PCLK1 + 6 x
FMPI2CCLK.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OA2EN Res. Res. Res. Res. OA2MSK[2:0] OA2[7:1] Res.

rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved, must be kept at reset value.

Bit 15 OA2EN: Own Address 2 enable

0: Own address 2 disabled. The received slave address OA2 is NACKed.
1: Own address 2 enabled. The received slave address OA2 is ACKed.

Bits 14:11 Reserved, must be kept at reset value.

Bits 10:8 OA2MSK[2:0]: Own Address 2 masks

000: No mask
001: OA2[1] is masked and don’t care. Only OA2[7:2] are compared.
010: OA2[2:1] are masked and don’t care. Only OA2[7:3] are compared.
011: OA2[3:1] are masked and don’t care. Only OA2[7:4] are compared.
100: OA2[4:1] are masked and don’t care. Only OA2[7:5] are compared.
101: OA2[5:1] are masked and don’t care. Only OA2[7:6] are compared.
110: OA2[6:1] are masked and don’t care. Only OA2[7] is compared.
111: OA2[7:1] are masked and don’t care. No comparison is done, and all (except reserved)
7-bit received addresses are acknowledged.

Note: These bits can be written only when OA2EN=0.

As soon as OA2MSK is not equal to 0, the reserved FMPI2C addresses (0b0000xxx
and 0b1111xxx) are not acknowledged even if the comparison matches.

Bits 7:1 OA2[7:1]: Interface address

7-bit addressing mode: 7-bit address

Note: These bits can be written only when OA2EN=0.

Bit 0 Reserved, must be kept at reset value.

RM0401 Rev 3 583/771

RM0401 Fast-mode Plus Inter-integrated circuit (FMPI2C) interface

591

22.7.5 FMPI2C timing register (FMPI2C_TIMINGR)

Address offset: 0x10

Reset value: 0x0000 0000

Access: No wait states

Note: This register must be configured when the FMPI2C is disabled (PE = 0).

Note: The STM32CubeMX tool calculates and provides the I2C_TIMINGR content in the I2C
Configuration window.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

PRESC[3:0] Res. Res. Res. Res. SCLDEL[3:0] SDADEL[3:0]

rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SCLH[7:0] SCLL[7:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:28 PRESC[3:0]: Timing prescaler

This field is used to prescale FMPI2CCLK in order to generate the clock period tPRESC used
for data setup and hold counters (refer to FMPI2C timings on page 530) and for SCL high
and low level counters (refer to FMPI2C master initialization on page 545).
tPRESC = (PRESC+1) x tI2CCLK

Bits 27:24 Reserved, must be kept at reset value.

Bits 23:20 SCLDEL[3:0]: Data setup time

This field is used to generate a delay tSCLDEL between SDA edge and SCL rising edge. In
master mode and in slave mode with NOSTRETCH = 0, the SCL line is stretched low during
tSCLDEL.
tSCLDEL = (SCLDEL+1) x tPRESC

Note: tSCLDEL is used to generate tSU:DAT timing.

Bits 19:16 SDADEL[3:0]: Data hold time

This field is used to generate the delay tSDADEL between SCL falling edge and SDA edge. In
master mode and in slave mode with NOSTRETCH = 0, the SCL line is stretched low during
tSDADEL.
tSDADEL= SDADEL x tPRESC

Note: SDADEL is used to generate tHD:DAT timing.

Bits 15:8 SCLH[7:0]: SCL high period (master mode)

This field is used to generate the SCL high period in master mode.
tSCLH = (SCLH+1) x tPRESC

Note: SCLH is also used to generate tSU:STO and tHD:STA timing.

Bits 7:0 SCLL[7:0]: SCL low period (master mode)

This field is used to generate the SCL low period in master mode.
tSCLL = (SCLL+1) x tPRESC

Note: SCLL is also used to generate tBUF and tSU:STA timings.

Fast-mode Plus Inter-integrated circuit (FMPI2C) interface RM0401

584/771 RM0401 Rev 3

22.7.6 FMPI2C timeout register (FMPI2C_TIMEOUTR)

Address offset: 0x14

Reset value: 0x0000 0000

Access: No wait states, except if a write access occurs while a write access to this register is
ongoing. In this case, wait states are inserted in the second write access until the previous
one is completed. The latency of the second write access can be up to 2 x PCLK1 + 6 x
FMPI2CCLK.

Note: If the SMBus feature is not supported, this register is reserved and forced by hardware to
“0x00000000”. Refer to Section 22.3: FMPI2C implementation.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

TEXTEN Res. Res. Res. TIMEOUTB[11:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TIMOUTEN Res. Res. TIDLE TIMEOUTA[11:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 31 TEXTEN: Extended clock timeout enable

0: Extended clock timeout detection is disabled
1: Extended clock timeout detection is enabled. When a cumulative SCL stretch for more
than tLOW:EXT is done by the FMPI2C interface, a timeout error is detected (TIMEOUT=1).

Bits 30:28 Reserved, must be kept at reset value.

Bits 27:16 TIMEOUTB[11:0]: Bus timeout B

This field is used to configure the cumulative clock extension timeout:
In master mode, the master cumulative clock low extend time (tLOW:MEXT) is detected
In slave mode, the slave cumulative clock low extend time (tLOW:SEXT) is detected
tLOW:EXT= (TIMEOUTB+1) x 2048 x tI2CCLK

Note: These bits can be written only when TEXTEN=0.

Bit 15 TIMOUTEN: Clock timeout enable

0: SCL timeout detection is disabled
1: SCL timeout detection is enabled: when SCL is low for more than tTIMEOUT (TIDLE=0) or
high for more than tIDLE (TIDLE=1), a timeout error is detected (TIMEOUT=1).

Bits 14:13 Reserved, must be kept at reset value.

Bit 12 TIDLE: Idle clock timeout detection

0: TIMEOUTA is used to detect SCL low timeout
1: TIMEOUTA is used to detect both SCL and SDA high timeout (bus idle condition)

Note: This bit can be written only when TIMOUTEN=0.

Bits 11:0 TIMEOUTA[11:0]: Bus Timeout A

This field is used to configure:
The SCL low timeout condition tTIMEOUT when TIDLE=0
tTIMEOUT= (TIMEOUTA+1) x 2048 x tI2CCLK
The bus idle condition (both SCL and SDA high) when TIDLE=1
tIDLE= (TIMEOUTA+1) x 4 x tI2CCLK

Note: These bits can be written only when TIMOUTEN=0.

RM0401 Rev 3 585/771

RM0401 Fast-mode Plus Inter-integrated circuit (FMPI2C) interface

591

22.7.7 FMPI2C interrupt and status register (FMPI2C_ISR)

Address offset: 0x18

Reset value: 0x0000 0001

Access: No wait states

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. ADDCODE[6:0] DIR

r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BUSY Res. ALERT
TIME
OUT

PEC
ERR

OVR ARLO BERR TCR TC STOPF NACKF ADDR RXNE TXIS TXE

r r r r r r r r r r r r r rs rs

Bits 31:24 Reserved, must be kept at reset value.

Bits 23:17 ADDCODE[6:0]: Address match code (Slave mode)

These bits are updated with the received address when an address match event occurs
(ADDR = 1).
In the case of a 10-bit address, ADDCODE provides the 10-bit header followed by the 2
MSBs of the address.

Bit 16 DIR: Transfer direction (Slave mode)

This flag is updated when an address match event occurs (ADDR=1).
0: Write transfer, slave enters receiver mode.
1: Read transfer, slave enters transmitter mode.

Bit 15 BUSY: Bus busy

This flag indicates that a communication is in progress on the bus. It is set by hardware
when a START condition is detected. It is cleared by hardware when a STOP condition is
detected, or when PE=0.

Bit 14 Reserved, must be kept at reset value.

Bit 13 ALERT: SMBus alert

This flag is set by hardware when SMBHEN=1 (SMBus host configuration), ALERTEN=1
and a SMBALERT event (falling edge) is detected on SMBA pin. It is cleared by software by
setting the ALERTCF bit.

Note: This bit is cleared by hardware when PE=0.

If the SMBus feature is not supported, this bit is reserved and forced by hardware to ‘0’.
Refer to Section 22.3: FMPI2C implementation.

Bit 12 TIMEOUT: Timeout or tLOW detection flag

This flag is set by hardware when a timeout or extended clock timeout occurred. It is cleared
by software by setting the TIMEOUTCF bit.

Note: This bit is cleared by hardware when PE=0.

If the SMBus feature is not supported, this bit is reserved and forced by hardware to ‘0’.
Refer to Section 22.3: FMPI2C implementation.

Fast-mode Plus Inter-integrated circuit (FMPI2C) interface RM0401

586/771 RM0401 Rev 3

Bit 11 PECERR: PEC Error in reception

This flag is set by hardware when the received PEC does not match with the PEC register
content. A NACK is automatically sent after the wrong PEC reception. It is cleared by
software by setting the PECCF bit.

Note: This bit is cleared by hardware when PE=0.

If the SMBus feature is not supported, this bit is reserved and forced by hardware to ‘0’.
Refer to Section 22.3: FMPI2C implementation.

Bit 10 OVR: Overrun/Underrun (slave mode)

This flag is set by hardware in slave mode with NOSTRETCH=1, when an overrun/underrun
error occurs. It is cleared by software by setting the OVRCF bit.

Note: This bit is cleared by hardware when PE=0.

Bit 9 ARLO: Arbitration lost

This flag is set by hardware in case of arbitration loss. It is cleared by software by setting the
ARLOCF bit.

Note: This bit is cleared by hardware when PE=0.

Bit 8 BERR: Bus error

This flag is set by hardware when a misplaced Start or STOP condition is detected whereas
the peripheral is involved in the transfer. The flag is not set during the address phase in slave
mode. It is cleared by software by setting BERRCF bit.

Note: This bit is cleared by hardware when PE=0.

Bit 7 TCR: Transfer Complete Reload

This flag is set by hardware when RELOAD=1 and NBYTES data have been transferred. It is
cleared by software when NBYTES is written to a non-zero value.

Note: This bit is cleared by hardware when PE=0.

This flag is only for master mode, or for slave mode when the SBC bit is set.

Bit 6 TC: Transfer Complete (master mode)

This flag is set by hardware when RELOAD=0, AUTOEND=0 and NBYTES data have been
transferred. It is cleared by software when START bit or STOP bit is set.

Note: This bit is cleared by hardware when PE=0.

Bit 5 STOPF: Stop detection flag

This flag is set by hardware when a STOP condition is detected on the bus and the
peripheral is involved in this transfer:

– either as a master, provided that the STOP condition is generated by the peripheral.

– or as a slave, provided that the peripheral has been addressed previously during
this transfer.

It is cleared by software by setting the STOPCF bit.

Note: This bit is cleared by hardware when PE=0.

Bit 4 NACKF: Not Acknowledge received flag

This flag is set by hardware when a NACK is received after a byte transmission. It is cleared
by software by setting the NACKCF bit.

Note: This bit is cleared by hardware when PE=0.

Bit 3 ADDR: Address matched (slave mode)

This bit is set by hardware as soon as the received slave address matched with one of the
enabled slave addresses. It is cleared by software by setting ADDRCF bit.

Note: This bit is cleared by hardware when PE=0.

RM0401 Rev 3 587/771

RM0401 Fast-mode Plus Inter-integrated circuit (FMPI2C) interface

591

22.7.8 FMPI2C interrupt clear register (FMPI2C_ICR)

Address offset: 0x1C

Reset value: 0x0000 0000

Access: No wait states

Bit 2 RXNE: Receive data register not empty (receivers)

This bit is set by hardware when the received data is copied into the FMPI2C_RXDR
register, and is ready to be read. It is cleared when FMPI2C_RXDR is read.

Note: This bit is cleared by hardware when PE=0.

Bit 1 TXIS: Transmit interrupt status (transmitters)

This bit is set by hardware when the FMPI2C_TXDR register is empty and the data to be
transmitted must be written in the FMPI2C_TXDR register. It is cleared when the next data to
be sent is written in the FMPI2C_TXDR register.
This bit can be written to ‘1’ by software when NOSTRETCH=1 only, in order to generate a
TXIS event (interrupt if TXIE=1 or DMA request if TXDMAEN=1).

Note: This bit is cleared by hardware when PE=0.

Bit 0 TXE: Transmit data register empty (transmitters)

This bit is set by hardware when the FMPI2C_TXDR register is empty. It is cleared when the
next data to be sent is written in the FMPI2C_TXDR register.
This bit can be written to ‘1’ by software in order to flush the transmit data register
FMPI2C_TXDR.

Note: This bit is set by hardware when PE=0.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res.
ALERT

CF
TIM

OUTCF
PECCF OVRCF

ARLO
CF

BERR
CF

Res. Res.
STOP

CF
NACK

CF
ADDR

CF
Res. Res. Res.

w w w w w w w w w

Bits 31:14 Reserved, must be kept at reset value.

Bit 13 ALERTCF: Alert flag clear

Writing 1 to this bit clears the ALERT flag in the FMPI2C_ISR register.

Note: If the SMBus feature is not supported, this bit is reserved and forced by hardware to ‘0’.
Refer to Section 22.3: FMPI2C implementation.

Bit 12 TIMOUTCF: Timeout detection flag clear

Writing 1 to this bit clears the TIMEOUT flag in the FMPI2C_ISR register.

Note: If the SMBus feature is not supported, this bit is reserved and forced by hardware to ‘0’.
Refer to Section 22.3: FMPI2C implementation.

Bit 11 PECCF: PEC Error flag clear

Writing 1 to this bit clears the PECERR flag in the FMPI2C_ISR register.

Note: If the SMBus feature is not supported, this bit is reserved and forced by hardware to ‘0’.
Refer to Section 22.3: FMPI2C implementation.

Fast-mode Plus Inter-integrated circuit (FMPI2C) interface RM0401

588/771 RM0401 Rev 3

22.7.9 FMPI2C PEC register (FMPI2C_PECR)

Address offset: 0x20

Reset value: 0x0000 0000

Access: No wait states

Note: If the SMBus feature is not supported, this register is reserved and forced by hardware to
“0x00000000”. Refer to Section 22.3: FMPI2C implementation.

Bit 10 OVRCF: Overrun/Underrun flag clear

Writing 1 to this bit clears the OVR flag in the FMPI2C_ISR register.

Bit 9 ARLOCF: Arbitration lost flag clear

Writing 1 to this bit clears the ARLO flag in the FMPI2C_ISR register.

Bit 8 BERRCF: Bus error flag clear

Writing 1 to this bit clears the BERRF flag in the FMPI2C_ISR register.

Bits 7:6 Reserved, must be kept at reset value.

Bit 5 STOPCF: STOP detection flag clear

Writing 1 to this bit clears the STOPF flag in the FMPI2C_ISR register.

Bit 4 NACKCF: Not Acknowledge flag clear

Writing 1 to this bit clears the NACKF flag in FMPI2C_ISR register.

Bit 3 ADDRCF: Address matched flag clear

Writing 1 to this bit clears the ADDR flag in the FMPI2C_ISR register. Writing 1 to this bit
also clears the START bit in the FMPI2C_CR2 register.

Bits 2:0 Reserved, must be kept at reset value.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. PEC[7:0]

r r r r r r r r

Bits 31:8 Reserved, must be kept at reset value.

Bits 7:0 PEC[7:0] Packet error checking register

This field contains the internal PEC when PECEN=1.
The PEC is cleared by hardware when PE=0.

RM0401 Rev 3 589/771

RM0401 Fast-mode Plus Inter-integrated circuit (FMPI2C) interface

591

22.7.10 FMPI2C receive data register (FMPI2C_RXDR)

Address offset: 0x24

Reset value: 0x0000 0000

Access: No wait states

22.7.11 FMPI2C transmit data register (FMPI2C_TXDR)

Address offset: 0x28

Reset value: 0x0000 0000

Access: No wait states

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. RXDATA[7:0]

r r r r r r r r

Bits 31:8 Reserved, must be kept at reset value.

Bits 7:0 RXDATA[7:0] 8-bit receive data

Data byte received from the I2C bus

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. TXDATA[7:0]

rw rw rw rw rw rw rw rw

Bits 31:8 Reserved, must be kept at reset value.

Bits 7:0 TXDATA[7:0] 8-bit transmit data

Data byte to be transmitted to the I2C bus

Note: These bits can be written only when TXE=1.

Fast-mode Plus Inter-integrated circuit (FMPI2C) interface RM0401

590/771 RM0401 Rev 3

22.7.12 FMPI2C register map

The table below provides the FMPI2C register map and reset values.

Table 100. FMPI2C register map and reset values

Offset Register
name 3

1
3

0
2

9
2

8
2

7
2

6
2

5
2

4
2

3
2

2
2

1
2

0
1

9
1

8
1

7
1

6
1

5
1

4
1

3
1

2 11 1
0 9 8 7 6 5 4 3 2 1 0

0x0
FMPI2C_CR1

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

P
E

C
E

N

A
L

E
R

T
E

N

S
M

B
D

E
N

S
M

B
H

E
N

G
C

E
N

R
e

s

N
O

S
T

R
E

T
C

H

S
B

C

R
X

D
M

A
E

N

T
X

D
M

A
E

N

R
es

.

A
N

F
O

F
F

DNF[3:0]

E
R

R
IE

T
C

IE

S
T

O
P

IE

N
A

C
K

IE

A
D

D
R

IE

R
X

IE

T
X

IE

P
E

Reset value 0

0x4
FMPI2C_CR2

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

P
E

C
B

Y
T

E

A
U

T
O

E
N

D

R
E

L
O

A
D

NBYTES[7:0]

N
A

C
K

S
T

O
P

S
TA

R
T

H
E

A
D

1
0

R

A
D

D
1

0

R
D

_W
R

N

SADD[9:0]

Reset value 0

0x8
FMPI2C_OAR1

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

O
A

1
E

N

R
es

.

R
es

.

R
es

.

R
es

.

O
A

1
M

O
D

E

OA1[9:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0

0xC
FMPI2C_OAR2

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

O
A

2
E

N

R
es

.

R
es

.

R
es

.

R
es

. OA2MS
K [2:0]

OA2[7:1]

R
es

.

Reset value 0 0 0 0 0 0 0 0 0 0 0

0x10

FMPI2C_
TIMINGR

PRESC[3:0]

R
es

.

R
es

.

R
es

.

R
es

. SCLDEL[3:0
]

SDADEL[3:
0]

SCLH[7:0] SCLL[7:0]

Reset value 0

0x14

FMPI2C_
TIMEOUTR

T
E

X
T

E
N

R
es

.

R
es

.

R
es

.

TIMEOUTB[11:0]

T
IM

O
U

T
E

N

R
es

.

R
es

.

T
ID

LE TIMEOUTA[11:0]

Reset value 0

0x18
FMPI2C_ISR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

ADDCODE[6:0] D
IR

B
U

S
Y

R
es

.

A
LE

R
T

T
IM

E
O

U
T

P
E

C
E

R
R

O
V

R

A
R

LO

B
E

R
R

T
C

R

T
C

S
T

O
P

F

N
A

C
K

F

A
D

D
R

R
X

N
E

T
X

IS

T
X

E

Reset value 0 1

0x1C
FMPI2C_ICR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

A
L

E
R

T
C

F

T
IM

O
U

T
C

F

P
E

C
C

F

O
V

R
C

F

A
R

LO
C

F

B
E

R
R

C
F

R
es

.

R
es

.

S
T

O
P

C
F

N
A

C
K

C
F

A
D

D
R

C
F

R
es

.

R
es

.

R
es

.

Reset value 0 0 0 0 0 0 0 0 0

0x20
FMPI2C_PECR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

PEC[7:0]

Reset value 0 0 0 0 0 0 0 0

0x24
FMPI2C_RXDR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

RXDATA[7:0]

Reset value 0 0 0 0 0 0 0 0

RM0401 Rev 3 591/771

RM0401 Fast-mode Plus Inter-integrated circuit (FMPI2C) interface

591

Refer to Section 2.2.2 on page 38 for the register boundary addresses.

0x28
FMPI2C_TXDR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

TXDATA[7:0]

Reset value 0 0 0 0 0 0 0 0

Table 100. FMPI2C register map and reset values (continued)

Offset Register
name 3

1
3

0
2

9
2

8
2

7
2

6
2

5
2

4
2

3
2

2
2

1
2

0
1

9
1

8
1

7
1

6
1

5
1

4
1

3
1

2 11 1
0 9 8 7 6 5 4 3 2 1 0

Inter-integrated circuit (I2C) interface RM0401

592/771 RM0401 Rev 3

23 Inter-integrated circuit (I2C) interface

23.1 I2C introduction

I2C (inter-integrated circuit) bus Interface serves as an interface between the microcontroller
and the serial I2C bus. It provides multimaster capability, and controls all I2C bus-specific
sequencing, protocol, arbitration and timing. It supports the standard mode (Sm, up to 100
kHz) and Fm mode (Fm, up to 400 kHz).

It may be used for a variety of purposes, including CRC generation and verification, SMBus
(system management bus) and PMBus (power management bus).

Depending on specific device implementation DMA capability can be available for reduced
CPU overload.

RM0401 Rev 3 593/771

RM0401 Inter-integrated circuit (I2C) interface

626

23.2 I2C main features

• Parallel-bus/I2C protocol converter

• Multimaster capability: the same interface can act as Master or Slave

• I2C Master features:

– Clock generation

– Start and Stop generation

• I2C Slave features:

– Programmable I2C Address detection

– Dual Addressing Capability to acknowledge 2 slave addresses

– Stop bit detection

• Generation and detection of 7-bit/10-bit addressing and General Call

• Supports different communication speeds:

– Standard Speed (up to 100 kHz)

– Fast Speed (up to 400 kHz)

• Analog noise filter

• Programmable digital noise filter

• Status flags:

– Transmitter/Receiver mode flag

– End-of-Byte transmission flag

– I2C busy flag

• Error flags:

– Arbitration lost condition for master mode

– Acknowledgment failure after address/ data transmission

– Detection of misplaced start or stop condition

– Overrun/Underrun if clock stretching is disabled

• 2 Interrupt vectors:

– 1 Interrupt for successful address/ data communication

– 1 Interrupt for error condition

• Optional clock stretching

• 1-byte buffer with DMA capability

• Configurable PEC (packet error checking) generation or verification:

– PEC value can be transmitted as last byte in Tx mode

– PEC error checking for last received byte

• SMBus 2.0 Compatibility:

– 25 ms clock low timeout delay

– 10 ms master cumulative clock low extend time

– 25 ms slave cumulative clock low extend time

– Hardware PEC generation/verification with ACK control

– Address Resolution Protocol (ARP) supported

• PMBus Compatibility

Inter-integrated circuit (I2C) interface RM0401

594/771 RM0401 Rev 3

Note: Some of the above features may not be available in certain products. The user should refer
to the product data sheet, to identify the specific features supported by the I2C interface
implementation.

23.3 I2C functional description

In addition to receiving and transmitting data, this interface converts it from serial to parallel
format and vice versa. The interrupts are enabled or disabled by software. The interface is
connected to the I2C bus by a data pin (SDA) and by a clock pin (SCL). It can be connected
with a standard (up to 100 kHz) or fast (up to 400 kHz) I2C bus.

23.3.1 Mode selection

The interface can operate in one of the four following modes:

• Slave transmitter

• Slave receiver

• Master transmitter

• Master receiver

By default, it operates in slave mode. The interface automatically switches from slave to
master, after it generates a START condition and from master to slave, if an arbitration loss
or a Stop generation occurs, allowing multimaster capability.

Communication flow

In Master mode, the I2C interface initiates a data transfer and generates the clock signal. A
serial data transfer always begins with a start condition and ends with a stop condition. Both
start and stop conditions are generated in master mode by software.

In Slave mode, the interface is capable of recognizing its own addresses (7 or 10-bit), and
the General Call address. The General Call address detection may be enabled or disabled
by software.

Data and addresses are transferred as 8-bit bytes, MSB first. The first byte(s) following the
start condition contain the address (one in 7-bit mode, two in 10-bit mode). The address is
always transmitted in Master mode.

A 9th clock pulse follows the 8 clock cycles of a byte transfer, during which the receiver must
send an acknowledge bit to the transmitter. Refer to Figure 207.

Figure 207. I2C bus protocol

Acknowledge may be enabled or disabled by software. The I2C interface addresses (dual
addressing 7-bit/ 10-bit and/or general call address) can be selected by software.

SCL

SDA

1 2 8 9

MSB ACK

Stop Start
conditioncondition

RM0401 Rev 3 595/771

RM0401 Inter-integrated circuit (I2C) interface

626

The block diagram of the I2C interface is shown in Figure 208.

Figure 208. I2C block diagram

1. SMBA is an optional signal in SMBus mode. This signal is not applicable if SMBus is disabled.

23.3.2 I2C slave mode

By default the I2C interface operates in Slave mode. To switch from default Slave mode to
Master mode a Start condition generation is needed.

The peripheral input clock must be programmed in the I2C_CR2 register in order to
generate correct timings. The peripheral input clock frequency must be at least:

• 2 MHz in Sm mode

• 4 MHz in Fm mode

As soon as a start condition is detected, the address is received from the SDA line and sent
to the shift register. Then it is compared with the address of the interface (OAR1) and with
OAR2 (if ENDUAL=1) or the General Call address (if ENGC = 1).

Inter-integrated circuit (I2C) interface RM0401

596/771 RM0401 Rev 3

Note: In 10-bit addressing mode, the comparison includes the header sequence (11110xx0),
where xx denotes the two most significant bits of the address.

Header or address not matched: the interface ignores it and waits for another Start
condition.

Header matched (10-bit mode only): the interface generates an acknowledge pulse if the
ACK bit is set and waits for the 8-bit slave address.

Address matched: the interface generates in sequence:

• An acknowledge pulse if the ACK bit is set

• The ADDR bit is set by hardware and an interrupt is generated if the ITEVFEN bit is
set.

• If ENDUAL=1, the software has to read the DUALF bit to check which slave address
has been acknowledged.

In 10-bit mode, after receiving the address sequence the slave is always in Receiver mode.
It will enter Transmitter mode on receiving a repeated Start condition followed by the header
sequence with matching address bits and the least significant bit set (11110xx1).

The TRA bit indicates whether the slave is in Receiver or Transmitter mode.

Slave transmitter

Following the address reception and after clearing ADDR, the slave sends bytes from the
DR register to the SDA line via the internal shift register.

The slave stretches SCL low until ADDR is cleared and DR filled with the data to be sent
(see Figure 209 Transfer sequencing EV1 EV3).

When the acknowledge pulse is received:

• The TxE bit is set by hardware with an interrupt if the ITEVFEN and the ITBUFEN bits
are set.

If TxE is set and some data were not written in the I2C_DR register before the end of the
next data transmission, the BTF bit is set and the interface waits until BTF is cleared by a
read to I2C_SR1 followed by a write to the I2C_DR register, stretching SCL low.

RM0401 Rev 3 597/771

RM0401 Inter-integrated circuit (I2C) interface

626

Figure 209. Transfer sequence diagram for slave transmitter

1. The EV1 and EV3_1 events stretch SCL low until the end of the corresponding software sequence.

2. The EV3 event stretches SCL low if the software sequence is not completed before the end of the next byte
transmission

Slave receiver

Following the address reception and after clearing ADDR, the slave receives bytes from the
SDA line into the DR register via the internal shift register. After each byte the interface
generates in sequence:

• An acknowledge pulse if the ACK bit is set

• The RxNE bit is set by hardware and an interrupt is generated if the ITEVFEN and
ITBUFEN bit is set.

If RxNE is set and the data in the DR register is not read before the end of the next data
reception, the BTF bit is set and the interface waits until BTF is cleared by a read from the
I2C_DR register, stretching SCL low (see Figure 210).

Inter-integrated circuit (I2C) interface RM0401

598/771 RM0401 Rev 3

Figure 210. Transfer sequence diagram for slave receiver

1. The EV1 event stretches SCL low until the end of the corresponding software sequence.

2. The EV2 event stretches SCL low if the software sequence is not completed before the end of the next byte
reception.

3. After checking the SR1 register content, the user should perform the complete clearing sequence for each
flag found set.
Thus, for ADDR and STOPF flags, the following sequence is required inside the I2C interrupt routine:
READ SR1
if (ADDR == 1) {READ SR1; READ SR2}
if (STOPF == 1) {READ SR1; WRITE CR1}
The purpose is to make sure that both ADDR and STOPF flags are cleared if both are found set.

Closing slave communication

After the last data byte is transferred a Stop Condition is generated by the master. The
interface detects this condition and sets:

• The STOPF bit and generates an interrupt if the ITEVFEN bit is set.

The STOPF bit is cleared by a read of the SR1 register followed by a write to the CR1
register (see Figure 210: Transfer sequence diagram for slave receiver EV4).

23.3.3 I2C master mode

In Master mode, the I2C interface initiates a data transfer and generates the clock signal. A
serial data transfer always begins with a Start condition and ends with a Stop condition.
Master mode is selected as soon as the Start condition is generated on the bus with a
START bit.

The following is the required sequence in master mode.

• Program the peripheral input clock in I2C_CR2 Register in order to generate correct
timings

• Configure the clock control registers

• Configure the rise time register

• Program the I2C_CR1 register to enable the peripheral

• Set the START bit in the I2C_CR1 register to generate a Start condition

The peripheral input clock frequency must be at least:

• 2 MHz in Sm mode

• 4 MHz in Fm mode

RM0401 Rev 3 599/771

RM0401 Inter-integrated circuit (I2C) interface

626

SCL master clock generation

The CCR bits are used to generate the high and low level of the SCL clock, starting from the
generation of the rising and falling edge (respectively). As a slave may stretch the SCL line,
the peripheral checks the SCL input from the bus at the end of the time programmed in
TRISE bits after rising edge generation.

• If the SCL line is low, it means that a slave is stretching the bus, and the high level
counter stops until the SCL line is detected high. This allows to guarantee the minimum
HIGH period of the SCL clock parameter.

• If the SCL line is high, the high level counter keeps on counting.

Indeed, the feedback loop from the SCL rising edge generation by the peripheral to the SCL
rising edge detection by the peripheral takes time even if no slave stretches the clock. This
loopback duration is linked to the SCL rising time (impacting SCL VIH input detection), plus
delay due to the noise filter present on the SCL input path, plus delay due to internal SCL
input synchronization with APB clock. The maximum time used by the feedback loop is
programmed in the TRISE bits, so that the SCL frequency remains stable whatever the SCL
rising time.

Start condition

Setting the START bit causes the interface to generate a Start condition and to switch to
Master mode (MSL bit set) when the BUSY bit is cleared.

Note: In master mode, setting the START bit causes the interface to generate a ReStart condition
at the end of the current byte transfer.

Once the Start condition is sent:

• The SB bit is set by hardware and an interrupt is generated if the ITEVFEN bit is set.

Then the master waits for a read of the SR1 register followed by a write in the DR register
with the Slave address (see Figure 211 and Figure 212 Transfer sequencing EV5).

Slave address transmission

Then the slave address is sent to the SDA line via the internal shift register.

• In 10-bit addressing mode, sending the header sequence causes the following event:

– The ADD10 bit is set by hardware and an interrupt is generated if the ITEVFEN bit
is set.

Then the master waits for a read of the SR1 register followed by a write in the DR
register with the second address byte (see Figure 211 and Figure 212 Transfer
sequencing).

– The ADDR bit is set by hardware and an interrupt is generated if the ITEVFEN bit
is set.

Then the master waits for a read of the SR1 register followed by a read of the SR2
register (see Figure 211 and Figure 212 Transfer sequencing).

• In 7-bit addressing mode, one address byte is sent.

As soon as the address byte is sent,

– The ADDR bit is set by hardware and an interrupt is generated if the ITEVFEN bit
is set.

Then the master waits for a read of the SR1 register followed by a read of the SR2
register (see Figure 211 and Figure 212 Transfer sequencing).

Inter-integrated circuit (I2C) interface RM0401

600/771 RM0401 Rev 3

The master can decide to enter Transmitter or Receiver mode depending on the LSB of the
slave address sent.

• In 7-bit addressing mode,

– To enter Transmitter mode, a master sends the slave address with LSB reset.

– To enter Receiver mode, a master sends the slave address with LSB set.

• In 10-bit addressing mode,

– To enter Transmitter mode, a master sends the header (11110xx0) and then the
slave address, (where xx denotes the two most significant bits of the address).

– To enter Receiver mode, a master sends the header (11110xx0) and then the
slave address. Then it should send a repeated Start condition followed by the
header (11110xx1), (where xx denotes the two most significant bits of the
address).

The TRA bit indicates whether the master is in Receiver or Transmitter mode.

Master transmitter

Following the address transmission and after clearing ADDR, the master sends bytes from
the DR register to the SDA line via the internal shift register.

The master waits until the first data byte is written into I2C_DR (see Figure 211 Transfer
sequencing EV8_1).

When the acknowledge pulse is received, the TxE bit is set by hardware and an interrupt is
generated if the ITEVFEN and ITBUFEN bits are set.

If TxE is set and a data byte was not written in the DR register before the end of the last data
transmission, BTF is set and the interface waits until BTF is cleared by a write to I2C_DR,
stretching SCL low.

Closing the communication

After the last byte is written to the DR register, the STOP bit is set by software to generate a
Stop condition (see Figure 211 Transfer sequencing EV8_2). The interface automatically
goes back to slave mode (MSL bit cleared).

Note: Stop condition should be programmed during EV8_2 event, when either TxE or BTF is set.

RM0401 Rev 3 601/771

RM0401 Inter-integrated circuit (I2C) interface

626

Figure 211. Transfer sequence diagram for master transmitter

1. The EV5, EV6, EV9, EV8_1 and EV8_2 events stretch SCL low until the end of the corresponding software sequence.

2. The EV8 event stretches SCL low if the software sequence is not complete before the end of the next byte transmission.

Inter-integrated circuit (I2C) interface RM0401

602/771 RM0401 Rev 3

Master receiver

Following the address transmission and after clearing ADDR, the I2C interface enters
Master Receiver mode. In this mode the interface receives bytes from the SDA line into the
DR register via the internal shift register. After each byte the interface generates in
sequence:

1. An acknowledge pulse if the ACK bit is set

2. The RxNE bit is set and an interrupt is generated if the ITEVFEN and ITBUFEN bits are
set (see Figure 212 Transfer sequencing EV7).

If the RxNE bit is set and the data in the DR register is not read before the end of the last
data reception, the BTF bit is set by hardware and the interface waits until BTF is cleared by
a read in the DR register, stretching SCL low.

Closing the communication

The master sends a NACK for the last byte received from the slave. After receiving this
NACK, the slave releases the control of the SCL and SDA lines. Then the master can send
a Stop/Restart condition.

1. To generate the nonacknowledge pulse after the last received data byte, the ACK bit
must be cleared just after reading the second last data byte (after second last RxNE
event).

2. In order to generate the Stop/Restart condition, software must set the STOP/START bit
after reading the second last data byte (after the second last RxNE event).

3. In case a single byte has to be received, the Acknowledge disable is made during EV6
(before ADDR flag is cleared) and the STOP condition generation is made after EV6.

After the Stop condition generation, the interface goes automatically back to slave mode
(MSL bit cleared).

RM0401 Rev 3 603/771

RM0401 Inter-integrated circuit (I2C) interface

626

Figure 212. Transfer sequence diagram for master receiver

1. If a single byte is received, it is NA.

2. The EV5, EV6 and EV9 events stretch SCL low until the end of the corresponding software sequence.

3. The EV7 event stretches SCL low if the software sequence is not completed before the end of the next byte reception.

4. The EV7_1 software sequence must be completed before the ACK pulse of the current byte transfer.

 The procedures described below are recommended if the EV7-1 software sequence is not
completed before the ACK pulse of the current byte transfer.

These procedures must be followed to make sure:

• The ACK bit is set low on time before the end of the last data reception

• The STOP bit is set high after the last data reception without reception of
supplementary data.

For 2-byte reception:

• Wait until ADDR = 1 (SCL stretched low until the ADDR flag is cleared)

• Set ACK low, set POS high

• Clear ADDR flag

• Wait until BTF = 1 (Data 1 in DR, Data2 in shift register, SCL stretched low until a data
1 is read)

• Set STOP high

• Read data 1 and 2

Inter-integrated circuit (I2C) interface RM0401

604/771 RM0401 Rev 3

For N >2 -byte reception, from N-2 data reception

• Wait until BTF = 1 (data N-2 in DR, data N-1 in shift register, SCL stretched low until
data N-2 is read)

• Set ACK low

• Read data N-2

• Wait until BTF = 1 (data N-1 in DR, data N in shift register, SCL stretched low until a
data N-1 is read)

• Set STOP high

• Read data N-1 and N

23.3.4 Error conditions

The following are the error conditions which may cause communication to fail.

Bus error (BERR)

This error occurs when the I2C interface detects an external Stop or Start condition during
an address or a data transfer. In this case:

• the BERR bit is set and an interrupt is generated if the ITERREN bit is set

• in Slave mode: data are discarded and the lines are released by hardware:

– in case of a misplaced Start, the slave considers it is a restart and waits for an
address, or a Stop condition

– in case of a misplaced Stop, the slave behaves like for a Stop condition and the
lines are released by hardware

• In Master mode: the lines are not released and the state of the current transmission is
not affected. It is up to the software to abort or not the current transmission

Acknowledge failure (AF)

This error occurs when the interface detects a nonacknowledge bit. In this case:

• the AF bit is set and an interrupt is generated if the ITERREN bit is set

• a transmitter which receives a NACK must reset the communication:

– If Slave: lines are released by hardware

– If Master: a Stop or repeated Start condition must be generated by software

Arbitration lost (ARLO)

This error occurs when the I2C interface detects an arbitration lost condition. In this case,

• the ARLO bit is set by hardware (and an interrupt is generated if the ITERREN bit is
set)

• the I2C Interface goes automatically back to slave mode (the MSL bit is cleared). When
the I2C loses the arbitration, it is not able to acknowledge its slave address in the same
transfer, but it can acknowledge it after a repeated Start from the winning master.

• lines are released by hardware

RM0401 Rev 3 605/771

RM0401 Inter-integrated circuit (I2C) interface

626

Overrun/underrun error (OVR)

An overrun error can occur in slave mode when clock stretching is disabled and the I2C
interface is receiving data. The interface has received a byte (RxNE=1) and the data in DR
has not been read, before the next byte is received by the interface. In this case,

• The last received byte is lost.

• In case of Overrun error, software should clear the RxNE bit and the transmitter should
re-transmit the last received byte.

Underrun error can occur in slave mode when clock stretching is disabled and the I2C
interface is transmitting data. The interface has not updated the DR with the next byte
(TxE=1), before the clock comes for the next byte. In this case,

• The same byte in the DR register will be sent again

• The user should make sure that data received on the receiver side during an underrun
error are discarded and that the next bytes are written within the clock low time
specified in the I2C bus standard.

For the first byte to be transmitted, the DR must be written after ADDR is cleared and before
the first SCL rising edge. If not possible, the receiver must discard the first data.

23.3.5 Programmable noise filter

In Fm mode, the I2C standard requires that spikes are suppressed to a length of 50 ns on
SDA and SCL lines.

An analog noise filter is implemented in the SDA and SCL I/Os. This filter is enabled by
default and can be disabled by setting the ANOFF bit in the I2C_FLTR register.

A digital noise filter can be enabled by configuring the DNF[3:0] bits to a non-zero value.
This suppresses the spikes on SDA and SCL inputs with a length of up to DNF[3:0] *
TPCLK1.

Enabling the digital noise filter increases the SDA hold time by (DNF[3:0] +1)* TPCLK.

To be compliant with the maximum hold time of the I2C-bus specification version 2.1
(Thd:dat), the DNF bits must be programmed using the constraints shown in Table 101, and
assuming that the analog filter is disabled.

Note: DNF[3:0] must only be configured when the I2C is disabled (PE = 0). If the analog filter is
also enabled, the digital filter is added to the analog filter.

Table 101. Maximum DNF[3:0] value to be compliant with Thd:dat(max)

PCLK1 frequency
Maximum DNF value

Sm mode Fm mode

2 <= FPCLK1 <= 5 2 0

5 < FPCLK1 <= 10 12 0

10 < FPCLK1 <= 20 15 1

20 < FPCLK1 <= 30 15 7

30 < FPCLK1 <= 40 15 13

40 < FPCLK1 <= 50 15 15

Inter-integrated circuit (I2C) interface RM0401

606/771 RM0401 Rev 3

Note: For each frequency range, the constraint is given based on the worst case which is the
minimum frequency of the range. Greater DNF values can be used if the system can
support maximum hold time violation.

23.3.6 SDA/SCL line control

• If clock stretching is enabled:

– Transmitter mode: If TxE=1 and BTF=1: the interface holds the clock line low
before transmission to wait for the microcontroller to write the byte in the Data
Register (both buffer and shift register are empty).

– Receiver mode: If RxNE=1 and BTF=1: the interface holds the clock line low after
reception to wait for the microcontroller to read the byte in the Data Register (both
buffer and shift register are full).

• If clock stretching is disabled in Slave mode:

– Overrun Error in case of RxNE=1 and no read of DR has been done before the
next byte is received. The last received byte is lost.

– Underrun Error in case TxE=1 and no write into DR has been done before the next
byte must be transmitted. The same byte will be sent again.

– Write Collision not managed.

23.3.7 SMBus

Introduction

The System Management Bus (SMBus) is a two-wire interface through which various
devices can communicate with each other and with the rest of the system. It is based on I2C
principles of operation. SMBus provides a control bus for system and power management
related tasks. A system may use SMBus to pass messages to and from devices instead of
toggling individual control lines.

The System Management Bus Specification refers to three types of devices. A slave is a
device that is receiving or responding to a command. A master is a device that issues
commands, generates the clocks, and terminates the transfer. A host is a specialized
master that provides the main interface to the system's CPU. A host must be a master-slave
and must support the SMBus host notify protocol. Only one host is allowed in a system.

Similarities between SMBus and I2C

• 2 wire bus protocol (1 Clk, 1 Data) + SMBus Alert line optional

• Master-slave communication, Master provides clock

• Multi master capability

• SMBus data format similar to I2C 7-bit addressing format (Figure 207).

Differences between SMBus and I2C

The following table describes the differences between SMBus and I2C.

RM0401 Rev 3 607/771

RM0401 Inter-integrated circuit (I2C) interface

626

SMBus application usage

With System Management Bus, a device can provide manufacturer information, tell the
system what its model/part number is, save its state for a suspend event, report different
types of errors, accept control parameters, and return its status. SMBus provides a control
bus for system and power management related tasks.

Device identification

Any device that exists on the System Management Bus as a slave has a unique address
called the Slave Address. For the list of reserved slave addresses, refer to the SMBus
specification version. 2.0 (http://smbus.org/).

Bus protocols

The SMBus specification supports up to 9 bus protocols. For more details of these protocols
and SMBus address types, refer to SMBus specification version. 2.0. These protocols
should be implemented by the user software.

Address resolution protocol (ARP)

SMBus slave address conflicts can be resolved by dynamically assigning a new unique
address to each slave device. The Address Resolution Protocol (ARP) has the following
attributes:

• Address assignment uses the standard SMBus physical layer arbitration mechanism

• Assigned addresses remain constant while device power is applied; address retention
through device power loss is also allowed

• No additional SMBus packet overhead is incurred after address assignment. (i.e.
subsequent accesses to assigned slave addresses have the same overhead as
accesses to fixed address devices.)

• Any SMBus master can enumerate the bus

Unique device identifier (UDID)

In order to provide a mechanism to isolate each device for the purpose of address
assignment, each device must implement a unique device identifier (UDID).

For the details on 128 bit UDID and more information on ARP, refer to SMBus specification
version 2.0.

Table 102. SMBus vs. I2C

SMBus I2C

Max. speed 100 kHz Max. speed 400 kHz

Min. clock speed 10 kHz No minimum clock speed

35 ms clock low timeout No timeout

Logic levels are fixed Logic levels are VDD dependent

Different address types (reserved, dynamic etc.) 7-bit, 10-bit and general call slave address types

Different bus protocols (quick command, process
call etc.)

No bus protocols

Inter-integrated circuit (I2C) interface RM0401

608/771 RM0401 Rev 3

SMBus alert mode

SMBus Alert is an optional signal with an interrupt line for devices that want to trade their
ability to master for a pin. SMBA is a wired-AND signal just as the SCL and SDA signals are.
SMBA is used in conjunction with the SMBus General Call Address. Messages invoked with
the SMBus are 2 bytes long.

A slave-only device can signal the host through SMBA that it wants to talk by setting ALERT
bit in I2C_CR1 register. The host processes the interrupt and simultaneously accesses all
SMBA devices through the Alert Response Address (known as ARA having a value 0001
100X). Only the device(s) which pulled SMBA low will acknowledge the Alert Response
Address. This status is identified using SMBALERT Status flag in I2C_SR1 register. The
host performs a modified Receive Byte operation. The 7 bit device address provided by the
slave transmit device is placed in the 7 most significant bits of the byte. The eighth bit can
be a zero or one.

If more than one device pulls SMBA low, the highest priority (lowest address) device will win
communication rights via standard arbitration during the slave address transfer. After
acknowledging the slave address the device must disengage its SMBA pull-down. If the
host still sees SMBA low when the message transfer is complete, it knows to read the ARA
again.
A host which does not implement the SMBA signal may periodically access the ARA.

For more details on SMBus Alert mode, refer to SMBus specification version 2.0
(http://smbus.org/).

Timeout error

There are differences in the timing specifications between I2C and SMBus.
SMBus defines a clock low timeout, TIMEOUT of 35 ms. Also SMBus specifies TLOW:
SEXT as the cumulative clock low extend time for a slave device. SMBus specifies TLOW:
MEXT as the cumulative clock low extend time for a master device. For more details on
these timeouts, refer to SMBus specification version 2.0.

The status flag Timeout or Tlow Error in I2C_SR1 shows the status of this feature.

How to use the interface in SMBus mode

To switch from I2C mode to SMBus mode, the following sequence should be performed.

• Set the SMBus bit in the I2C_CR1 register

• Configure the SMBTYPE and ENARP bits in the I2C_CR1 register as required for the
application

If you want to configure the device as a master, follow the Start condition generation
procedure in Section 23.3.3: I2C master mode. Otherwise, follow the sequence in
Section 23.3.2: I2C slave mode.

The application has to control the various SMBus protocols by software.

• SMB Device Default Address acknowledged if ENARP=1 and SMBTYPE=0

• SMB Host Header acknowledged if ENARP=1 and SMBTYPE=1

• SMB Alert Response Address acknowledged if SMBALERT=1

RM0401 Rev 3 609/771

RM0401 Inter-integrated circuit (I2C) interface

626

23.3.8 DMA requests

DMA requests (when enabled) are generated only for data transfer. DMA requests are
generated by Data Register becoming empty in transmission and Data Register becoming
full in reception. The DMA must be initialized and enabled before the I2C data transfer. The
DMAEN bit must be set in the I2C_CR2 register before the ADDR event. In master mode or
in slave mode when clock stretching is enabled, the DMAEN bit can also be set during the
ADDR event, before clearing the ADDR flag. The DMA request must be served before the
end of the current byte transfer. When the number of data transfers which has been
programmed for the corresponding DMA stream is reached, the DMA controller sends an
End of Transfer EOT signal to the I2C interface and generates a Transfer Complete interrupt
if enabled:

• Master transmitter: In the interrupt routine after the EOT interrupt, disable DMA
requests then wait for a BTF event before programming the Stop condition.

• Master receiver

– When the number of bytes to be received is equal to or greater than two, the DMA
controller sends a hardware signal, EOT_1, corresponding to the last but one data
byte (number_of_bytes – 1). If, in the I2C_CR2 register, the LAST bit is set, I2C
automatically sends a NACK after the next byte following EOT_1. The user can
generate a Stop condition in the DMA Transfer Complete interrupt routine if
enabled.

– When a single byte must be received: the NACK must be programmed during EV6
event, i.e. program ACK=0 when ADDR=1, before clearing ADDR flag. Then the
user can program the STOP condition either after clearing ADDR flag, or in the
DMA Transfer Complete interrupt routine.

Transmission using DMA

DMA mode can be enabled for transmission by setting the DMAEN bit in the I2C_CR2
register. Data will be loaded from a Memory area configured using the DMA peripheral (refer
to the DMA specification) to the I2C_DR register whenever the TxE bit is set. To map a DMA
stream x for I2C transmission (where x is the stream number), perform the following
sequence:

1. Set the I2C_DR register address in the DMA_SxPAR register. The data will be moved
to this address from the memory after each TxE event.

2. Set the memory address in the DMA_SxMA0R register (and in DMA_SxMA1R register
in the case of a bouble buffer mode). The data will be loaded into I2C_DR from this
memory after each TxE event.

3. Configure the total number of bytes to be transferred in the DMA_SxNDTR register.
After each TxE event, this value will be decremented.

4. Configure the DMA stream priority using the PL[0:1] bits in the DMA_SxCR register

5. Set the DIR bit in the DMA_SxCR register and configure interrupts after half transfer or
full transfer depending on application requirements.

6. Activate the stream by setting the EN bit in the DMA_SxCR register.

When the number of data transfers which has been programmed in the DMA Controller
registers is reached, the DMA controller sends an End of Transfer EOT/ EOT_1 signal to the
I2C interface and the DMA generates an interrupt, if enabled, on the DMA stream interrupt
vector.

Note: Do not enable the ITBUFEN bit in the I2C_CR2 register if DMA is used for transmission.

Inter-integrated circuit (I2C) interface RM0401

610/771 RM0401 Rev 3

Reception using DMA

DMA mode can be enabled for reception by setting the DMAEN bit in the I2C_CR2 register.
Data will be loaded from the I2C_DR register to a Memory area configured using the DMA
peripheral (refer to the DMA specification) whenever a data byte is received. To map a DMA
stream x for I2C reception (where x is the stream number), perform the following sequence:

1. Set the I2C_DR register address in DMA_SxPAR register. The data will be moved from
this address to the memory after each RxNE event.

2. Set the memory address in the DMA_SxMA0R register (and in DMA_SxMA1R register
in the case of a bouble buffer mode). The data will be loaded from the I2C_DR register
to this memory area after each RxNE event.

3. Configure the total number of bytes to be transferred in the DMA_SxNDTR register.
After each RxNE event, this value will be decremented.

4. Configure the stream priority using the PL[0:1] bits in the DMA_SxCR register

5. Reset the DIR bit and configure interrupts in the DMA_SxCR register after half transfer
or full transfer depending on application requirements.

6. Activate the stream by setting the EN bit in the DMA_SxCR register.

When the number of data transfers which has been programmed in the DMA Controller
registers is reached, the DMA controller sends an End of Transfer EOT/ EOT_1 signal to the
I2C interface and DMA generates an interrupt, if enabled, on the DMA stream interrupt
vector.

Note: Do not enable the ITBUFEN bit in the I2C_CR2 register if DMA is used for reception.

23.3.9 Packet error checking

A PEC calculator has been implemented to improve the reliability of communication. The
PEC is calculated by using the C(x) = x8 + x2 + x + 1 CRC-8 polynomial serially on each bit.

• PEC calculation is enabled by setting the ENPEC bit in the I2C_CR1 register. PEC is a
CRC-8 calculated on all message bytes including addresses and R/W bits.

– In transmission: set the PEC transfer bit in the I2C_CR1 register after the TxE
event corresponding to the last byte. The PEC will be transferred after the last
transmitted byte.

– In reception: set the PEC bit in the I2C_CR1 register after the RxNE event
corresponding to the last byte so that the receiver sends a NACK if the next
received byte is not equal to the internally calculated PEC. In case of Master-
Receiver, a NACK must follow the PEC whatever the check result. The PEC must

RM0401 Rev 3 611/771

RM0401 Inter-integrated circuit (I2C) interface

626

be set before the ACK of the CRC reception in slave mode. It must be set when
the ACK is set low in master mode.

• A PECERR error flag/interrupt is also available in the I2C_SR1 register.

• If DMA and PEC calculation are both enabled:-

– In transmission: when the I2C interface receives an EOT signal from the DMA
controller, it automatically sends a PEC after the last byte.

– In reception: when the I2C interface receives an EOT_1 signal from the DMA
controller, it will automatically consider the next byte as a PEC and will check it. A
DMA request is generated after PEC reception.

• To allow intermediate PEC transfers, a control bit is available in the I2C_CR2 register
(LAST bit) to determine if it is really the last DMA transfer or not. If it is the last DMA
request for a master receiver, a NACK is automatically sent after the last received byte.

• PEC calculation is corrupted by an arbitration loss.

23.4 I2C interrupts

The table below gives the list of I2C interrupt requests.

Note: SB, ADDR, ADD10, STOPF, BTF, RxNE and TxE are logically ORed on the same interrupt
channel.

BERR, ARLO, AF, OVR, PECERR, TIMEOUT and SMBALERT are logically ORed on the
same interrupt channel.

Table 103. I2C Interrupt requests

Interrupt event Event flag Enable control bit

Start bit sent (Master) SB

ITEVFEN

Address sent (Master) or Address matched (Slave) ADDR

10-bit header sent (Master) ADD10

Stop received (Slave) STOPF

Data byte transfer finished BTF

Receive buffer not empty RxNE
ITEVFEN and ITBUFEN

Transmit buffer empty TxE

Bus error BERR

ITERREN

Arbitration loss (Master) ARLO

Acknowledge failure AF

Overrun/Underrun OVR

PEC error PECERR

Timeout/Tlow error TIMEOUT

SMBus Alert SMBALERT

Inter-integrated circuit (I2C) interface RM0401

612/771 RM0401 Rev 3

Figure 213. I2C interrupt mapping diagram

ADDR

SB

ADD10

RxNE

TxE

BTF

it_event

ARLO

BERR

AF

OVR

PECERR

TIMEOUT

SMBALERT

ITERREN

it_error

ITEVFEN

ITBUFEN

STOPF

RM0401 Rev 3 613/771

RM0401 Inter-integrated circuit (I2C) interface

626

23.5 I2C debug mode

When the microcontroller enters the debug mode (Cortex®-M4 with FPU core halted), the
SMBUS timeout either continues to work normally or stops, depending on the
DBG_I2Cx_SMBUS_TIMEOUT configuration bits in the DBGMCU module. For more
details, refer to Section 26.16.2: Debug support for timers, watchdog, and I2C.

23.6 I2C registers

Refer to Section 1.2 on page 34 for a list of abbreviations used in register descriptions.

The peripheral registers have to be accessed by half-words (16 bits) or words (32 bits).

23.6.1 I2C Control register 1 (I2C_CR1)

Address offset: 0x00
Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SW
RST

Res. ALERT PEC POS ACK STOP START
NO

STRET
CH

ENGC ENPEC ENARP
SMB
TYPE

Res.
SM

BUS
PE

rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 15 SWRST: Software reset

When set, the I2C is under reset state. Before resetting this bit, make sure the I2C lines are
released and the bus is free.
0: I2C Peripheral not under reset
1: I2C Peripheral under reset state

Note: This bit can be used to reinitialize the peripheral after an error or a locked state. As an
example, if the BUSY bit is set and remains locked due to a glitch on the bus, the
SWRST bit can be used to exit from this state.

Bit 14 Reserved, must be kept at reset value

Bit 13 ALERT: SMBus alert

This bit is set and cleared by software, and cleared by hardware when PE=0.
0: Releases SMBA pin high. Alert Response Address Header followed by NACK.
1: Drives SMBA pin low. Alert Response Address Header followed by ACK.

Bit 12 PEC: Packet error checking

This bit is set and cleared by software, and cleared by hardware when PEC is transferred or
by a START or Stop condition or when PE=0.
0: No PEC transfer
1: PEC transfer (in Tx or Rx mode)

Note: PEC calculation is corrupted by an arbitration loss.

Inter-integrated circuit (I2C) interface RM0401

614/771 RM0401 Rev 3

Bit 11 POS: Acknowledge/PEC Position (for data reception)

This bit is set and cleared by software and cleared by hardware when PE=0.
0: ACK bit controls the (N)ACK of the current byte being received in the shift register. The
PEC bit indicates that current byte in shift register is a PEC.
1: ACK bit controls the (N)ACK of the next byte which will be received in the shift register.
The PEC bit indicates that the next byte in the shift register is a PEC

Note: The POS bit must be used only in 2-byte reception configuration in master mode. It
must be configured before data reception starts, as described in the 2-byte reception
procedure recommended in Master receiver.

Bit 10 ACK: Acknowledge enable

This bit is set and cleared by software and cleared by hardware when PE=0.
0: No acknowledge returned
1: Acknowledge returned after a byte is received (matched address or data)

Bit 9 STOP: Stop generation

The bit is set and cleared by software, cleared by hardware when a Stop condition is
detected, set by hardware when a timeout error is detected.
In Master Mode:
0: No Stop generation.
1: Stop generation after the current byte transfer or after the current Start condition is sent.
In Slave mode:
0: No Stop generation.
1: Release the SCL and SDA lines after the current byte transfer.

Bit 8 START: Start generation

This bit is set and cleared by software and cleared by hardware when start is sent or PE=0.
In Master Mode:
0: No Start generation
1: Repeated start generation
In Slave mode:
0: No Start generation
1: Start generation when the bus is free

Bit 7 NOSTRETCH: Clock stretching disable (Slave mode)

This bit is used to disable clock stretching in slave mode when ADDR or BTF flag is set, until
it is reset by software.
0: Clock stretching enabled
1: Clock stretching disabled

Bit 6 ENGC: General call enable

0: General call disabled. Address 00h is NACKed.
1: General call enabled. Address 00h is ACKed.

Bit 5 ENPEC: PEC enable

0: PEC calculation disabled
1: PEC calculation enabled

Bit 4 ENARP: ARP enable

0: ARP disable
1: ARP enable
SMBus Device default address recognized if SMBTYPE=0
SMBus Host address recognized if SMBTYPE=1

Bit 3 SMBTYPE: SMBus type

0: SMBus Device
1: SMBus Host

RM0401 Rev 3 615/771

RM0401 Inter-integrated circuit (I2C) interface

626

Note: When the STOP, START or PEC bit is set, the software must not perform any write access
to I2C_CR1 before this bit is cleared by hardware. Otherwise there is a risk of setting a
second STOP, START or PEC request.

23.6.2 I2C Control register 2 (I2C_CR2)

Address offset: 0x04
Reset value: 0x0000

Bit 2 Reserved, must be kept at reset value

Bit 1 SMBUS: SMBus mode

0: I2C mode
1: SMBus mode

Bit 0 PE: Peripheral enable

0: Peripheral disable
1: Peripheral enable

Note: If this bit is reset while a communication is on going, the peripheral is disabled at the
end of the current communication, when back to IDLE state.
All bit resets due to PE=0 occur at the end of the communication.

In master mode, this bit must not be reset before the end of the communication.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. LAST
DMA
EN

ITBUF
EN

ITEVT
EN

ITERR
EN

Res. Res. FREQ[5:0]

rw rw rw rw rw rw rw rw rw rw rw

Bits 15:13 Reserved, must be kept at reset value

Bit 12 LAST: DMA last transfer

0: Next DMA EOT is not the last transfer
1: Next DMA EOT is the last transfer

Note: This bit is used in master receiver mode to permit the generation of a NACK on the last
received data.

Bit 11 DMAEN: DMA requests enable

0: DMA requests disabled
1: DMA request enabled when TxE=1 or RxNE =1

Bit 10 ITBUFEN: Buffer interrupt enable

0: TxE = 1 or RxNE = 1 does not generate any interrupt.
1: TxE = 1 or RxNE = 1 generates Event Interrupt (whatever the state of DMAEN)

Bit 9 ITEVTEN: Event interrupt enable

0: Event interrupt disabled
1: Event interrupt enabled
This interrupt is generated when:

– SB = 1 (Master)

– ADDR = 1 (Master/Slave)

– ADD10= 1 (Master)

– STOPF = 1 (Slave)

– BTF = 1 with no TxE or RxNE event

– TxE event to 1 if ITBUFEN = 1

– RxNE event to 1if ITBUFEN = 1

Inter-integrated circuit (I2C) interface RM0401

616/771 RM0401 Rev 3

ITERREN: Error interrupt enable

0: Error interrupt disabled
1: Error interrupt enabled
This interrupt is generated when:

– BERR = 1

– ARLO = 1

– AF = 1

– OVR = 1

– PECERR = 1

– TIMEOUT = 1

– SMBALERT = 1

Bits 7:6 Reserved, must be kept at reset value

Bits 5:0 FREQ[5:0]: Peripheral clock frequency

The FREQ bits must be configured with the APB clock frequency value (I2C peripheral
connected to APB). The FREQ field is used by the peripheral to generate data setup and
hold times compliant with the I2C specifications. The minimum allowed frequency is 2 MHz,
the maximum frequency is limited by the maximum APB frequency (50 MHz) and cannot
exceed 50 MHz (peripheral intrinsic maximum limit).
0b000000: Not allowed
0b000001: Not allowed
0b000010: 2 MHz
...
0b110010: 50 MHz
Higher than 0b101010: Not allowed

RM0401 Rev 3 617/771

RM0401 Inter-integrated circuit (I2C) interface

626

23.6.3 I2C Own address register 1 (I2C_OAR1)

Address offset: 0x08
Reset value: 0x0000

23.6.4 I2C Own address register 2 (I2C_OAR2)

Address offset: 0x0C
Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ADD
MODE

Res. Res. Res. Res. Res. ADD[9:8] ADD[7:1] ADD0

rw rw rw rw rw rw rw rw rw rw rw

Bit 15 ADDMODE Addressing mode (slave mode)

0: 7-bit slave address (10-bit address not acknowledged)
1: 10-bit slave address (7-bit address not acknowledged)

Bit 14 Should always be kept at 1 by software.

Bits 13:10 Reserved, must be kept at reset value

Bits 9:8 ADD[9:8]: Interface address

7-bit addressing mode: don’t care
10-bit addressing mode: bits9:8 of address

Bits 7:1 ADD[7:1]: Interface address

bits 7:1 of address

Bit 0 ADD0: Interface address

7-bit addressing mode: don’t care
10-bit addressing mode: bit 0 of address

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. ADD2[7:1]
EN

DUAL

rw rw rw rw rw rw rw rw

Bits 15:8 Reserved, must be kept at reset value

Bits 7:1 ADD2[7:1]: Interface address

bits 7:1 of address in dual addressing mode

Bit 0 ENDUAL: Dual addressing mode enable

0: Only OAR1 is recognized in 7-bit addressing mode
1: Both OAR1 and OAR2 are recognized in 7-bit addressing mode

Inter-integrated circuit (I2C) interface RM0401

618/771 RM0401 Rev 3

23.6.5 I2C Data register (I2C_DR)

Address offset: 0x10
Reset value: 0x0000

23.6.6 I2C Status register 1 (I2C_SR1)

Address offset: 0x14
Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. DR[7:0]

rw rw rw rw rw rw rw rw

Bits 15:8 Reserved, must be kept at reset value

Bits 7:0 DR[7:0] 8-bit data register

Byte received or to be transmitted to the bus.

– Transmitter mode: Byte transmission starts automatically when a byte is written in the DR
register. A continuous transmit stream can be maintained if the next data to be transmitted is
put in DR once the transmission is started (TxE=1)

– Receiver mode: Received byte is copied into DR (RxNE=1). A continuous transmit stream
can be maintained if DR is read before the next data byte is received (RxNE=1).

Note: In slave mode, the address is not copied into DR.

Write collision is not managed (DR can be written if TxE=0).

If an ARLO event occurs on ACK pulse, the received byte is not copied into DR
and so cannot be read.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

SMB
ALERT

TIMEO
UT

Res.
PEC
ERR

OVR AF ARLO BERR TxE RxNE Res. STOPF ADD10 BTF ADDR SB

rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 rc_w0 r r r r r r r

RM0401 Rev 3 619/771

RM0401 Inter-integrated circuit (I2C) interface

626

Bit 15 SMBALERT: SMBus alert

In SMBus host mode:
0: no SMBALERT
1: SMBALERT event occurred on pin
In SMBus slave mode:
0: no SMBALERT response address header
1: SMBALERT response address header to SMBALERT LOW received

– Cleared by software writing 0, or by hardware when PE=0.

Bit 14 TIMEOUT: Timeout or Tlow error

0: No timeout error
1: SCL remained LOW for 25 ms (Timeout)
or
Master cumulative clock low extend time more than 10 ms (Tlow:mext)
or
Slave cumulative clock low extend time more than 25 ms (Tlow:sext)

– When set in slave mode: slave resets the communication and lines are released by
hardware

– When set in master mode: Stop condition sent by hardware

– Cleared by software writing 0, or by hardware when PE=0.

Note: This functionality is available only in SMBus mode.

Bit 13 Reserved, must be kept at reset value

Bit 12 PECERR: PEC Error in reception

0: no PEC error: receiver returns ACK after PEC reception (if ACK=1)
1: PEC error: receiver returns NACK after PEC reception (whatever ACK)

– Cleared by software writing 0, or by hardware when PE=0.

– Note: When the received CRC is wrong, PECERR is not set in slave mode if the PEC control
bit is not set before the end of the CRC reception. Nevertheless, reading the PEC value
determines whether the received CRC is right or wrong.

Bit 11 OVR: Overrun/Underrun

0: No overrun/underrun
1: Overrun or underrun

– Set by hardware in slave mode when NOSTRETCH=1 and:

– In reception when a new byte is received (including ACK pulse) and the DR register has not
been read yet. New received byte is lost.

– In transmission when a new byte should be sent and the DR register has not been written
yet. The same byte is sent twice.

– Cleared by software writing 0, or by hardware when PE=0.

Note: If the DR write occurs very close to SCL rising edge, the sent data is unspecified and a
hold timing error occurs

Bit 10 AF: Acknowledge failure

0: No acknowledge failure
1: Acknowledge failure

– Set by hardware when no acknowledge is returned.

– Cleared by software writing 0, or by hardware when PE=0.

Inter-integrated circuit (I2C) interface RM0401

620/771 RM0401 Rev 3

Bit 9 ARLO: Arbitration lost (master mode)

0: No Arbitration Lost detected
1: Arbitration Lost detected
Set by hardware when the interface loses the arbitration of the bus to another master

– Cleared by software writing 0, or by hardware when PE=0.

After an ARLO event the interface switches back automatically to Slave mode (MSL=0).

Note: In SMBUS, the arbitration on the data in slave mode occurs only during the data phase,
or the acknowledge transmission (not on the address acknowledge).

Bit 8 BERR: Bus error

0: No misplaced Start or Stop condition
1: Misplaced Start or Stop condition

– Set by hardware when the interface detects an SDA rising or falling edge while SCL is high,
occurring in a non-valid position during a byte transfer.

– Cleared by software writing 0, or by hardware when PE=0.

Bit 7 TxE: Data register empty (transmitters)

0: Data register not empty
1: Data register empty

– Set when DR is empty in transmission. TxE is not set during address phase.

– Cleared by software writing to the DR register or by hardware after a start or a stop condition
or when PE=0.

TxE is not set if either a NACK is received, or if next byte to be transmitted is PEC (PEC=1)

Note: TxE is not cleared by writing the first data being transmitted, or by writing data when
BTF is set, as in both cases the data register is still empty.

Bit 6 RxNE: Data register not empty (receivers)

0: Data register empty
1: Data register not empty

– Set when data register is not empty in receiver mode. RxNE is not set during address phase.

– Cleared by software reading or writing the DR register or by hardware when PE=0.

RxNE is not set in case of ARLO event.

Note: RxNE is not cleared by reading data when BTF is set, as the data register is still full.

Bit 5 Reserved, must be kept at reset value

Bit 4 STOPF: Stop detection (slave mode)

0: No Stop condition detected
1: Stop condition detected

– Set by hardware when a Stop condition is detected on the bus by the slave after an
acknowledge (if ACK=1).

– Cleared by software reading the SR1 register followed by a write in the CR1 register, or by
hardware when PE=0

Note: The STOPF bit is not set after a NACK reception.
It is recommended to perform the complete clearing sequence (READ SR1 then
WRITE CR1) after the STOPF is set. Refer to Figure 210: Transfer sequence diagram
for slave receiver on page 598.

RM0401 Rev 3 621/771

RM0401 Inter-integrated circuit (I2C) interface

626

Bit 3 ADD10: 10-bit header sent (Master mode)

0: No ADD10 event occurred.
1: Master has sent first address byte (header).

– Set by hardware when the master has sent the first byte in 10-bit address mode.

– Cleared by software reading the SR1 register followed by a write in the DR register of the
second address byte, or by hardware when PE=0.

Note: ADD10 bit is not set after a NACK reception

Bit 2 BTF: Byte transfer finished

0: Data byte transfer not done
1: Data byte transfer succeeded

– Set by hardware when NOSTRETCH=0 and:

– In reception when a new byte is received (including ACK pulse) and DR has not been read
yet (RxNE=1).

– In transmission when a new byte should be sent and DR has not been written yet (TxE=1).

– Cleared by software by either a read or write in the DR register or by hardware after a start or
a stop condition in transmission or when PE=0.

Note: The BTF bit is not set after a NACK reception

The BTF bit is not set if next byte to be transmitted is the PEC (TRA=1 in I2C_SR2
register and PEC=1 in I2C_CR1 register)

Bit 1 ADDR: Address sent (master mode)/matched (slave mode)

This bit is cleared by software reading SR1 register followed reading SR2, or by hardware
when PE=0.
Address matched (Slave)
0: Address mismatched or not received.
1: Received address matched.

– Set by hardware as soon as the received slave address matched with the OAR registers
content or a general call or a SMBus Device Default Address or SMBus Host or SMBus Alert
is recognized. (when enabled depending on configuration).

Note: In slave mode, it is recommended to perform the complete clearing sequence (READ
SR1 then READ SR2) after ADDR is set. Refer to Figure 210: Transfer sequence
diagram for slave receiver on page 598.

Address sent (Master)
0: No end of address transmission
1: End of address transmission

– For 10-bit addressing, the bit is set after the ACK of the 2nd byte.

– For 7-bit addressing, the bit is set after the ACK of the byte.

Note: ADDR is not set after a NACK reception

Bit 0 SB: Start bit (Master mode)

0: No Start condition
1: Start condition generated.

– Set when a Start condition generated.

– Cleared by software by reading the SR1 register followed by writing the DR register, or by
hardware when PE=0

Inter-integrated circuit (I2C) interface RM0401

622/771 RM0401 Rev 3

23.6.7 I2C Status register 2 (I2C_SR2)

Address offset: 0x18
Reset value: 0x0000

Note: Reading I2C_SR2 after reading I2C_SR1 clears the ADDR flag, even if the ADDR flag was
set after reading I2C_SR1. Consequently, I2C_SR2 must be read only when ADDR is found
set in I2C_SR1 or when the STOPF bit is cleared.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PEC[7:0] DUALF
SMB

HOST

SMB
DEFAU

LT

GEN
CALL

Res. TRA BUSY MSL

r r r r r r r r r r r r r r r

Bits 15:8 PEC[7:0] Packet error checking register

This register contains the internal PEC when ENPEC=1.

Bit 7 DUALF: Dual flag (Slave mode)

0: Received address matched with OAR1
1: Received address matched with OAR2

– Cleared by hardware after a Stop condition or repeated Start condition, or when PE=0.

Bit 6 SMBHOST: SMBus host header (Slave mode)

0: No SMBus Host address
1: SMBus Host address received when SMBTYPE=1 and ENARP=1.

– Cleared by hardware after a Stop condition or repeated Start condition, or when PE=0.

Bit 5 SMBDEFAULT: SMBus device default address (Slave mode)

0: No SMBus Device Default address
1: SMBus Device Default address received when ENARP=1

– Cleared by hardware after a Stop condition or repeated Start condition, or when PE=0.

Bit 4 GENCALL: General call address (Slave mode)

0: No General Call
1: General Call Address received when ENGC=1

– Cleared by hardware after a Stop condition or repeated Start condition, or when PE=0.

Bit 3 Reserved, must be kept at reset value

RM0401 Rev 3 623/771

RM0401 Inter-integrated circuit (I2C) interface

626

Note: Reading I2C_SR2 after reading I2C_SR1 clears the ADDR flag, even if the ADDR flag was
set after reading I2C_SR1. Consequently, I2C_SR2 must be read only when ADDR is found
set in I2C_SR1 or when the STOPF bit is cleared.

23.6.8 I2C Clock control register (I2C_CCR)

Address offset: 0x1C
Reset value: 0x0000

Note: fPCLK1 must be at least 2 MHz to achieve Sm mode I²C frequencies. It must be at least 4
MHz to achieve Fm mode I²C frequencies. It must be a multiple of 10MHz to reach the
400 kHz maximum I²C Fm mode clock.

The CCR register must be configured only when the I2C is disabled (PE = 0).

Bit 2 TRA: Transmitter/receiver

0: Data bytes received
1: Data bytes transmitted
This bit is set depending on the R/W bit of the address byte, at the end of total address
phase.
It is also cleared by hardware after detection of Stop condition (STOPF=1), repeated Start
condition, loss of bus arbitration (ARLO=1), or when PE=0.

Bit 1 BUSY: Bus busy

0: No communication on the bus
1: Communication ongoing on the bus

– Set by hardware on detection of SDA or SCL low

– cleared by hardware on detection of a Stop condition.

It indicates a communication in progress on the bus. This information is still updated when
the interface is disabled (PE=0).

Bit 0 MSL: Master/slave

0: Slave Mode
1: Master Mode

– Set by hardware as soon as the interface is in Master mode (SB=1).

– Cleared by hardware after detecting a Stop condition on the bus or a loss of arbitration
(ARLO=1), or by hardware when PE=0.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

F/S DUTY Res. Res. CCR[11:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 15 F/S: I2C master mode selection

0: Sm mode I2C
1: Fm mode I2C

Inter-integrated circuit (I2C) interface RM0401

624/771 RM0401 Rev 3

23.6.9 I2C TRISE register (I2C_TRISE)

Address offset: 0x20
Reset value: 0x0002

Bit 14 DUTY: Fm mode duty cycle

0: Fm mode tlow/thigh = 2
1: Fm mode tlow/thigh = 16/9 (see CCR)

Bits 13:12 Reserved, must be kept at reset value

Bits 11:0 CCR[11:0]: Clock control register in Fm/Sm mode (Master mode)

Controls the SCL clock in master mode.
Sm mode or SMBus:
Thigh = CCR * TPCLK1
Tlow = CCR * TPCLK1
Fm mode:
If DUTY = 0:
Thigh = CCR * TPCLK1
Tlow = 2 * CCR * TPCLK1
If DUTY = 1: (to reach 400 kHz)
Thigh = 9 * CCR * TPCLK1
Tlow = 16 * CCR * TPCLK1
For instance: in Sm mode, to generate a 100 kHz SCL frequency:
If FREQR = 08, TPCLK1 = 125 ns so CCR must be programmed with 0x28
(0x28 <=> 40d x 125 ns = 5000 ns.)

Note: The minimum allowed value is 0x04, except in FAST DUTY mode where the minimum
allowed value is 0x01

thigh = tr(SCL) + tw(SCLH). See device datasheet for the definitions of parameters.

tlow = tf(SCL) + tw(SCLL). See device datasheet for the definitions of parameters.

I2C communication speed, fSCL ~ 1/(thigh + tlow). The real frequency may differ due to
the analog noise filter input delay.

The CCR register must be configured only when the I2C is disabled (PE = 0).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. TRISE[5:0]

rw rw rw rw rw rw

Bits 15:6 Reserved, must be kept at reset value

Bits 5:0 TRISE[5:0]: Maximum rise time in Fm/Sm mode (Master mode)

These bits should provide the maximum duration of the SCL feedback loop in master mode.
The purpose is to keep a stable SCL frequency whatever the SCL rising edge duration.
These bits must be programmed with the maximum SCL rise time given in the I2C bus
specification, incremented by 1.
For instance: in Sm mode, the maximum allowed SCL rise time is 1000 ns.
If, in the I2C_CR2 register, the value of FREQ[5:0] bits is equal to 0x08 and TPCLK1 = 125 ns
therefore the TRISE[5:0] bits must be programmed with 09h.
(1000 ns / 125 ns = 8 + 1)
The filter value can also be added to TRISE[5:0].
If the result is not an integer, TRISE[5:0] must be programmed with the integer part, in order
to respect the tHIGH parameter.

Note: TRISE[5:0] must be configured only when the I2C is disabled (PE = 0).

RM0401 Rev 3 625/771

RM0401 Inter-integrated circuit (I2C) interface

626

23.6.10 I2C FLTR register (I2C_FLTR)

Address offset: 0x24

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. ANOFF DNF[3:0]

rw rw rw rw rw

Bits 15:5 Reserved, must be kept at reset value

Bit 4 ANOFF: Analog noise filter OFF

0: Analog noise filter enable
1: Analog noise filter disable

Note: ANOFF must be configured only when the I2C is disabled (PE = 0).

Bits 3:0 DNF[3:0]: Digital noise filter

These bits are used to configure the digital noise filter on SDA and SCL inputs. The digital filter
will suppress the spikes with a length of up to DNF[3:0] * TPCLK1.

0000: Digital noise filter disable
0001: Digital noise filter enabled and filtering capability up to 1* TPCLK1.
...
1111: Digital noise filter enabled and filtering capability up to 15* TPCLK1.

Note: DNF[3:0] must be configured only when the I2C is disabled (PE = 0). If the analog filter
is also enabled, the digital filter is added to the analog filter.

Inter-integrated circuit (I2C) interface RM0401

626/771 RM0401 Rev 3

23.6.11 I2C register map

The table below provides the I2C register map and reset values.

Refer to Section 2.2 on page 41 for the register boundary addresses.

Table 104. I2C register map and reset values

Offset Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0x00
I2C_CR1

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

S
W

R
S

T
R

es
.

A
L

E
R

T

P
E

C

P
O

S

A
C

K

S
T

O
P

S
TA

R
T

N
O

S
T

R
E

T
C

H

E
N

G
C

E
N

P
E

C

E
N

A
R

P

S
M

B
T

Y
P

E

R
es

.

S
M

B
U

S

P
E

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x04
I2C_CR2

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

L
A

S
T

D
M

A
E

N

IT
B

U
F

E
N

IT
E

V
T

E
N

IT
E

R
R

E
N

R
es

.

R
es

.

FREQ[5:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0

0x08
I2C_OAR1

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

A
D

D
M

O
D

E

R
es

.

R
es

.

R
es

.

R
es

.

R
es

. ADD[
9:8]

ADD[7:1]

A
D

D
0

Reset value 0 0 0 0 0 0 0 0 0 0 0

0x0C
I2C_OAR2

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

ADD2[7:1]

E
N

D
U

A
L

Reset value 0 0 0 0 0 0 0 0

0x10
I2C_DR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

DR[7:0]

Reset value 0 0 0 0 0 0 0 0

0x14
I2C_SR1

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

S
M

B
A

L
E

R
T

T
IM

E
O

U
T

R
es

.

P
E

C
E

R
R

O
V

R

A
F

A
R

LO

B
E

R
R

T
xE

R
xN

E
R

es
.

S
T

O
P

F

A
D

D
10

B
T

F

A
D

D
R

S
B

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x18
I2C_SR2

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

PEC[7:0]

D
U

A
L

F

S
M

B
H

O
S

T

S
M

B
D

E
FA

U
LT

G
E

N
C

A
L

L
R

es
.

T
R

A

B
U

S
Y

M
S

L

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x1C
I2C_CCR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

F
/S

D
U

T
Y

R
es

.

R
es

.

CCR[11:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x20
I2C_TRISE

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

TRISE[5:0]

Reset value 0 0 0 0 1 0

0x24
I2C_FLTR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

A
N

O
F

F

DNF[3:0]

Reset value 0 0 0 0 0

RM0401 Rev 3 627/771

RM0401 Universal synchronous receiver transmitter (USART) /universal asynchronous receiver

679

24 Universal synchronous receiver transmitter (USART)
/universal asynchronous receiver transmitter (UART)

24.1 USART introduction

The universal synchronous asynchronous receiver transmitter (USART) offers a flexible
means of full-duplex data exchange with external equipment requiring an industry standard
NRZ asynchronous serial data format. The USART offers a very wide range of baud rates
using a fractional baud rate generator.

It supports synchronous one-way communication and half-duplex single wire
communication. It also supports the LIN (local interconnection network), Smartcard Protocol
and IrDA (infrared data association) SIR ENDEC specifications, and modem operations
(CTS/RTS). It allows multiprocessor communication.

High speed data communication is possible by using the DMA for multibuffer configuration.

Universal synchronous receiver transmitter (USART) /universal asynchronous receiver transmit-

628/771 RM0401 Rev 3

24.2 USART main features

• Full duplex, asynchronous communications

• NRZ standard format (Mark/Space)

• Configurable oversampling method by 16 or by 8 to give flexibility between speed and
clock tolerance

• Fractional baud rate generator systems

– Common programmable transmit and receive baud rate (refer to the datasheets
for the value of the baud rate at the maximum APB frequency.

• Programmable data word length (8 or 9 bits)

• Configurable stop bits - support for 1 or 2 stop bits

• LIN Master Synchronous Break send capability and LIN slave break detection
capability

– 13-bit break generation and 10/11 bit break detection when USART is hardware
configured for LIN

• Transmitter clock output for synchronous transmission

• IrDA SIR encoder decoder

– Support for 3/16 bit duration for normal mode

• Smartcard emulation capability

– The Smartcard interface supports the asynchronous protocol Smartcards as
defined in the ISO 7816-3 standards

– 0.5, 1.5 stop bits for Smartcard operation

• Single-wire half-duplex communication

• Configurable multibuffer communication using DMA (direct memory access)

– Buffering of received/transmitted bytes in reserved SRAM using centralized DMA

• Separate enable bits for transmitter and receiver

• Transfer detection flags:

– Receive buffer full

– Transmit buffer empty

– End of transmission flags

• Parity control:

– Transmits parity bit

– Checks parity of received data byte

• Four error detection flags:

– Overrun error

– Noise detection

– Frame error

– Parity error

• Ten interrupt sources with flags:

– CTS changes

– LIN break detection

– Transmit data register empty

– Transmission complete

RM0401 Rev 3 629/771

RM0401 Universal synchronous receiver transmitter (USART) /universal asynchronous receiver

679

– Receive data register full

– Idle line received

– Overrun error

– Framing error

– Noise error

– Parity error

• Multiprocessor communication - enter into mute mode if address match does not occur

• Wake up from mute mode (by idle line detection or address mark detection)

• Two receiver wakeup modes: Address bit (MSB, 9th bit), Idle line

24.3 USART implementation

This section describes the full set of features implemented in USART1. Refer to Table 105:
USART features for the differences between USART instances.

24.4 USART functional description

The interface is externally connected to another device by three pins (see Figure 214). Any
USART bidirectional communication requires a minimum of two pins: Receive Data In (RX)
and Transmit Data Out (TX):

RX: Receive Data Input is the serial data input. Oversampling techniques are used for data
recovery by discriminating between valid incoming data and noise.

TX: Transmit Data Output. When the transmitter is disabled, the output pin returns to its I/O
port configuration. When the transmitter is enabled and nothing is to be transmitted, the TX
pin is at high level. In single-wire and smartcard modes, this I/O is used to transmit and
receive the data (at USART level, data are then received on SW_RX).

Table 105. USART features

USART modes/features(1)

1. X = supported.

USART1, USART2 USART6

Hardware flow control for modem(2)

2. This feature is not available on all packages (refer to the datasheet for more information).

X -

Continuous communication using DMA X X

Multiprocessor communication X X

Synchronous mode(2) X X

Smartcard mode X X

Single-wire half-duplex communication X X

IrDA SIR ENDEC block X X

LIN mode X X

USART data length 8 or 9 bits

Universal synchronous receiver transmitter (USART) /universal asynchronous receiver transmit-

630/771 RM0401 Rev 3

Through these pins, serial data is transmitted and received in normal USART mode as
frames comprising:

• An Idle Line prior to transmission or reception

• A start bit

• A data word (8 or 9 bits) least significant bit first

• 0.5,1, 1.5, 2 Stop bits indicating that the frame is complete

• This interface uses a fractional baud rate generator - with a 12-bit mantissa and 4-bit
fraction

• A status register (USART_SR)

• Data Register (USART_DR)

• A baud rate register (USART_BRR) - 12-bit mantissa and 4-bit fraction.

• A Guardtime Register (USART_GTPR) in case of Smartcard mode.

Refer to Section 24.6: USART registers for the definition of each bit.

The following pin is required to interface in synchronous mode:

• SCLK: Transmitter clock output. This pin outputs the transmitter data clock for
synchronous transmission corresponding to SPI master mode (no clock pulses on start
bit and stop bit, and a software option to send a clock pulse on the last data bit). In
parallel data can be received synchronously on RX. This can be used to control
peripherals that have shift registers (e.g. LCD drivers). The clock phase and polarity
are software programmable. In smartcard mode, SCLK can provide the clock to the
smartcard.

The following pins are required in Hardware flow control mode:

• nCTS: Clear To Send blocks the data transmission at the end of the current transfer
when high

• nRTS: Request to send indicates that the USART is ready to receive a data (when
low).

RM0401 Rev 3 631/771

RM0401 Universal synchronous receiver transmitter (USART) /universal asynchronous receiver

679

Figure 214. USART block diagram

Wakeup
unit

Receiver
control

SR

Transmit
control

TXE TC RXNE IDLE ORE NF FE

USART

control

interrupt

CR1

M WAKE

Receive data register (RDR)

Receive Shift Register

Read

Transmit data register (TDR)

Transmit Shift Register

Write

SW_RX

TX

(Data register) DR

Transmitter
 clock

Receiver
clock

Receiver rate

Transmitter rate

fPCLKx(x=1,2)

 control

control

/ [8 x (2 - OVER8)]

Conventional baud rate generator

SBKRWURETEIDLERXNETCIETXEIE

CR1

UE PCE PS PEIE

PE

PWDATA

IRLPSCEN IRENDMARDMAT

USART Address

CR2

CR3

IrDA
SIR
ENDEC
block

LINE CKEN CPOL CPHA LBCL

SCLK control SCLK

CR2

GT

STOP[1:0]NACK

DIV_Mantissa

15 0

RE

USART_BRR

/USARTDIV

TE

HD

(CPU or DMA)(CPU or DMA)

PRDATA

Hardware
flow
controller

CTS LBD

RX

IRDA_OUT

IRDA_IN

nRTS

nCTS

GTPR
PSC

IE IE

DIV_Fraction

4

USARTDIV = DIV_Mantissa + (DIV_Fraction / 8 × (2 – OVER8))

SAMPLING

CR1
OVER8

DIVIDER

ai16099

Universal synchronous receiver transmitter (USART) /universal asynchronous receiver transmit-

632/771 RM0401 Rev 3

24.4.1 USART character description

Word length may be selected as being either 8 or 9 bits by programming the M bit in the
USART_CR1 register (see Figure 215).

The TX pin is in low state during the start bit. It is in high state during the stop bit.

An Idle character is interpreted as an entire frame of “1”s followed by the start bit of the
next frame that contains data (The number of “1” ‘s will include the number of stop bits).

A Break character is interpreted on receiving “0”s for a frame period. At the end of the
break frame the transmitter inserts either 1 or 2 stop bits (logic “1” bit) to acknowledge the
start bit.

Transmission and reception are driven by a common baud rate generator, the clock for each
is generated when the enable bit is set respectively for the transmitter and receiver.

The details of each block is given below.

Figure 215. Word length programming

RM0401 Rev 3 633/771

RM0401 Universal synchronous receiver transmitter (USART) /universal asynchronous receiver

679

24.4.2 Transmitter

The transmitter can send data words of either 8 or 9 bits depending on the M bit status.
When the transmit enable bit (TE) is set, the data in the transmit shift register is output on
the TX pin and the corresponding clock pulses are output on the SCLK pin.

Character transmission

During an USART transmission, data shifts out least significant bit first on the TX pin. In this
mode, the USART_DR register consists of a buffer (TDR) between the internal bus and the
transmit shift register (see Figure 214).

Every character is preceded by a start bit that is a logic level low for one bit period. The
character is terminated by a configurable number of stop bits.

The following stop bits are supported by USART: 0.5, 1, 1.5 and 2 stop bits.

Note: The TE bit should not be reset during transmission of data. Resetting the TE bit during the
transmission will corrupt the data on the TX pin as the baud rate counters will get frozen.
The current data being transmitted will be lost.

An idle frame will be sent after the TE bit is enabled.

Configurable stop bits

The number of stop bits to be transmitted with every character can be programmed in
Control register 2, bits 13,12.

• 1 stop bit: This is the default value of number of stop bits.

• 2 Stop bits: This will be supported by normal USART, single-wire and modem modes.

• 0.5 stop bit: To be used when receiving data in Smartcard mode.

• 1.5 stop bits: To be used when transmitting and receiving data in Smartcard mode.

An idle frame transmission will include the stop bits.

A break transmission will be 10 low bits followed by the configured number of stop bits
(when m = 0) and 11 low bits followed by the configured number of stop bits (when m = 1). It
is not possible to transmit long breaks (break of length greater than 10/11 low bits).

Universal synchronous receiver transmitter (USART) /universal asynchronous receiver transmit-

634/771 RM0401 Rev 3

Figure 216. Configurable stop bits

Procedure:

1. Enable the USART by writing the UE bit in USART_CR1 register to 1.

2. Program the M bit in USART_CR1 to define the word length.

3. Program the number of stop bits in USART_CR2.

4. Select DMA enable (DMAT) in USART_CR3 if Multi buffer Communication is to take
place. Configure the DMA register as explained in multibuffer communication.

5. Select the desired baud rate using the USART_BRR register.

6. Set the TE bit in USART_CR1 to send an idle frame as first transmission.

7. Write the data to send in the USART_DR register (this clears the TXE bit). Repeat this
for each data to be transmitted in case of single buffer.

8. After writing the last data into the USART_DR register, wait until TC=1. This indicates
that the transmission of the last frame is complete. This is required for instance when
the USART is disabled or enters the Halt mode to avoid corrupting the last
transmission.

Single byte communication

Clearing the TXE bit is always performed by a write to the data register.

The TXE bit is set by hardware and it indicates:

• The data has been moved from TDR to the shift register and the data transmission has
started.

• The TDR register is empty.

• The next data can be written in the USART_DR register without overwriting the
previous data.

This flag generates an interrupt if the TXEIE bit is set.

Bit0 Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7
Start
Bit

Stop
bit

Next
start
bit

8-bit Word length (M bit is reset)
Possible

parity
bit

Data frame
Next data frame

** LBCL bit controls last data clock pulse

CLOCK
**

Bit0 Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7
Start
Bit

2 Stop
Bits

Next
Start
Bit

Possible
parity

bit
Data frame

Next data frame

Bit0 Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7
Start
Bit

Next
start
bit

Possible
Parity

Bit
Data frame

Next data frame

1/2 stop bit

Bit0 Bit1 Bit2 Bit3 Bit4 Bit5 Bit6 Bit7
Start
Bit

Next
start
bit

Possible
Parity

Bit
Data frame

Next data frame

1 1/2 stop bits

a) 1 Stop Bit

b) 1 1/2 stop Bits

c) 2 Stop Bits

d) 1/2 Stop Bit

RM0401 Rev 3 635/771

RM0401 Universal synchronous receiver transmitter (USART) /universal asynchronous receiver

679

When a transmission is taking place, a write instruction to the USART_DR register stores
the data in the TDR register and which is copied in the shift register at the end of the current
transmission.

When no transmission is taking place, a write instruction to the USART_DR register places
the data directly in the shift register, the data transmission starts, and the TXE bit is
immediately set.

If a frame is transmitted (after the stop bit) and the TXE bit is set, the TC bit goes high. An
interrupt is generated if the TCIE bit is set in the USART_CR1 register.

After writing the last data into the USART_DR register, it is mandatory to wait for TC=1
before disabling the USART or causing the microcontroller to enter the low power mode
(see Figure 217: TC/TXE behavior when transmitting).

The TC bit is cleared by the following software sequence:

1. A read from the USART_SR register

2. A write to the USART_DR register

Note: The TC bit can also be cleared by writing a ‘0 to it. This clearing sequence is recommended
only for Multibuffer communication.

Figure 217. TC/TXE behavior when transmitting

Break characters

Setting the SBK bit transmits a break character. The break frame length depends on the M
bit (see Figure 215).

If the SBK bit is set to ‘1 a break character is sent on the TX line after completing the current
character transmission. This bit is reset by hardware when the break character is completed
(during the stop bit of the break character). The USART inserts a logic 1 bit at the end of the
last break frame to guarantee the recognition of the start bit of the next frame.

Note: If the software resets the SBK bit before the commencement of break transmission, the
break character will not be transmitted. For two consecutive breaks, the SBK bit should be
set after the stop bit of the previous break.

Idle characters

Setting the TE bit drives the USART to send an idle frame before the first data frame.

Universal synchronous receiver transmitter (USART) /universal asynchronous receiver transmit-

636/771 RM0401 Rev 3

24.4.3 Receiver

The USART can receive data words of either 8 or 9 bits depending on the M bit in the
USART_CR1 register.

Start bit detection

The start bit detection sequence is the same when oversampling by 16 or by 8.

In the USART, the start bit is detected when a specific sequence of samples is recognized.
This sequence is: 1 1 1 0 X 0 X 0 X 0 0 0 0.

Figure 218. Start bit detection when oversampling by 16 or 8

Note: If the sequence is not complete, the start bit detection aborts and the receiver returns to the
idle state (no flag is set) where it waits for a falling edge.

The start bit is confirmed (RXNE flag set, interrupt generated if RXNEIE=1) if the 3 sampled
bits are at 0 (first sampling on the 3rd, 5th and 7th bits finds the 3 bits at 0 and second
sampling on the 8th, 9th and 10th bits also finds the 3 bits at 0).

The start bit is validated (RXNE flag set, interrupt generated if RXNEIE=1) but the NE noise
flag is set if, for both samplings, at least 2 out of the 3 sampled bits are at 0 (sampling on the
3rd, 5th and 7th bits and sampling on the 8th, 9th and 10th bits). If this condition is not met,
the start detection aborts and the receiver returns to the idle state (no flag is set).

If, for one of the samplings (sampling on the 3rd, 5th and 7th bits or sampling on the 8th, 9th
and 10th bits), 2 out of the 3 bits are found at 0, the start bit is validated but the NE noise
flag bit is set.

Character reception

During an USART reception, data shifts in least significant bit first through the RX pin. In this
mode, the USART_DR register consists of a buffer (RDR) between the internal bus and the
received shift register.

RM0401 Rev 3 637/771

RM0401 Universal synchronous receiver transmitter (USART) /universal asynchronous receiver

679

Procedure:

1. Enable the USART by writing the UE bit in USART_CR1 register to 1.

2. Program the M bit in USART_CR1 to define the word length.

3. Program the number of stop bits in USART_CR2.

4. Select DMA enable (DMAR) in USART_CR3 if multibuffer communication is to take
place. Configure the DMA register as explained in multibuffer communication. STEP 3

5. Select the desired baud rate using the baud rate register USART_BRR

6. Set the RE bit USART_CR1. This enables the receiver that begins searching for a start
bit.

When a character is received

• The RXNE bit is set. It indicates that the content of the shift register is transferred to the
RDR. In other words, data has been received and can be read (as well as its
associated error flags).

• An interrupt is generated if the RXNEIE bit is set.

• The error flags can be set if a frame error, noise or an overrun error has been detected
during reception.

• In multibuffer, RXNE is set after every byte received and is cleared by the DMA read to
the Data Register.

• In single buffer mode, clearing the RXNE bit is performed by a software read to the
USART_DR register. The RXNE flag can also be cleared by writing a zero to it. The
RXNE bit must be cleared before the end of the reception of the next character to avoid
an overrun error.

Note: The RE bit should not be reset while receiving data. If the RE bit is disabled during
reception, the reception of the current byte will be aborted.

Break character

When a break character is received, the USART handles it as a framing error.

Idle character

When an idle frame is detected, there is the same procedure as a data received character
plus an interrupt if the IDLEIE bit is set.

Overrun error

An overrun error occurs when a character is received when RXNE has not been reset. Data
can not be transferred from the shift register to the RDR register until the RXNE bit is
cleared.

Universal synchronous receiver transmitter (USART) /universal asynchronous receiver transmit-

638/771 RM0401 Rev 3

The RXNE flag is set after every byte received. An overrun error occurs if RXNE flag is set
when the next data is received or the previous DMA request has not been serviced. When
an overrun error occurs:

• The ORE bit is set.

• The RDR content will not be lost. The previous data is available when a read to
USART_DR is performed.

• The shift register will be overwritten. After that point, any data received during overrun
is lost.

• An interrupt is generated if either the RXNEIE bit is set or both the EIE and DMAR bits
are set.

• The ORE bit is reset by a read to the USART_SR register followed by a USART_DR
register read operation.

Note: The ORE bit, when set, indicates that at least 1 data has been lost. There are two
possibilities:

• if RXNE=1, then the last valid data is stored in the receive register RDR and can be
read,

• if RXNE=0, then it means that the last valid data has already been read and thus there
is nothing to be read in the RDR. This case can occur when the last valid data is read in
the RDR at the same time as the new (and lost) data is received. It may also occur
when the new data is received during the reading sequence (between the USART_SR
register read access and the USART_DR read access).

Selecting the proper oversampling method

The receiver implements different user-configurable oversampling techniques (except in
synchronous mode) for data recovery by discriminating between valid incoming data and
noise.

The oversampling method can be selected by programming the OVER8 bit in the
USART_CR1 register and can be either 16 or 8 times the baud rate clock (Figure 219 and
Figure 220).

Depending on the application:

• select oversampling by 8 (OVER8=1) to achieve higher speed (up to fPCLK/8). In this
case the maximum receiver tolerance to clock deviation is reduced (refer to
Section 24.4.5: USART receiver tolerance to clock deviation)

• select oversampling by 16 (OVER8=0) to increase the tolerance of the receiver to clock
deviations. In this case, the maximum speed is limited to maximum fPCLK/16

Programming the ONEBIT bit in the USART_CR3 register selects the method used to
evaluate the logic level. There are two options:

• the majority vote of the three samples in the center of the received bit. In this case,
when the 3 samples used for the majority vote are not equal, the NF bit is set

• a single sample in the center of the received bit

Depending on the application:

– select the three samples’ majority vote method (ONEBIT=0) when operating in a
noisy environment and reject the data when a noise is detected (refer to
Figure 106) because this indicates that a glitch occurred during the sampling.

– select the single sample method (ONEBIT=1) when the line is noise-free to
increase the receiver tolerance to clock deviations (see Section 24.4.5: USART

RM0401 Rev 3 639/771

RM0401 Universal synchronous receiver transmitter (USART) /universal asynchronous receiver

679

receiver tolerance to clock deviation). In this case the NF bit will never be set.

When noise is detected in a frame:

• The NF bit is set at the rising edge of the RXNE bit.

• The invalid data is transferred from the Shift register to the USART_DR register.

• No interrupt is generated in case of single byte communication. However this bit rises
at the same time as the RXNE bit that itself generates an interrupt. In case of
multibuffer communication an interrupt will be issued if the EIE bit is set in the
USART_CR3 register.

The NF bit is reset by a USART_SR register read operation followed by a USART_DR
register read operation.

Note: Oversampling by 8 is not available in the Smartcard, IrDA and LIN modes. In those modes,
the OVER8 bit is forced to ‘0 by hardware.

Figure 219. Data sampling when oversampling by 16

Figure 220. Data sampling when oversampling by 8

Table 106. Noise detection from sampled data

Sampled value NE status Received bit value

000 0 0

001 1 0

Universal synchronous receiver transmitter (USART) /universal asynchronous receiver transmit-

640/771 RM0401 Rev 3

Framing error

A framing error is detected when:

The stop bit is not recognized on reception at the expected time, following either a de-
synchronization or excessive noise.

When the framing error is detected:

• The FE bit is set by hardware

• The invalid data is transferred from the Shift register to the USART_DR register.

• No interrupt is generated in case of single byte communication. However this bit rises
at the same time as the RXNE bit that itself generates an interrupt. In case of
multibuffer communication an interrupt will be issued if the EIE bit is set in the
USART_CR3 register.

The FE bit is reset by a USART_SR register read operation followed by a USART_DR
register read operation.

Configurable stop bits during reception

The number of stop bits to be received can be configured through the control bits of Control
Register 2 - it can be either 1 or 2 in normal mode and 0.5 or 1.5 in Smartcard mode.

1. 0.5 stop bit (reception in Smartcard mode): No sampling is done for 0.5 stop bit. As
a consequence, no framing error and no break frame can be detected when 0.5 stop bit
is selected.

2. 1 stop bit: Sampling for 1 stop Bit is done on the 8th, 9th and 10th samples.

3. 1.5 stop bits (Smartcard mode): When transmitting in smartcard mode, the device
must check that the data is correctly sent. Thus the receiver block must be enabled (RE
=1 in the USART_CR1 register) and the stop bit is checked to test if the smartcard has
detected a parity error. In the event of a parity error, the smartcard forces the data
signal low during the sampling - NACK signal-, which is flagged as a framing error.
Then, the FE flag is set with the RXNE at the end of the 1.5 stop bit. Sampling for 1.5
stop bits is done on the 16th, 17th and 18th samples (1 baud clock period after the
beginning of the stop bit). The 1.5 stop bit can be decomposed into two parts: one 0.5
baud clock period during which nothing happens, followed by 1 normal stop bit period
during which sampling occurs halfway through. Refer to Section 24.4.11 for more
details.

4. 2 stop bits: Sampling for 2 stop bits is done on the 8th, 9th and 10th samples of the first
stop bit. If a framing error is detected during the first stop bit the framing error flag will

010 1 0

011 1 1

100 1 0

101 1 1

110 1 1

111 0 1

Table 106. Noise detection from sampled data (continued)

Sampled value NE status Received bit value

RM0401 Rev 3 641/771

RM0401 Universal synchronous receiver transmitter (USART) /universal asynchronous receiver

679

be set. The second stop bit is not checked for framing error. The RXNE flag will be set
at the end of the first stop bit.

24.4.4 Fractional baud rate generation

The baud rate for the receiver and transmitter (Rx and Tx) are both set to the same value as
programmed in the Mantissa and Fraction values of USARTDIV.

Equation 1: Baud rate for standard USART (SPI mode included)

Equation 2: Baud rate in Smartcard, LIN and IrDA modes

USARTDIV is an unsigned fixed point number that is coded on the USART_BRR register.

• When OVER8=0, the fractional part is coded on 4 bits and programmed by the
DIV_fraction[3:0] bits in the USART_BRR register

• When OVER8=1, the fractional part is coded on 3 bits and programmed by the
DIV_fraction[2:0] bits in the USART_BRR register, and bit DIV_fraction[3] must be kept
cleared.

Note: The baud counters are updated to the new value in the baud registers after a write operation
to USART_BRR. Hence the baud rate register value should not be changed during
communication.

How to derive USARTDIV from USART_BRR register values when OVER8=0

Example 1:

If DIV_Mantissa = 0d27 and DIV_Fraction = 0d12 (USART_BRR = 0x1BC), then

Mantissa (USARTDIV) = 0d27

Fraction (USARTDIV) = 12/16 = 0d0.75

Therefore USARTDIV = 0d27.75

Example 2:

To program USARTDIV = 0d25.62

This leads to:

DIV_Fraction = 16*0d0.62 = 0d9.92

The nearest real number is 0d10 = 0xA

DIV_Mantissa = mantissa (0d25.620) = 0d25 = 0x19

Then, USART_BRR = 0x19A hence USARTDIV = 0d25.625

Example 3:

To program USARTDIV = 0d50.99

Tx/Rx baud
fCK

8 2 OVER8–() USARTDIV××
---=

Tx/Rx baud
fCK

16 USARTDIV×
--=

Universal synchronous receiver transmitter (USART) /universal asynchronous receiver transmit-

642/771 RM0401 Rev 3

This leads to:

DIV_Fraction = 16*0d0.99 = 0d15.84

The nearest real number is 0d16 = 0x10 => overflow of DIV_frac[3:0] => carry must be
added up to the mantissa

DIV_Mantissa = mantissa (0d50.990 + carry) = 0d51 = 0x33

Then, USART_BRR = 0x330 hence USARTDIV = 0d51.000

How to derive USARTDIV from USART_BRR register values when OVER8=1

Example 1:

If DIV_Mantissa = 0x27 and DIV_Fraction[2:0]= 0d6 (USART_BRR = 0x1B6), then

Mantissa (USARTDIV) = 0d27

Fraction (USARTDIV) = 6/8 = 0d0.75

Therefore USARTDIV = 0d27.75

Example 2:

To program USARTDIV = 0d25.62

This leads to:

DIV_Fraction = 8*0d0.62 = 0d4.96

The nearest real number is 0d5 = 0x5

DIV_Mantissa = mantissa (0d25.620) = 0d25 = 0x19

Then, USART_BRR = 0x195 => USARTDIV = 0d25.625

Example 3:

To program USARTDIV = 0d50.99

This leads to:

DIV_Fraction = 8*0d0.99 = 0d7.92

The nearest real number is 0d8 = 0x8 => overflow of the DIV_frac[2:0] => carry must be
added up to the mantissa

DIV_Mantissa = mantissa (0d50.990 + carry) = 0d51 = 0x33

Then, USART_BRR = 0x0330 => USARTDIV = 0d51.000

RM0401 Rev 3 643/771

RM0401 Universal synchronous receiver transmitter (USART) /universal asynchronous receiver

679

Table 107. Error calculation for programmed baud rates at fPCLK = 8 MHz or fPCLK = 12 MHz,
oversampling by 16(1)

Oversampling by 16 (OVER8=0)

Baud rate fPCLK = 8 MHz fPCLK = 12 MHz

S.No Desired Actual

Value
programmed
in the baud
rate register

% Error =
(Calculated -

Desired) B.rate /
Desired B.rate

Actual

Value
programmed
in the baud
rate register

% Error

1 1.2 KBps 1.2 KBps 416.6875 0 1.2 KBps 625 0

2 2.4 KBps 2.4 KBps 208.3125 0.01 2.4 KBps 312.5 0

3 9.6 KBps 9.604 KBps 52.0625 0.04 9.6 KBps 78.125 0

4 19.2 KBps 19.185 KBps 26.0625 0.08 19.2 KBps 39.0625 0

5 38.4 KBps 38.462 KBps 13 0.16 38.339 KBps 19.5625 0.16

6 57.6 KBps 57.554 KBps 8.6875 0.08 57.692 KBps 13 0.16

7 115.2 KBps 115.942 KBps 4.3125 0.64 115.385 KBps 6.5 0.16

8 230.4 KBps 228.571 KBps 2.1875 0.79 230.769 KBps 3.25 0.16

9 460.8 KBps 470.588 KBps 1.0625 2.12 461.538 KBps 1.625 0.16

1. The lower the CPU clock the lower the accuracy for a particular baud rate. The upper limit of the achievable baud rate can
be fixed with these data.

Table 108. Error calculation for programmed baud rates at fPCLK = 8 MHz or fPCLK = 12 MHz,
oversampling by 8(1)

Oversampling by 8 (OVER8 = 1)

Baud rate fPCLK = 8 MHz fPCLK = 12 MHz

S.No Desired Actual

Value
programmed
in the baud
rate register

% Error =
(Calculated -

Desired)
B.rate /
Desired
B.rate

Actual

Value
programmed
in the baud
rate register

% Error

1 1.2 KBps 1.2 KBps 833.375 0 1.2 KBps 1250 0

2 2.4 KBps 2.4 KBps 416.625 0.01 2.4 KBps 625 0

3 9.6 KBps 9.604 KBps 104.125 0.04 9.6 KBps 156.25 0

4 19.2 KBps 19.185 KBps 52.125 0.08 19.2 KBps 78.125 0

5 38.4 KBps 38.462 KBps 26 0.16 38.339 KBps 39.125 0.16

6 57.6 KBps 57.554 KBps 17.375 0.08 57.692 KBps 26 0.16

7 115.2 KBps 115.942 KBps 8.625 0.64 115.385 KBps 13 0.16

8 230.4 KBps 228.571 KBps 4.375 0.79 230.769 KBps 6.5 0.16

Universal synchronous receiver transmitter (USART) /universal asynchronous receiver transmit-

644/771 RM0401 Rev 3

9 460.8 KBps 470.588 KBps 2.125 2.12 461.538 KBps 3.25 0.16

10 921.6 KBps 888.889 KBps 1.125 3.55 923.077 KBps 1.625 0.16

1. The lower the CPU clock the lower the accuracy for a particular baud rate. The upper limit of the achievable baud rate can
be fixed with these data.

Table 108. Error calculation for programmed baud rates at fPCLK = 8 MHz or fPCLK = 12 MHz,
oversampling by 8(1) (continued)

Oversampling by 8 (OVER8 = 1)

Baud rate fPCLK = 8 MHz fPCLK = 12 MHz

S.No Desired Actual

Value
programmed
in the baud
rate register

% Error =
(Calculated -

Desired)
B.rate /
Desired
B.rate

Actual

Value
programmed
in the baud
rate register

% Error

Table 109. Error calculation for programmed baud rates at fPCLK = 16 MHz or fPCLK = 24 MHz,
oversampling by 16(1)

Oversampling by 16 (OVER8 = 0)

Baud rate fPCLK = 16 MHz fPCLK = 24 MHz

S.No Desired Actual

Value
programmed
in the baud
rate register

% Error =
(Calculated -

Desired) B.rate /
Desired B.rate

Actual

Value
programmed
in the baud
rate register

% Error

1 1.2 KBps 1.2 KBps 833.3125 0 1.2 1250 0

2 2.4 KBps 2.4 KBps 416.6875 0 2.4 625 0

3 9.6 KBps 9.598 KBps 104.1875 0.02 9.6 156.25 0

4 19.2 KBps 19.208 KBps 52.0625 0.04 19.2 78.125 0

5 38.4 KBps 38.369 KBps 26.0625 0.08 38.4 39.0625 0

6 57.6 KBps 57.554 KBps 17.375 0.08 57.554 26.0625 0.08

7 115.2 KBps 115.108 KBps 8.6875 0.08 115.385 13 0.16

8 230.4 KBps 231.884 KBps 4.3125 0.64 230.769 6.5 0.16

9 460.8 KBps 457.143 KBps 2.1875 0.79 461.538 3.25 0.16

10 921.6 KBps 941.176 KBps 1.0625 2.12 923.077 1.625 0.16

1. The lower the CPU clock the lower the accuracy for a particular baud rate. The upper limit of the achievable baud rate can
be fixed with these data.

RM0401 Rev 3 645/771

RM0401 Universal synchronous receiver transmitter (USART) /universal asynchronous receiver

679

Table 110. Error calculation for programmed baud rates at fPCLK = 16 MHz or fPCLK = 24 MHz,
oversampling by 8(1)

Oversampling by 8 (OVER8=1)

Baud rate fPCLK = 16 MHz fPCLK = 24 MHz

S.No Desired Actual

Value
programmed
in the baud
rate register

% Error =
(Calculated -

Desired) B.rate /
Desired B.rate

Actual

Value
programmed
in the baud
rate register

% Error

1 1.2 KBps 1.2 KBps 1666.625 0 1.2 KBps 2500 0

2 2.4 KBps 2.4 KBps 833.375 0 2.4 KBps 1250 0

3 9.6 KBps 9.598 KBps 208.375 0.02 9.6 KBps 312.5 0

4 19.2 KBps 19.208 KBps 104.125 0.04 19.2 KBps 156.25 0

5 38.4 KBps 38.369 KBps 52.125 0.08 38.4 KBps 78.125 0

6 57.6 KBps 57.554 KBps 34.75 0.08 57.554 KBps 52.125 0.08

7 115.2 KBps 115.108 KBps 17.375 0.08 115.385 KBps 26 0.16

8 230.4 KBps 231.884 KBps 8.625 0.64 230.769 KBps 13 0.16

9 460.8 KBps 457.143 KBps 4.375 0.79 461.538 KBps 6.5 0.16

10 921.6 KBps 941.176 KBps 2.125 2.12 923.077 KBps 3.25 0.16

11 2 MBps 2000 KBps 1 0 2000 KBps 1.5 0

12 3 MBps NA NA NA 3000 KBps 1 0

1. The lower the CPU clock the lower the accuracy for a particular baud rate. The upper limit of the achievable baud rate can
be fixed with these data.

Table 111. Error calculation for programmed baud rates at fPCLK = 8 MHz or fPCLK = 16 MHz,
oversampling by 16(1)

Oversampling by 16 (OVER8=0)

Baud rate fPCLK = 8 MHz fPCLK = 16 MHz

S.No Desired Actual

Value
programmed
in the baud
rate register

% Error =
(Calculated -

Desired)B.Rate
/Desired B.Rate

Actual

Value
programmed
in the baud
rate register

% Error

1 2.4 KBps 2.400 KBps 208.3125 0.00% 2.400 KBps 416.6875 0.00%

2 9.6 KBps 9.604 KBps 52.0625 0.04% 9.598 KBps 104.1875 0.02%

3 19.2 KBps 19.185 KBps 26.0625 0.08% 19.208 KBps 52.0625 0.04%

4 57.6 KBps 57.554 KBps 8.6875 0.08% 57.554 KBps 17.3750 0.08%

5 115.2 KBps 115.942 KBps 4.3125 0.64% 115.108 KBps 8.6875 0.08%

6 230.4 KBps 228.571 KBps 2.1875 0.79% 231.884 KBps 4.3125 0.64%

7 460.8 KBps 470.588 KBps 1.0625 2.12% 457.143 KBps 2.1875 0.79%

Universal synchronous receiver transmitter (USART) /universal asynchronous receiver transmit-

646/771 RM0401 Rev 3

8 896 KBps NA NA NA 888.889 KBps 1.1250 0.79%

9 921.6 KBps NA NA NA 941.176 KBps 1.0625 2.12%

1. The lower the CPU clock the lower the accuracy for a particular baud rate. The upper limit of the achievable baud rate can
be fixed with these data.

Table 112. Error calculation for programmed baud rates at fPCLK = 8 MHz or fPCLK = 16 MHz,
oversampling by 8(1)

Oversampling by 8 (OVER8=1)

Baud rate fPCLK = 8 MHz fPCLK = 16 MHz

S.No Desired Actual

Value
programmed
in the baud
rate register

% Error =
(Calculated -

Desired)B.Rate
/Desired B.Rate

Actual

Value
programmed
in the baud
rate register

%
Error

1 2.4 KBps 2.400 KBps 416.625 0.01% 2.400 KBps 833.375 0.00%

2 9.6 KBps 9.604 KBps 104.125 0.04% 9.598 KBps 208.375 0.02%

3 19.2 KBps 19.185 KBps 52.125 0.08% 19.208 KBps 104.125 0.04%

4 57.6 KBps 57.557 KBps 17.375 0.08% 57.554 KBps 34.750 0.08%

5 115.2 KBps 115.942 KBps 8.625 0.64% 115.108 KBps 17.375 0.08%

6 230.4 KBps 228.571 KBps 4.375 0.79% 231.884 KBps 8.625 0.64%

7 460.8 KBps 470.588 KBps 2.125 2.12% 457.143 KBps 4.375 0.79%

8 896 KBps 888.889 KBps 1.125 0.79% 888.889 KBps 2.250 0.79%

9 921.6 KBps 888.889 KBps 1.125 3.55% 941.176 KBps 2.125 2.12%

10 1.792 MBps NA NA NA 1.7777 MBps 1.125 0.79%

11 1.8432 MBps NA NA NA 1.7777 MBps 1.125 3.55%

1. The lower the CPU clock the lower the accuracy for a particular baud rate. The upper limit of the achievable baud rate can
be fixed with these data.

Table 111. Error calculation for programmed baud rates at fPCLK = 8 MHz or fPCLK = 16 MHz,
oversampling by 16(1) (continued)

Oversampling by 16 (OVER8=0)

Baud rate fPCLK = 8 MHz fPCLK = 16 MHz

S.No Desired Actual

Value
programmed
in the baud
rate register

% Error =
(Calculated -

Desired)B.Rate
/Desired B.Rate

Actual

Value
programmed
in the baud
rate register

% Error

RM0401 Rev 3 647/771

RM0401 Universal synchronous receiver transmitter (USART) /universal asynchronous receiver

679

Table 113. Error calculation for programmed baud rates at fPCLK = 30 MHz or fPCLK = 60 MHz,
oversampling by 16(1)(2)

Oversampling by 16 (OVER8=0)

Baud rate fPCLK = 30 MHz fPCLK = 60 MHz

S.No Desired Actual

Value
programmed
in the baud
rate register

% Error =
(Calculated -

Desired)B.Rate
/Desired B.Rate

Actual

Value
programmed
in the baud
rate register

%
Error

1 2.4 KBps 2.400 KBps 781.2500 0.00% 2.400 KBps 1562.5000 0.00%

2 9.6 KBps 9.600 KBps 195.3125 0.00% 9.600 KBps 390.6250 0.00%

3 19.2 KBps 19.194 KBps 97.6875 0.03% 19.200 KBps 195.3125 0.00%

4 57.6 KBps 57.582KBps 32.5625 0.03% 57.582 KBps 65.1250 0.03%

5 115.2 KBps 115.385 KBps 16.2500 0.16% 115.163 KBps 32.5625 0.03%

6 230.4 KBps 230.769 KBps 8.1250 0.16% 230.769 KBps 16.2500 0.16%

7 460.8 KBps 461.538 KBps 4.0625 0.16% 461.538 KBps 8.1250 0.16%

8 896 KBps 909.091 KBps 2.0625 1.46% 895.522 KBps 4.1875 0.05%

9 921.6 KBps 909.091 KBps 2.0625 1.36% 923.077 KBps 4.0625 0.16%

10 1.792 MBps 1.1764 MBps 1.0625 1.52% 1.8182 MBps 2.0625 1.36%

11 1.8432 MBps 1.8750 MBps 1.0000 1.73% 1.8182 MBps 2.0625 1.52%

12 3.584 MBps NA NA NA 3.2594 MBps 1.0625 1.52%

13 3.6864 MBps NA NA NA 3.7500 MBps 1.0000 1.73%

1. The lower the CPU clock the lower the accuracy for a particular baud rate. The upper limit of the achievable baud rate can
be fixed with these data.

2. Only USART1 and USART6 are clocked with PCLK2. Other USARTs are clocked with PCLK1. Refer to the device
datasheets for the maximum values for PCLK1 and PCLK2.

Table 114. Error calculation for programmed baud rates at fPCLK = 30 MHz or fPCLK = 60 MHz,
oversampling by 8(1) (2)

Oversampling by 8 (OVER8=1)

Baud rate fPCLK = 30 MHz fPCLK =60 MHz

S.No Desired Actual

Value
programmed
in the baud
rate register

% Error =
(Calculated -

Desired)B.Rate
/Desired B.Rate

Actual

Value
programmed
in the baud
rate register

%
Error

1 2.4 KBps 2.400 KBps 1562.5000 0.00% 2.400 KBps 3125.0000 0.00%

2 9.6 KBps 9.600 KBps 390.6250 0.00% 9.600 KBps 781.2500 0.00%

3 19.2 KBps 19.194 KBps 195.3750 0.03% 19.200 KBps 390.6250 0.00%

4 57.6 KBps 57.582 KBps 65.1250 0.16% 57.582 KBps 130.2500 0.03%

5 115.2 KBps 115.385 KBps 32.5000 0.16% 115.163 KBps 65.1250 0.03%

6 230.4 KBps 230.769 KBps 16.2500 0.16% 230.769 KBps 32.5000 0.16%

Universal synchronous receiver transmitter (USART) /universal asynchronous receiver transmit-

648/771 RM0401 Rev 3

7 460.8 KBps 461.538 KBps 8.1250 0.16% 461.538 KBps 16.2500 0.16%

8 896 KBps 909.091 KBps 4.1250 1.46% 895.522 KBps 8.3750 0.05%

9 921.6 KBps 909.091 KBps 4.1250 1.36% 923.077 KBps 8.1250 0.16%

10 1.792 MBps 1.7647 MBps 2.1250 1.52% 1.8182 MBps 4.1250 1.46%

11 1.8432 MBps 1.8750 MBps 2.0000 1.73% 1.8182 MBps 4.1250 1.36%

12 3.584 MBps 3.7500 MBps 1.0000 4.63% 3.5294 MBps 2.1250 1.52%

13 3.6864 MBps 3.7500 MBps 1.0000 1.73% 3.7500 MBps 2.0000 1.73%

14 7.168 MBps NA NA NA 7.5000 MBps 1.0000 4.63%

15 7.3728 MBps NA NA NA 7.5000 MBps 1.0000 1.73%

1. The lower the CPU clock the lower the accuracy for a particular baud rate. The upper limit of the achievable baud rate can
be fixed with these data.

2. Only USART1 and USART6 are clocked with PCLK2. Other USARTs are clocked with PCLK1. Refer to the device
datasheets for the maximum values for PCLK1 and PCLK2.

Table 114. Error calculation for programmed baud rates at fPCLK = 30 MHz or fPCLK = 60 MHz,
oversampling by 8(1) (2) (continued)

Oversampling by 8 (OVER8=1)

Baud rate fPCLK = 30 MHz fPCLK =60 MHz

S.No Desired Actual

Value
programmed
in the baud
rate register

% Error =
(Calculated -

Desired)B.Rate
/Desired B.Rate

Actual

Value
programmed
in the baud
rate register

%
Error

Table 115. Error calculation for programmed baud rates at fPCLK = 42 MHz or fPCLK = 84 Hz,
oversampling by 16(1)(2)

Oversampling by 16 (OVER8=0)

Baud rate fPCLK = 42 MHz fPCLK = 84 MHz

S.No Desired Actual

Value
programmed
in the baud
rate register

% Error =
(Calculated -

Desired)B.Rate
/Desired B.Rate

Actual

Value
programmed
in the baud
rate register

%
Error

1 1.2 KBps 1.2 KBps 2187.5 0 1.2 KBps 4375 0

2 2.4 KBps 2.4 KBps 1093.75 0 2.4 KBps 2187.5 0

3 9.6 KBps 9.6 KBps 273.4375 0 9.6 KBps 546.875 0

4 19.2 KBps 19.195 KBps 136.75 0.02 19.2 KBps 273.4375 0

5 38.4 KBps 38.391 KBps 68.375 0.02 38.391 KBps 136.75 0.02

6 57.6 KBps 57.613 KBps 45.5625 0.02 57.613 KBps 91.125 0.02

7 115.2 KBps 115.068 KBps 22.8125 0.11 115.226 KBps 45.5625 0.02

8 230.4 KBps 230.769 KBps 11.375 0.16 230.137 KBps 22.8125 0.11

9 460.8 KBps 461.538 KBps 5.6875 0.16 461.538 KBps 11.375 0.16

RM0401 Rev 3 649/771

RM0401 Universal synchronous receiver transmitter (USART) /universal asynchronous receiver

679

10 921.6 KBps 913.043 KBps 2.875 0.93 923.076 KBps 5.6875 0.93

11 1.792 MBps 1.826 MBps 1.4375 1.9 1.787 MBps 2.9375 0.27

12 1.8432 MBps 1.826 MBps 1.4375 0.93 1.826 MBps 2.875 0.93

13 3.584 MBps NA NA NA 3.652 MBps 1.4375 1.9

14 3.6864 MBps NA NA NA 3.652 MBps 1.4375 0.93

1. The lower the CPU clock the lower the accuracy for a particular baud rate. The upper limit of the achievable baud rate can
be fixed with these data.

2. Only USART1 and USART6 are clocked with PCLK2. Other USARTs are clocked with PCLK1. Refer to the device
datasheets for the maximum values for PCLK1 and PCLK2.

Table 115. Error calculation for programmed baud rates at fPCLK = 42 MHz or fPCLK = 84 Hz,
oversampling by 16(1)(2) (continued)

Oversampling by 16 (OVER8=0)

Baud rate fPCLK = 42 MHz fPCLK = 84 MHz

S.No Desired Actual

Value
programmed
in the baud
rate register

% Error =
(Calculated -

Desired)B.Rate
/Desired B.Rate

Actual

Value
programmed
in the baud
rate register

%
Error

Table 116. Error calculation for programmed baud rates at fPCLK = 42 MHz or fPCLK = 84 MHz,
oversampling by 8(1)(2)

Oversampling by 8 (OVER8=1)

Baud rate fPCLK = 42 MHz fPCLK = 84 MHz

S.No Desired Actual

Value
programmed
in the baud
rate register

% Error =
(Calculated -

Desired)B.Rate
/Desired B.Rate

Actual

Value
programmed
in the baud
rate register

%
Error

1 1.2 KBps 1.2 KBps 4375 0 1.2 KBps 8750 0

2 2.4 KBps 2.4 KBps 2187.5 0 2.4 KBps 4375 0

3 9.6 KBps 9.6 KBps 546.875 0 9.6 KBps 1093.75 0

4 19.2 KBps 19.195 KBps 273.5 0.02 19.2 KBps 546.875 0

5 38.4 KBps 38.391 KBps 136.75 0.02 38.391 KBps 273.5 0.02

6 57.6 KBps 57.613 KBps 91.125 0.02 57.613 KBps 182.25 0.02

7 115.2 KBps 115.068 KBps 45.625 0.11 115.226 KBps 91.125 0.02

8 230.4 KBps 230.769 KBps 22.75 0.11 230.137 KBps 45.625 0.11

9 460.8 KBps 461.538 KBps 11.375 0.16 461.538 KBps 22.75 0.16

10 921.6 KBps 913.043 KBps 5.75 0.93 923.076 KBps 11.375 0.93

11 1.792 MBps 1.826 MBps 2.875 1.9 1.787Mbps 5.875 0.27

12 1.8432 MBps 1.826 MBps 2.875 0.93 1.826 MBps 5.75 0.93

13 3.584 MBps 3.5 MBps 1.5 2.34 3.652 MBps 2.875 1.9

14 3.6864 MBps 3.82 MBps 1.375 3.57 3.652 MBps 2.875 0.93

Universal synchronous receiver transmitter (USART) /universal asynchronous receiver transmit-

650/771 RM0401 Rev 3

15 7.168 MBps NA NA NA 7 MBps 1.5 2.34

16 7.3728 MBps NA NA NA 7.636 MBps 1.375 3.57

18 9 MBps NA NA NA 9.333 MBps 1.125 3.7

20 10.5 MBps NA NA NA 10.5 MBps 1 0

1. The lower the CPU clock the lower the accuracy for a particular baud rate. The upper limit of the achievable baud rate can
be fixed with these data.

2. Only USART1 and USART6 are clocked with PCLK2. Other USARTs are clocked with PCLK1. Refer to the device
datasheets for the maximum values for PCLK1 and PCLK2.

Table 116. Error calculation for programmed baud rates at fPCLK = 42 MHz or fPCLK = 84 MHz,
oversampling by 8(1)(2) (continued)

Oversampling by 8 (OVER8=1)

Baud rate fPCLK = 42 MHz fPCLK = 84 MHz

S.No Desired Actual

Value
programmed
in the baud
rate register

% Error =
(Calculated -

Desired)B.Rate
/Desired B.Rate

Actual

Value
programmed
in the baud
rate register

%
Error

Table 117. Error calculation for programmed baud rates at fPCLK = 100 MHz or fPCLK = 50 MHz,
oversampling by 16(1)(2)

Oversampling by 16 (OVER16=1)

Baud rate fPCLK = 100 MHz fPCLK = 50 MHz

S.No Desired Actual

Value
programmed
in the baud
rate register

% Error =
(Calculated -

Desired)B.Rate
/Desired B.Rate

Actual

Value
programmed
in the baud
rate register

%
Error

1 9.600 KBps 9.601 KBps 651 0.006 9.601 KBps 325.5 0.006

2 19.200 KBps 19.201 KBps 325 0.006 19.201 KBps 162.75 0.006

3 38.400 KBps 38.402 KBps 162.75 0.006 38.402 KBps 81.375 0.006

4 57.600 KBps 57.603 KBps 108.5 0.006 57.603 KBps 54.25 0.006

5 115.200 KBps 115.207 KBps 54.25 0.006 115.207 KBps 27.125 0.006

6 230.400 KBps 230.414 KBps 27.125 0.006 230.414 KBps 13.5625 0.006

7 460.800 KBps 460.829 KBps 13.5625 0.006 462.962 KBps 6.75 0.47

8 921.600 KBps 925.925 KBps 6.75 0.470 925.925 KBps 3.375 0.47

9 3.125 MBps 3.125 MBps 2 0 3.125 MBps 1 0

10 4.000 MBps 4.000 MBps 1.5625 0 NA NA NA

11 6.250 MBps 6.250 MBps 1 0 NA NA NA

1. The lower the CPU clock the lower the accuracy for a particular baud rate. The upper limit of the achievable baud rate can
be fixed with these data.

2. Only USART1 and USART6 are clocked with PCLK2. Other USARTs are clocked with PCLK1. Refer to the device
datasheets for the maximum values for PCLK1 and PCLK2.

RM0401 Rev 3 651/771

RM0401 Universal synchronous receiver transmitter (USART) /universal asynchronous receiver

679

24.4.5 USART receiver tolerance to clock deviation

The USART asynchronous receiver works correctly only if the total clock system deviation is
smaller than the USART receiver tolerance. The causes that contribute to the total deviation
are:

• DTRA: Deviation due to the transmitter error (also includes the deviation of the
transmitter local oscillator)

• DQUANT: Error due to the baud rate quantization of the receiver

• DREC: Deviation of the receiver local oscillator

• DTCL: Deviation due to the transmission line (generally due to the transceivers that
can introduce an asymmetry between the low-to-high transition timing and the
high-to-low transition timing)

DTRA + DQUANT + DREC + DTCL < USART receiver tolerance

Table 118. Error calculation for programmed baud rates at fPCLK = 100 MHz or fPCLK = 50 MHz,
oversampling by 8(1)(2)

Oversampling by 8 (OVER8=1)

Baud rate fPCLK = 100 MHz fPCLK = 50 MHz

S.No Desired Actual

Value
programmed
in the baud
rate register

% Error =
(Calculated -

Desired)B.Rate
/Desired B.Rate

Actual

Value
programmed
in the baud
rate register

%
Error

1 9.600 KBps 9.601 KBps 1302 0.006 9.601 KBps 651 0.006

2 19.200 KBps 19.201 KBps 651 0.006 19.201 KBps 325.5 0.006

3 38.400 KBps 38.402 KBps 325.5 0.006 38.402 KBps 162.75 0.006

4 57.600 KBps 57.603 KBps 217 0.006 57.603 KBps 108.5 0.006

5 115.200 KBps 115.207 KBps 108.5 0.006 115.207 KBps 54.25 0.006

6 230.400 KBps 230.414 KBps 54.25 0.006 230.414 KBps 27.125 0.006

7 460.800 KBps 460.829 KBps 27.125 0.006 462.962 KBps 13.5 0.470

8 921.600 KBps 925.925 KBps 13.5 0.470 925.925 KBps 6.75 0.470

9 4.000 MBps 4 MBps 3.125 0.000 4.167 MBps 1.5 4.170

10 6.250 MBps 6.25 MBps 2 0.000 6.250 MBps 1 0.000

11 12.500 MBps 12.500 MBps 1 0.000 NA NA NA

1. The lower the CPU clock the lower the accuracy for a particular baud rate. The upper limit of the achievable baud rate can
be fixed with these data.

2. Only USART1 and USART6 are clocked with PCLK2. Other USARTs are clocked with PCLK1. Refer to the device
datasheets for the maximum values for PCLK1 and PCLK2.

Universal synchronous receiver transmitter (USART) /universal asynchronous receiver transmit-

652/771 RM0401 Rev 3

The USART receiver tolerance to properly receive data is equal to the maximum tolerated
deviation and depends on the following choices:

• 10- or 11-bit character length defined by the M bit in the USART_CR1 register

• oversampling by 8 or 16 defined by the OVER8 bit in the USART_CR1 register

• use of fractional baud rate or not

• use of 1 bit or 3 bits to sample the data, depending on the value of the ONEBIT bit in
the USART_CR3 register

Note: The figures specified in Table 119 and Table 120 may slightly differ in the special case when
the received frames contain some Idle frames of exactly 10-bit times when M=0 (11-bit times
when M=1).

24.4.6 Multiprocessor communication

There is a possibility of performing multiprocessor communication with the USART (several
USARTs connected in a network). For instance one of the USARTs can be the master, its TX
output is connected to the RX input of the other USART. The others are slaves, their
respective TX outputs are logically ANDed together and connected to the RX input of the
master.

In multiprocessor configurations it is often desirable that only the intended message
recipient should actively receive the full message contents, thus reducing redundant USART
service overhead for all non addressed receivers.

The non addressed devices may be placed in mute mode by means of the muting function.
In mute mode:

• None of the reception status bits can be set.

• All the receive interrupts are inhibited.

• The RWU bit in USART_CR1 register is set to 1. RWU can be controlled automatically
by hardware or written by the software under certain conditions.

The USART can enter or exit from mute mode using one of two methods, depending on the
WAKE bit in the USART_CR1 register:

• Idle Line detection if the WAKE bit is reset,

• Address Mark detection if the WAKE bit is set.

Table 119. USART receiver tolerance when DIV fraction is 0

M bit
OVER8 bit = 0 OVER8 bit = 1

ONEBIT=0 ONEBIT=1 ONEBIT=0 ONEBIT=1

0 3.75% 4.375% 2.50% 3.75%

1 3.41% 3.97% 2.27% 3.41%

Table 120. USART receiver tolerance when DIV_Fraction is different from 0

M bit
OVER8 bit = 0 OVER8 bit = 1

ONEBIT=0 ONEBIT=1 ONEBIT=0 ONEBIT=1

0 3.33% 3.88% 2% 3%

1 3.03% 3.53% 1.82% 2.73%

RM0401 Rev 3 653/771

RM0401 Universal synchronous receiver transmitter (USART) /universal asynchronous receiver

679

Idle line detection (WAKE=0)

The USART enters mute mode when the RWU bit is written to 1.

It wakes up when an Idle frame is detected. Then the RWU bit is cleared by hardware but
the IDLE bit is not set in the USART_SR register. RWU can also be written to 0 by software.

An example of mute mode behavior using Idle line detection is given in Figure 221.

Figure 221. Mute mode using Idle line detection

Address mark detection (WAKE=1)

In this mode, bytes are recognized as addresses if their MSB is a ‘1 else they are
considered as data. In an address byte, the address of the targeted receiver is put on the 4
LSB. This 4-bit word is compared by the receiver with its own address that is programmed in
the ADD bits in the USART_CR2 register.

The USART enters mute mode when an address character is received that does not match
its programmed address. In this case, the RWU bit is set by hardware. The RXNE flag is not
set for this address byte and no interrupt nor DMA request is issued as the USART would
have entered mute mode.

It exits from mute mode when an address character is received that matches the
programmed address. Then the RWU bit is cleared and subsequent bytes are received
normally. The RXNE bit is set for the address character since the RWU bit has been
cleared.

The RWU bit can be written to as 0 or 1 when the receiver buffer contains no data (RXNE=0
in the USART_SR register). Otherwise the write attempt is ignored.

An example of mute mode behavior using address mark detection is given in Figure 222.

Universal synchronous receiver transmitter (USART) /universal asynchronous receiver transmit-

654/771 RM0401 Rev 3

Figure 222. Mute mode using address mark detection

24.4.7 Parity control

Parity control (generation of parity bit in transmission and parity checking in reception) can
be enabled by setting the PCE bit in the USART_CR1 register. Depending on the frame
length defined by the M bit, the possible USART frame formats are as listed in Table 121.

Even parity

The parity bit is calculated to obtain an even number of “1s” inside the frame made of the 7
or 8 LSB bits (depending on whether M is equal to 0 or 1) and the parity bit.

E.g.: data=00110101; 4 bits set => parity bit will be 0 if even parity is selected (PS bit in
USART_CR1 = 0).

Odd parity

The parity bit is calculated to obtain an odd number of “1s” inside the frame made of the 7 or
8 LSB bits (depending on whether M is equal to 0 or 1) and the parity bit.

E.g.: data=00110101; 4 bits set => parity bit will be 1 if odd parity is selected (PS bit in
USART_CR1 = 1).

Parity checking in reception

If the parity check fails, the PE flag is set in the USART_SR register and an interrupt is
generated if PEIE is set in the USART_CR1 register. The PE flag is cleared by a software

Table 121. Frame formats

M bit PCE bit USART frame(1)

1. Legends: SB: start bit, STB: stop bit, PB: parity bit.

0 0 | SB | 8 bit data | STB |

0 1 | SB | 7-bit data | PB | STB |

1 0 | SB | 9-bit data | STB |

1 1 | SB | 8-bit data PB | STB |

RM0401 Rev 3 655/771

RM0401 Universal synchronous receiver transmitter (USART) /universal asynchronous receiver

679

sequence (a read from the status register followed by a read or write access to the
USART_DR data register).

Note: In case of wakeup by an address mark: the MSB bit of the data is taken into account to
identify an address but not the parity bit. And the receiver does not check the parity of the
address data (PE is not set in case of a parity error).

Parity generation in transmission

If the PCE bit is set in USART_CR1, then the MSB bit of the data written in the data register
is transmitted but is changed by the parity bit (even number of “1s” if even parity is selected
(PS=0) or an odd number of “1s” if odd parity is selected (PS=1)).

Note: The software routine that manages the transmission can activate the software sequence
that clears the PE flag (a read from the status register followed by a read or write access to
the data register). When operating in half-duplex mode, depending on the software, this can
cause the PE flag to be unexpectedly cleared.

24.4.8 LIN (local interconnection network) mode

The LIN mode is selected by setting the LINEN bit in the USART_CR2 register. In LIN
mode, the following bits must be kept cleared:

• STOP[1:0] and CLKEN in the USART_CR2 register

• SCEN, HDSEL and IREN in the USART_CR3 register.

LIN transmission

The same procedure explained in Section 24.4.2 has to be applied for LIN Master
transmission than for normal USART transmission with the following differences:

• Clear the M bit to configure 8-bit word length.

• Set the LINEN bit to enter LIN mode. In this case, setting the SBK bit sends 13 ‘0 bits
as a break character. Then a bit of value ‘1 is sent to allow the next start detection.

LIN reception

A break detection circuit is implemented on the USART interface. The detection is totally
independent from the normal USART receiver. A break can be detected whenever it occurs,
during Idle state or during a frame.

When the receiver is enabled (RE=1 in USART_CR1), the circuit looks at the RX input for a
start signal. The method for detecting start bits is the same when searching break
characters or data. After a start bit has been detected, the circuit samples the next bits
exactly like for the data (on the 8th, 9th and 10th samples). If 10 (when the LBDL = 0 in
USART_CR2) or 11 (when LBDL=1 in USART_CR2) consecutive bits are detected as ‘0,
and are followed by a delimiter character, the LBD flag is set in USART_SR. If the LBDIE
bit=1, an interrupt is generated. Before validating the break, the delimiter is checked for as it
signifies that the RX line has returned to a high level.

If a ‘1 is sampled before the 10 or 11 have occurred, the break detection circuit cancels the
current detection and searches for a start bit again.

If the LIN mode is disabled (LINEN=0), the receiver continues working as normal USART,
without taking into account the break detection.

If the LIN mode is enabled (LINEN=1), as soon as a framing error occurs (i.e. stop bit
detected at ‘0, which will be the case for any break frame), the receiver stops until the break

Universal synchronous receiver transmitter (USART) /universal asynchronous receiver transmit-

656/771 RM0401 Rev 3

detection circuit receives either a ‘1, if the break word was not complete, or a delimiter
character if a break has been detected.

The behavior of the break detector state machine and the break flag is shown in Figure 223.

Examples of break frames are given on Figure 224, where we suppose that LBDL=1 (11-bit
break length), and M=0 (8-bit data).

Figure 223. Break detection in LIN mode (11-bit break length - LBDL bit is set)

RM0401 Rev 3 657/771

RM0401 Universal synchronous receiver transmitter (USART) /universal asynchronous receiver

679

Figure 224. Break detection in LIN mode vs. Framing error detection

24.4.9 USART synchronous mode

The synchronous mode is selected by writing the CLKEN bit in the USART_CR2 register to
1. In synchronous mode, the following bits must be kept cleared:

• LINEN bit in the USART_CR2 register,

• SCEN, HDSEL and IREN bits in the USART_CR3 register.

The USART allows the user to control a bidirectional synchronous serial communications in
master mode. The SCLK pin is the output of the USART transmitter clock. No clock pulses
are sent to the SCLK pin during start bit and stop bit. Depending on the state of the LBCL bit
in the USART_CR2 register clock pulses will or will not be generated during the last valid
data bit (address mark). The CPOL bit in the USART_CR2 register allows the user to select
the clock polarity, and the CPHA bit in the USART_CR2 register allows the user to select the
phase of the external clock (see Figure 225, Figure 226 and Figure 227).

During the Idle state, preamble and send break, the external SCLK clock is not activated.

In synchronous mode the USART transmitter works exactly like in asynchronous mode. But
as SCLK is synchronized with TX (according to CPOL and CPHA), the data on TX is
synchronous.

In this mode the USART receiver works in a different manner compared to the
asynchronous mode. If RE=1, the data is sampled on SCLK (rising or falling edge,
depending on CPOL and CPHA), without any oversampling. A setup and a hold time (that
depends on the baud rate: 1/16 bit time) must be respected.

Note: The SCLK pin works in conjunction with the TX pin. Thus, the clock is provided only if the
transmitter is enabled (TE=1) and a data is being transmitted (the data register USART_DR

Universal synchronous receiver transmitter (USART) /universal asynchronous receiver transmit-

658/771 RM0401 Rev 3

has been written). This means that it is not possible to receive a synchronous data without
transmitting data.

The LBCL, CPOL and CPHA bits have to be selected when both the transmitter and the
receiver are disabled (TE=RE=0) to ensure that the clock pulses function correctly. These
bits should not be changed while the transmitter or the receiver is enabled.

It is advised that TE and RE are set in the same instruction in order to minimize the setup
and the hold time of the receiver.

The USART supports master mode only: it cannot receive or send data related to an input
clock (SCLK is always an output).

Figure 225. USART example of synchronous transmission

Figure 226. USART data clock timing diagram (M=0)

RM0401 Rev 3 659/771

RM0401 Universal synchronous receiver transmitter (USART) /universal asynchronous receiver

679

Figure 227. USART data clock timing diagram (M=1)

Figure 228. RX data setup/hold time

Note: The function of SCLK is different in Smartcard mode. Refer to the Smartcard mode chapter
for more details.

24.4.10 Single-wire half-duplex communication

The single-wire half-duplex mode is selected by setting the HDSEL bit in the USART_CR3
register. In this mode, the following bits must be kept cleared:

• LINEN and CLKEN bits in the USART_CR2 register,

• SCEN and IREN bits in the USART_CR3 register.

The USART can be configured to follow a single-wire half-duplex protocol where the TX and
RX lines are internally connected. The selection between half- and full-duplex
communication is made with a control bit ‘HALF DUPLEX SEL’ (HDSEL in USART_CR3).

Universal synchronous receiver transmitter (USART) /universal asynchronous receiver transmit-

660/771 RM0401 Rev 3

As soon as HDSEL is written to 1:

• the TX and RX lines are internally connected

• the RX pin is no longer used

• the TX pin is always released when no data is transmitted. Thus, it acts as a standard
I/O in idle or in reception. It means that the I/O must be configured so that TX is
configured as floating input (or output high open-drain) when not driven by the USART.

Apart from this, the communications are similar to what is done in normal USART mode.
The conflicts on the line must be managed by the software (by the use of a centralized
arbiter, for instance). In particular, the transmission is never blocked by hardware and
continue to occur as soon as a data is written in the data register while the TE bit is set.

24.4.11 Smartcard

The Smartcard mode is selected by setting the SCEN bit in the USART_CR3 register. In
smartcard mode, the following bits must be kept cleared:

• LINEN bit in the USART_CR2 register,

• HDSEL and IREN bits in the USART_CR3 register.

Moreover, the CLKEN bit may be set in order to provide a clock to the smartcard.

The Smartcard interface is designed to support asynchronous protocol Smartcards as
defined in the ISO 7816-3 standard. The USART should be configured as:

• 8 bits plus parity: where M=1 and PCE=1 in the USART_CR1 register

• 1.5 stop bits when transmitting and receiving: where STOP=11 in the USART_CR2
register.

Note: It is also possible to choose 0.5 stop bit for receiving but it is recommended to use 1.5 stop
bits for both transmitting and receiving to avoid switching between the two configurations.

Figure 229 shows examples of what can be seen on the data line with and without parity
error.

Figure 229. ISO 7816-3 asynchronous protocol

When connected to a Smartcard, the TX output of the USART drives a bidirectional line that
is also driven by the Smartcard. The TX pin must be configured as open-drain.

Smartcard is a single wire half duplex communication protocol.

• Transmission of data from the transmit shift register is guaranteed to be delayed by a
minimum of 1/2 baud clock. In normal operation a full transmit shift register will start

RM0401 Rev 3 661/771

RM0401 Universal synchronous receiver transmitter (USART) /universal asynchronous receiver

679

shifting on the next baud clock edge. In Smartcard mode this transmission is further
delayed by a guaranteed 1/2 baud clock.

• If a parity error is detected during reception of a frame programmed with a 0.5 or 1.5
stop bit period, the transmit line is pulled low for a baud clock period after the
completion of the receive frame. This is to indicate to the Smartcard that the data
transmitted to USART has not been correctly received. This NACK signal (pulling
transmit line low for 1 baud clock) will cause a framing error on the transmitter side
(configured with 1.5 stop bits). The application can handle re-sending of data according
to the protocol. A parity error is ‘NACK’ed by the receiver if the NACK control bit is set,
otherwise a NACK is not transmitted.

• The assertion of the TC flag can be delayed by programming the Guard Time register.
In normal operation, TC is asserted when the transmit shift register is empty and no
further transmit requests are outstanding. In Smartcard mode an empty transmit shift
register triggers the guard time counter to count up to the programmed value in the
Guard Time register. TC is forced low during this time. When the guard time counter
reaches the programmed value TC is asserted high.

• The de-assertion of TC flag is unaffected by Smartcard mode.

• If a framing error is detected on the transmitter end (due to a NACK from the receiver),
the NACK will not be detected as a start bit by the receive block of the transmitter.
According to the ISO protocol, the duration of the received NACK can be 1 or 2 baud
clock periods.

• On the receiver side, if a parity error is detected and a NACK is transmitted the receiver
will not detect the NACK as a start bit.

Note: A break character is not significant in Smartcard mode. A 0x00 data with a framing error will
be treated as data and not as a break.

No Idle frame is transmitted when toggling the TE bit. The Idle frame (as defined for the
other configurations) is not defined by the ISO protocol.

Figure 230 details how the NACK signal is sampled by the USART. In this example the
USART is transmitting a data and is configured with 1.5 stop bits. The receiver part of the
USART is enabled in order to check the integrity of the data and the NACK signal.

Figure 230. Parity error detection using the 1.5 stop bits

The USART can provide a clock to the smartcard through the SCLK output. In smartcard
mode, SCLK is not associated to the communication but is simply derived from the internal
peripheral input clock through a 5-bit prescaler. The division ratio is configured in the

Universal synchronous receiver transmitter (USART) /universal asynchronous receiver transmit-

662/771 RM0401 Rev 3

prescaler register USART_GTPR. SCLK frequency can be programmed from fCK/2 to
fCK/62, where fCK is the peripheral input clock.

24.4.12 IrDA SIR ENDEC block

The IrDA mode is selected by setting the IREN bit in the USART_CR3 register. In IrDA
mode, the following bits must be kept cleared:

• LINEN, STOP and CLKEN bits in the USART_CR2 register,

• SCEN and HDSEL bits in the USART_CR3 register.

The IrDA SIR physical layer specifies use of a Return to Zero, Inverted (RZI) modulation
scheme that represents logic 0 as an infrared light pulse (see Figure 231).

The SIR Transmit encoder modulates the Non Return to Zero (NRZ) transmit bit stream
output from USART. The output pulse stream is transmitted to an external output driver and
infrared LED. USART supports only bit rates up to 115.2Kbps for the SIR ENDEC. In normal
mode the transmitted pulse width is specified as 3/16 of a bit period.

The SIR receive decoder demodulates the return-to-zero bit stream from the infrared
detector and outputs the received NRZ serial bit stream to USART. The decoder input is
normally HIGH (marking state) in the Idle state. The transmit encoder output has the
opposite polarity to the decoder input. A start bit is detected when the decoder input is low.

• IrDA is a half duplex communication protocol. If the Transmitter is busy (i.e. the USART
is sending data to the IrDA encoder), any data on the IrDA receive line will be ignored
by the IrDA decoder and if the Receiver is busy (USART is receiving decoded data
from the USART), data on the TX from the USART to IrDA will not be encoded by IrDA.
While receiving data, transmission should be avoided as the data to be transmitted
could be corrupted.

• A ‘0 is transmitted as a high pulse and a ‘1 is transmitted as a ‘0. The width of the pulse
is specified as 3/16th of the selected bit period in normal mode (see Figure 232).

• The SIR decoder converts the IrDA compliant receive signal into a bit stream for
USART.

• The SIR receive logic interprets a high state as a logic one and low pulses as logic
zeros.

• The transmit encoder output has the opposite polarity to the decoder input. The SIR
output is in low state when Idle.

• The IrDA specification requires the acceptance of pulses greater than 1.41 us. The
acceptable pulse width is programmable. Glitch detection logic on the receiver end
filters out pulses of width less than 2 PSC periods (PSC is the prescaler value
programmed in the IrDA low-power Baud Register, USART_GTPR). Pulses of width
less than 1 PSC period are always rejected, but those of width greater than one and
less than two periods may be accepted or rejected, those greater than 2 periods will be
accepted as a pulse. The IrDA encoder/decoder doesn’t work when PSC=0.

• The receiver can communicate with a low-power transmitter.

• In IrDA mode, the STOP bits in the USART_CR2 register must be configured to “1 stop
bit”.

RM0401 Rev 3 663/771

RM0401 Universal synchronous receiver transmitter (USART) /universal asynchronous receiver

679

IrDA low-power mode

Transmitter:

In low-power mode the pulse width is not maintained at 3/16 of the bit period. Instead, the
width of the pulse is 3 times the low-power baud rate that can be a minimum of 1.42 MHz.
Generally this value is 1.8432 MHz (1.42 MHz < PSC< 2.12 MHz). A low-power mode
programmable divisor divides the system clock to achieve this value.

Receiver:

Receiving in low-power mode is similar to receiving in normal mode. For glitch detection the
USART should discard pulses of duration shorter than 1/PSC. A valid low is accepted only if
its duration is greater than 2 periods of the IrDA low-power Baud clock (PSC value in
USART_GTPR).

Note: A pulse of width less than two and greater than one PSC period(s) may or may not be
rejected.

The receiver set up time should be managed by software. The IrDA physical layer
specification specifies a minimum of 10 ms delay between transmission and reception (IrDA
is a half duplex protocol).

Figure 231. IrDA SIR ENDEC- block diagram

Figure 232. IrDA data modulation (3/16) -Normal mode

Universal synchronous receiver transmitter (USART) /universal asynchronous receiver transmit-

664/771 RM0401 Rev 3

24.4.13 Continuous communication using DMA

The USART is capable of continuous communication using the DMA. The DMA requests for
Rx buffer and Tx buffer are generated independently.

Transmission using DMA

DMA mode can be enabled for transmission by setting DMAT bit in the USART_CR3
register. Data is loaded from a SRAM area configured using the DMA peripheral (refer to the
DMA specification) to the USART_DR register whenever the TXE bit is set. To map a DMA
channel for USART transmission, use the following procedure (x denotes the channel
number):

1. Write the USART_DR register address in the DMA control register to configure it as the
destination of the transfer. The data will be moved to this address from memory after
each TXE event.

2. Write the memory address in the DMA control register to configure it as the source of
the transfer. The data will be loaded into the USART_DR register from this memory
area after each TXE event.

3. Configure the total number of bytes to be transferred to the DMA control register.

4. Configure the channel priority in the DMA register

5. Configure DMA interrupt generation after half/ full transfer as required by the
application.

6. Clear the TC bit in the SR register by writing 0 to it.

7. Activate the channel in the DMA register.

When the number of data transfers programmed in the DMA Controller is reached, the DMA
controller generates an interrupt on the DMA channel interrupt vector.

In transmission mode, once the DMA has written all the data to be transmitted (the TCIF flag
is set in the DMA_ISR register), the TC flag can be monitored to make sure that the USART
communication is complete. This is required to avoid corrupting the last transmission before
disabling the USART or entering the Stop mode. The software must wait until TC=1. The TC
flag remains cleared during all data transfers and it is set by hardware at the last frame end
of transmission.

RM0401 Rev 3 665/771

RM0401 Universal synchronous receiver transmitter (USART) /universal asynchronous receiver

679

Figure 233. Transmission using DMA

Reception using DMA

DMA mode can be enabled for reception by setting the DMAR bit in USART_CR3 register.
Data is loaded from the USART_DR register to a SRAM area configured using the DMA
peripheral (refer to the DMA specification) whenever a data byte is received. To map a DMA
channel for USART reception, use the following procedure:

1. Write the USART_DR register address in the DMA control register to configure it as the
source of the transfer. The data will be moved from this address to the memory after
each RXNE event.

2. Write the memory address in the DMA control register to configure it as the destination
of the transfer. The data will be loaded from USART_DR to this memory area after each
RXNE event.

3. Configure the total number of bytes to be transferred in the DMA control register.

4. Configure the channel priority in the DMA control register

5. Configure interrupt generation after half/ full transfer as required by the application.

6. Activate the channel in the DMA control register.

When the number of data transfers programmed in the DMA Controller is reached, the DMA
controller generates an interrupt on the DMA channel interrupt vector. The DMAR bit should
be cleared by software in the USART_CR3 register during the interrupt subroutine.

Universal synchronous receiver transmitter (USART) /universal asynchronous receiver transmit-

666/771 RM0401 Rev 3

Figure 234. Reception using DMA

Error flagging and interrupt generation in multibuffer communication

In case of multibuffer communication if any error occurs during the transaction the error flag
will be asserted after the current byte. An interrupt will be generated if the interrupt enable
flag is set. For framing error, overrun error and noise flag that are asserted with RXNE in
case of single byte reception, there will be separate error flag interrupt enable bit (EIE bit in
the USART_CR3 register), which if set will issue an interrupt after the current byte with
either of these errors.

24.4.14 Hardware flow control

It is possible to control the serial data flow between 2 devices by using the nCTS input and
the nRTS output. The Figure 235 shows how to connect 2 devices in this mode:

Figure 235. Hardware flow control between 2 USARTs

RTS and CTS flow control can be enabled independently by writing respectively RTSE and
CTSE bits to 1 (in the USART_CR3 register).

RM0401 Rev 3 667/771

RM0401 Universal synchronous receiver transmitter (USART) /universal asynchronous receiver

679

RTS flow control

If the RTS flow control is enabled (RTSE=1), then nRTS is asserted (tied low) as long as the
USART receiver is ready to receive a new data. When the receive register is full, nRTS is
deasserted, indicating that the transmission is expected to stop at the end of the current
frame. Figure 236 shows an example of communication with RTS flow control enabled.

Figure 236. RTS flow control

CTS flow control

If the CTS flow control is enabled (CTSE=1), then the transmitter checks the nCTS input
before transmitting the next frame. If nCTS is asserted (tied low), then the next data is
transmitted (assuming that a data is to be transmitted, in other words, if TXE=0), else the
transmission does not occur. When nCTS is deasserted during a transmission, the current
transmission is completed before the transmitter stops.

When CTSE=1, the CTSIF status bit is automatically set by hardware as soon as the nCTS
input toggles. It indicates when the receiver becomes ready or not ready for communication.
An interrupt is generated if the CTSIE bit in the USART_CR3 register is set. The figure
below shows an example of communication with CTS flow control enabled.

Figure 237. CTS flow control

Universal synchronous receiver transmitter (USART) /universal asynchronous receiver transmit-

668/771 RM0401 Rev 3

Note: Special behavior of break frames: when the CTS flow is enabled, the transmitter does not
check the nCTS input state to send a break.

24.5 USART interrupts

The USART interrupt events are connected to the same interrupt vector (see Figure 238).

• During transmission: Transmission Complete, Clear to Send or Transmit Data Register
empty interrupt.

• While receiving: Idle Line detection, Overrun error, Receive Data register not empty,
Parity error, LIN break detection, Noise Flag (only in multi buffer communication) and
Framing Error (only in multi buffer communication).

These events generate an interrupt if the corresponding Enable Control Bit is set.

Table 122. USART interrupt requests

Interrupt event Event flag Enable control bit

Transmit Data Register Empty TXE TXEIE

CTS flag CTS CTSIE

Transmission Complete TC TCIE

Received Data Ready to be Read RXNE
RXNEIE

Overrun Error Detected ORE

Idle Line Detected IDLE IDLEIE

Parity Error PE PEIE

Break Flag LBD LBDIE

Noise Flag, Overrun error and Framing Error
in multibuffer communication

NF or ORE or FE EIE

RM0401 Rev 3 669/771

RM0401 Universal synchronous receiver transmitter (USART) /universal asynchronous receiver

679

Figure 238. USART interrupt mapping diagram

24.6 USART registers

Refer to Section 1.2 on page 34 for a list of abbreviations used in register descriptions.

The peripheral registers have to be accessed by half-words (16 bits) or words (32 bits).

24.6.1 Status register (USART_SR)

Address offset: 0x00

Reset value: 0x00C0 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. CTS LBD TXE TC RXNE IDLE ORE NF FE PE

rc_w0 rc_w0 r rc_w0 rc_w0 r r r r r

Universal synchronous receiver transmitter (USART) /universal asynchronous receiver transmit-

670/771 RM0401 Rev 3

Bits 31:10 Reserved, must be kept at reset value

Bit 9 CTS: CTS flag

This bit is set by hardware when the nCTS input toggles, if the CTSE bit is set. It is cleared
by software (by writing it to 0). An interrupt is generated if CTSIE=1 in the USART_CR3
register.
0: No change occurred on the nCTS status line
1: A change occurred on the nCTS status line

Note: This bit is not available for UART4 & UART5.

Bit 8 LBD: LIN break detection flag

This bit is set by hardware when the LIN break is detected. It is cleared by software (by
writing it to 0). An interrupt is generated if LBDIE = 1 in the USART_CR2 register.
0: LIN Break not detected
1: LIN break detected

Note: An interrupt is generated when LBD=1 if LBDIE=1

Bit 7 TXE: Transmit data register empty

This bit is set by hardware when the content of the TDR register has been transferred into
the shift register. An interrupt is generated if the TXEIE bit =1 in the USART_CR1 register. It
is cleared by a write to the USART_DR register.
0: Data is not transferred to the shift register
1: Data is transferred to the shift register)

Note: This bit is used during single buffer transmission.

Bit 6 TC: Transmission complete

This bit is set by hardware if the transmission of a frame containing data is complete and if
TXE is set. An interrupt is generated if TCIE=1 in the USART_CR1 register. It is cleared by
a software sequence (a read from the USART_SR register followed by a write to the
USART_DR register). The TC bit can also be cleared by writing a '0' to it. This clearing
sequence is recommended only for multibuffer communication.
0: Transmission is not complete
1: Transmission is complete

Bit 5 RXNE: Read data register not empty

This bit is set by hardware when the content of the RDR shift register has been transferred
to the USART_DR register. An interrupt is generated if RXNEIE=1 in the USART_CR1
register. It is cleared by a read to the USART_DR register. The RXNE flag can also be
cleared by writing a zero to it. This clearing sequence is recommended only for multibuffer
communication.
0: Data is not received
1: Received data is ready to be read.

Bit 4 IDLE: IDLE line detected

This bit is set by hardware when an Idle Line is detected. An interrupt is generated if the
IDLEIE=1 in the USART_CR1 register. It is cleared by a software sequence (an read to the
USART_SR register followed by a read to the USART_DR register).
0: No Idle Line is detected
1: Idle Line is detected

Note: The IDLE bit will not be set again until the RXNE bit has been set itself (i.e. a new idle
line occurs).

RM0401 Rev 3 671/771

RM0401 Universal synchronous receiver transmitter (USART) /universal asynchronous receiver

679

Bit 3 ORE: Overrun error

This bit is set by hardware when the word currently being received in the shift register is
ready to be transferred into the RDR register while RXNE=1. An interrupt is generated if
RXNEIE=1 in the USART_CR1 register. It is cleared by a software sequence (an read to the
USART_SR register followed by a read to the USART_DR register).
0: No Overrun error
1: Overrun error is detected

Note: When this bit is set, the RDR register content will not be lost but the shift register will be
overwritten. An interrupt is generated on ORE flag in case of Multi Buffer
communication if the EIE bit is set.

Bit 2 NF: Noise detected flag

This bit is set by hardware when noise is detected on a received frame. It is cleared by a
software sequence (an read to the USART_SR register followed by a read to the
USART_DR register).
0: No noise is detected
1: Noise is detected

Note: This bit does not generate interrupt as it appears at the same time as the RXNE bit that
itself generates an interrupting interrupt is generated on NF flag in case of Multi Buffer
communication if the EIE bit is set.

Note: When the line is noise-free, the NF flag can be disabled by programming the ONEBIT
bit to 1 to increase the USART tolerance to deviations (Refer to Section 24.4.5: USART
receiver tolerance to clock deviation on page 651).

Bit 1 FE: Framing error

This bit is set by hardware when a de-synchronization, excessive noise or a break character
is detected. It is cleared by a software sequence (an read to the USART_SR register
followed by a read to the USART_DR register).
0: No Framing error is detected
1: Framing error or break character is detected

Note: This bit does not generate interrupt as it appears at the same time as the RXNE bit that
itself generates an interrupt. If the word currently being transferred causes both frame
error and overrun error, it will be transferred and only the ORE bit will be set.

An interrupt is generated on FE flag in case of Multi Buffer communication if the EIE bit
is set.

Bit 0 PE: Parity error

This bit is set by hardware when a parity error occurs in receiver mode. It is cleared by a
software sequence (a read from the status register followed by a read or write access to the
USART_DR data register). The software must wait for the RXNE flag to be set before
clearing the PE bit.
An interrupt is generated if PEIE = 1 in the USART_CR1 register.
0: No parity error
1: Parity error

Universal synchronous receiver transmitter (USART) /universal asynchronous receiver transmit-

672/771 RM0401 Rev 3

24.6.2 Data register (USART_DR)

Address offset: 0x04

Reset value: 0x0000 0000

24.6.3 Baud rate register (USART_BRR)

Note: The baud counters stop counting if the TE or RE bits are disabled respectively.

Address offset: 0x08

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. DR[8:0]

rw rw rw rw rw rw rw rw rw

Bits 31:9 Reserved, must be kept at reset value

Bits 8:0 DR[8:0]: Data value

Contains the Received or Transmitted data character, depending on whether it is read from
or written to.
The Data register performs a double function (read and write) since it is composed of two
registers, one for transmission (TDR) and one for reception (RDR)
The TDR register provides the parallel interface between the internal bus and the output shift
register (see Figure 1).
The RDR register provides the parallel interface between the input shift register and the
internal bus.
When transmitting with the parity enabled (PCE bit set to 1 in the USART_CR1 register), the
value written in the MSB (bit 7 or bit 8 depending on the data length) has no effect because
it is replaced by the parity.
When receiving with the parity enabled, the value read in the MSB bit is the received parity
bit.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DIV_Mantissa[11:0] DIV_Fraction[3:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved, must be kept at reset value

Bits 15:4 DIV_Mantissa[11:0]: mantissa of USARTDIV

These 12 bits define the mantissa of the USART Divider (USARTDIV)

Bits 3:0 DIV_Fraction[3:0]: fraction of USARTDIV

These 4 bits define the fraction of the USART Divider (USARTDIV). When OVER8=1, the
DIV_Fraction3 bit is not considered and must be kept cleared.

RM0401 Rev 3 673/771

RM0401 Universal synchronous receiver transmitter (USART) /universal asynchronous receiver

679

24.6.4 Control register 1 (USART_CR1)

Address offset: 0x0C

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

OVER8 Res. UE M WAKE PCE PS PEIE TXEIE TCIE RXNEIE IDLEIE TE RE RWU SBK

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved, must be kept at reset value

Bit 15 OVER8: Oversampling mode

0: oversampling by 16
1: oversampling by 8

Note: Oversampling by 8 is not available in the Smartcard, IrDA and LIN modes: when
SCEN=1,IREN=1 or LINEN=1 then OVER8 is forced to ‘0 by hardware.

Bit 14 Reserved, must be kept at reset value

Bit 13 UE: USART enable

When this bit is cleared the USART prescalers and outputs are stopped and the end of the
current
byte transfer in order to reduce power consumption. This bit is set and cleared by software.
0: USART prescaler and outputs disabled
1: USART enabled

Bit 12 M: Word length

This bit determines the word length. It is set or cleared by software.
0: 1 Start bit, 8 Data bits, n Stop bit
1: 1 Start bit, 9 Data bits, n Stop bit

Note: The M bit must not be modified during a data transfer (both transmission and reception)

Bit 11 WAKE: Wakeup method

This bit determines the USART wakeup method, it is set or cleared by software.
0: Idle Line
1: Address Mark

Bit 10 PCE: Parity control enable

This bit selects the hardware parity control (generation and detection). When the parity
control is enabled, the computed parity is inserted at the MSB position (9th bit if M=1; 8th bit
if M=0) and parity is checked on the received data. This bit is set and cleared by software.
Once it is set, PCE is active after the current byte (in reception and in transmission).
0: Parity control disabled
1: Parity control enabled

Bit 9 PS: Parity selection

This bit selects the odd or even parity when the parity generation/detection is enabled (PCE
bit set). It is set and cleared by software. The parity will be selected after the current byte.
0: Even parity
1: Odd parity

Universal synchronous receiver transmitter (USART) /universal asynchronous receiver transmit-

674/771 RM0401 Rev 3

Bit 8 PEIE: PE interrupt enable

This bit is set and cleared by software.
0: Interrupt is inhibited
1: An USART interrupt is generated whenever PE=1 in the USART_SR register

Bit 7 TXEIE: TXE interrupt enable

This bit is set and cleared by software.
0: Interrupt is inhibited
1: An USART interrupt is generated whenever TXE=1 in the USART_SR register

Bit 6 TCIE: Transmission complete interrupt enable

This bit is set and cleared by software.
0: Interrupt is inhibited
1: An USART interrupt is generated whenever TC=1 in the USART_SR register

Bit 5 RXNEIE: RXNE interrupt enable

This bit is set and cleared by software.
0: Interrupt is inhibited
1: An USART interrupt is generated whenever ORE=1 or RXNE=1 in the USART_SR
register

Bit 4 IDLEIE: IDLE interrupt enable

This bit is set and cleared by software.
0: Interrupt is inhibited
1: An USART interrupt is generated whenever IDLE=1 in the USART_SR register

Bit 3 TE: Transmitter enable

This bit enables the transmitter. It is set and cleared by software.
0: Transmitter is disabled
1: Transmitter is enabled

Note: 1: During transmission, a “0” pulse on the TE bit (“0” followed by “1”) sends a preamble
(idle line) after the current word, except in smartcard mode.

2: When TE is set there is a 1 bit-time delay before the transmission starts.

Bit 2 RE: Receiver enable

This bit enables the receiver. It is set and cleared by software.
0: Receiver is disabled
1: Receiver is enabled and begins searching for a start bit

Bit 1 RWU: Receiver wakeup

This bit determines if the USART is in mute mode or not. It is set and cleared by software
and can be cleared by hardware when a wakeup sequence is recognized.
0: Receiver in active mode
1: Receiver in mute mode

Note: 1: Before selecting Mute mode (by setting the RWU bit) the USART must first receive a
data byte, otherwise it cannot function in Mute mode with wakeup by Idle line detection.

2: In Address Mark Detection wakeup configuration (WAKE bit=1) the RWU bit cannot
be modified by software while the RXNE bit is set.

Bit 0 SBK: Send break

This bit set is used to send break characters. It can be set and cleared by software. It should
be set by software, and will be reset by hardware during the stop bit of break.
0: No break character is transmitted
1: Break character will be transmitted

RM0401 Rev 3 675/771

RM0401 Universal synchronous receiver transmitter (USART) /universal asynchronous receiver

679

24.6.5 Control register 2 (USART_CR2)

Address offset: 0x10

Reset value: 0x0000 0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. LINEN STOP[1:0] CLKEN CPOL CPHA LBCL Res. LBDIE LBDL Res. ADD[3:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:15 Reserved, must be kept at reset value

Bit 14 LINEN: LIN mode enable

This bit is set and cleared by software.
0: LIN mode disabled
1: LIN mode enabled
The LIN mode enables the capability to send LIN Synch Breaks (13 low bits) using the SBK bit in
the USART_CR1 register, and to detect LIN Sync breaks.

Bits 13:12 STOP: STOP bits

These bits are used for programming the stop bits.
00: 1 Stop bit
01: 0.5 Stop bit
10: 2 Stop bits
11: 1.5 Stop bit

Note: The 0.5 Stop bit and 1.5 Stop bit are not available for UART4 & UART5.

Bit 11 CLKEN: Clock enable

This bit allows the user to enable the SCLK pin.
0: SCLK pin disabled
1: SCLK pin enabled
This bit is not available for UART4 & UART5.

Bit 10 CPOL: Clock polarity

This bit allows the user to select the polarity of the clock output on the SCLK pin in synchronous
mode. It works in conjunction with the CPHA bit to produce the desired clock/data relationship
0: Steady low value on SCLK pin outside transmission window.
1: Steady high value on SCLK pin outside transmission window.
This bit is not available for UART4 & UART5.

Bit 9 CPHA: Clock phase

This bit allows the user to select the phase of the clock output on the SCLK pin in synchronous
mode. It works in conjunction with the CPOL bit to produce the desired clock/data relationship (see
figures 226 to 227)
0: The first clock transition is the first data capture edge
1: The second clock transition is the first data capture edge

Note: This bit is not available for UART4 & UART5.

Universal synchronous receiver transmitter (USART) /universal asynchronous receiver transmit-

676/771 RM0401 Rev 3

Note: These 3 bits (CPOL, CPHA, LBCL) should not be written while the transmitter is enabled.

24.6.6 Control register 3 (USART_CR3)

Address offset: 0x14

Reset value: 0x0000 0000

Bit 8 LBCL: Last bit clock pulse

This bit allows the user to select whether the clock pulse associated with the last data bit
transmitted (MSB) has to be output on the SCLK pin in synchronous mode.
0: The clock pulse of the last data bit is not output to the SCLK pin
1: The clock pulse of the last data bit is output to the SCLK pin

Note: 1: The last bit is the 8th or 9th data bit transmitted depending on the 8 or 9 bit format selected
by the M bit in the USART_CR1 register.

2: This bit is not available for UART4 & UART5.

Bit 7 Reserved, must be kept at reset value

Bit 6 LBDIE: LIN break detection interrupt enable

Break interrupt mask (break detection using break delimiter).
0: Interrupt is inhibited
1: An interrupt is generated whenever LBD=1 in the USART_SR register

Bit 5 LBDL: lin break detection length

This bit is for selection between 11 bit or 10 bit break detection.
0: 10-bit break detection
1: 11-bit break detection

Bit 4 Reserved, must be kept at reset value

Bits 3:0 ADD[3:0]: Address of the USART node

This bit-field gives the address of the USART node.
This is used in multiprocessor communication during mute mode, for wake up with address mark
detection.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. ONEBIT CTSIE CTSE RTSE DMAT DMAR SCEN NACK HDSEL IRLP IREN EIE

rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:12 Reserved, must be kept at reset value

Bit 11 ONEBIT: One sample bit method enable

This bit allows the user to select the sample method. When the one sample bit method is
selected the noise detection flag (NF) is disabled.
0: Three sample bit method
1: One sample bit method

Bit 10 CTSIE: CTS interrupt enable

0: Interrupt is inhibited
1: An interrupt is generated whenever CTS=1 in the USART_SR register

Note: This bit is not available for UART4 & UART5.

RM0401 Rev 3 677/771

RM0401 Universal synchronous receiver transmitter (USART) /universal asynchronous receiver

679

Bit 9 CTSE: CTS enable

0: CTS hardware flow control disabled
1: CTS mode enabled, data is only transmitted when the nCTS input is asserted (tied to 0).
If the nCTS input is deasserted while a data is being transmitted, then the transmission is
completed before stopping. If a data is written into the data register while nCTS is
deasserted, the transmission is postponed until nCTS is asserted.

Note: This bit is not available for UART4 & UART5.

Bit 8 RTSE: RTS enable

0: RTS hardware flow control disabled
1: RTS interrupt enabled, data is only requested when there is space in the receive buffer.
The transmission of data is expected to cease after the current character has been
transmitted. The nRTS output is asserted (tied to 0) when a data can be received.

Note: This bit is not available for UART4 & UART5.

Bit 7 DMAT: DMA enable transmitter

This bit is set/reset by software
1: DMA mode is enabled for transmission.
0: DMA mode is disabled for transmission.

Bit 6 DMAR: DMA enable receiver

This bit is set/reset by software
1: DMA mode is enabled for reception
0: DMA mode is disabled for reception

Bit 5 SCEN: Smartcard mode enable

This bit is used for enabling Smartcard mode.
0: Smartcard Mode disabled
1: Smartcard Mode enabled

Note: This bit is not available for UART4 & UART5.

Bit 4 NACK: Smartcard NACK enable

0: NACK transmission in case of parity error is disabled
1: NACK transmission during parity error is enabled

Note: This bit is not available for UART4 & UART5.

Bit 3 HDSEL: Half-duplex selection

Selection of Single-wire Half-duplex mode
0: Half duplex mode is not selected
1: Half duplex mode is selected

Bit 2 IRLP: IrDA low-power

This bit is used for selecting between normal and low-power IrDA modes
0: Normal mode
1: Low-power mode

Bit 1 IREN: IrDA mode enable

This bit is set and cleared by software.
0: IrDA disabled
1: IrDA enabled

Universal synchronous receiver transmitter (USART) /universal asynchronous receiver transmit-

678/771 RM0401 Rev 3

24.6.7 Guard time and prescaler register (USART_GTPR)

Address offset: 0x18

Reset value: 0x0000 0000

Bit 0 EIE: Error interrupt enable

Error Interrupt Enable Bit is required to enable interrupt generation in case of a framing
error, overrun error or noise flag (FE=1 or ORE=1 or NF=1 in the USART_SR register) in
case of Multi Buffer Communication (DMAR=1 in the USART_CR3 register).
0: Interrupt is inhibited
1: An interrupt is generated whenever DMAR=1 in the USART_CR3 register and FE=1 or
ORE=1 or NF=1 in the USART_SR register.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

GT[7:0] PSC[7:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 31:16 Reserved, must be kept at reset value

Bits 15:8 GT[7:0]: Guard time value

This bit-field gives the Guard time value in terms of number of baud clocks.
This is used in Smartcard mode. The Transmission Complete flag is set after this guard time
value.

Note: This bit is not available for UART4 & UART5.

Bits 7:0 PSC[7:0]: Prescaler value

– In IrDA Low-power mode:

PSC[7:0] = IrDA Low-Power Baud Rate
Used for programming the prescaler for dividing the system clock to achieve the low-power
frequency:
The source clock is divided by the value given in the register (8 significant bits):
00000000: Reserved - do not program this value
00000001: divides the source clock by 1
00000010: divides the source clock by 2
...

– In normal IrDA mode: PSC must be set to 00000001.

– In smartcard mode:

PSC[4:0]: Prescaler value
Used for programming the prescaler for dividing the system clock to provide the smartcard
clock.
The value given in the register (5 significant bits) is multiplied by 2 to give the division factor
of the source clock frequency:
00000: Reserved - do not program this value
00001: divides the source clock by 2
00010: divides the source clock by 4
00011: divides the source clock by 6
...

Note: 1: Bits [7:5] have no effect if Smartcard mode is used.
2: This bit is not available for UART4 & UART5.

RM0401 Rev 3 679/771

RM0401 Universal synchronous receiver transmitter (USART) /universal asynchronous receiver

679

24.6.8 USART register map

The table below gives the USART register map and reset values.

Refer to Section 2.2 on page 41 for the register boundary addresses.

Table 123. USART register map and reset values

Offset Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

0x00
USART_SR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

C
T

S

L
B

D

T
X

E

T
C

R
X

N
E

ID
L

E

O
R

E

N
F

F
E

P
E

Reset value 0 0 1 1 0 0 0 0 0 0

0x04
USART_DR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

DR[8:0]

Reset value 0 0 0 0 0 0 0 0 0

0x08
USART_BRR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

DIV_Mantissa[15:4]
DIV_Fraction

[3:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x0C
USART_CR1

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

O
V

E
R

8

R
es

.

U
E M

W
A

K
E

P
C

E

P
S

P
E

IE

T
X

E
IE

T
C

IE

R
X

N
E

IE

ID
L

E
IE

T
E

R
E

R
W

U

S
B

K

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x10
USART_CR2

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

LI
N

E
N STOP

[1:0]

C
L

K
E

N

C
P

O
L

C
P

H
A

L
B

C
L

R
es

.

LB
D

IE

L
B

D
L

R
es

.

ADD[3:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0

0x14
USART_CR3

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

O
N

E
B

IT

C
T

S
IE

C
T

S
E

R
T

S
E

D
M

A
T

D
M

A
R

S
C

E
N

N
A

C
K

H
D

S
E

L

IR
L

P

IR
E

N

E
IE

Reset value 0 0 0 0 0 0 0 0 0 0 0 0

0x18
USART_GTPR

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

R
es

.

GT[7:0] PSC[7:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Serial peripheral interface/ inter-IC sound (SPI/I2S) RM0401

680/771 RM0401 Rev 3

25 Serial peripheral interface/ inter-IC sound (SPI/I2S)

25.1 Introduction

The SPI/I²S interface can be used to communicate with external devices using the SPI
protocol or the I2S audio protocol. SPI or I2S mode is selectable by software. SPI mode is
selected by default after a device reset.

The serial peripheral interface (SPI) protocol supports half-duplex, full-duplex and simplex
synchronous, serial communication with external devices. The interface can be configured
as master and in this case it provides the communication clock (SCK) to the external slave
device. The interface is also capable of operating in multimaster configuration.

The Inter-IC sound (I2S) protocol is also a synchronous serial communication interface. It
can operate in slave or master mode with half-duplex communication. Full duplex
operations are possible by combining two I2S blocks.

It can address four different audio standards including the Philips I2S standard, the MSB-
and LSB-justified standards and the PCM standard.

Warning: Since some SPI1 pins may be mapped onto some pins used
by the JTAG interface, you can either map SPI/I2S onto other
pins, disable the JTAG and use the SWD interface prior to
configuring the pins listed as SPI I/Os (when debugging the
application) or disable both JTAG/SWD interfaces (for
standalone applications). For more information on the
configuration of the JTAG/SWD interface pins, please refer to
Section 7.3.2: I/O pin multiplexer and mapping.

RM0401 Rev 3 681/771

RM0401 Serial peripheral interface/ inter-IC sound (SPI/I2S)

731

25.1.1 SPI main features

• Master or slave operation

• Full-duplex synchronous transfers on three lines

• Half-duplex synchronous transfer on two lines (with bidirectional data line)

• Simplex synchronous transfers on two lines (with unidirectional data line)

• 8-bit to 16-bit transfer frame format selection

• Multimaster mode capability

• 8 master mode baud rate prescalers up to fPCLK/2.

• Slave mode frequency up to fPCLK/2.

• NSS management by hardware or software for both master and slave: dynamic change
of master/slave operations

• Programmable clock polarity and phase

• Programmable data order with MSB-first or LSB-first shifting

• Dedicated transmission and reception flags with interrupt capability

• SPI bus busy status flag

• SPI Motorola support

• Hardware CRC feature for reliable communication:

– CRC value can be transmitted as last byte in Tx mode

– Automatic CRC error checking for last received byte

• Master mode fault, overrun flags with interrupt capability

• CRC Error flag

• 1-byte/word transmission and reception buffer with DMA capability: Tx and Rx requests

Serial peripheral interface/ inter-IC sound (SPI/I2S) RM0401

682/771 RM0401 Rev 3

25.1.2 SPI extended features

• SPI TI mode support

25.1.3 I2S features

• Half-duplex communication (only transmitter or receiver)

• Master or slave operations

• 8-bit programmable linear prescaler to reach accurate audio sample frequencies (from
8 kHz to 192 kHz)

• Data format may be 16-bit, 24-bit or 32-bit

• Packet frame is fixed to 16-bit (16-bit data frame) or 32-bit (16-bit, 24-bit, 32-bit data
frame) by audio channel

• Programmable clock polarity (steady state)

• Underrun flag in slave transmission mode, overrun flag in reception mode (master and
slave) and Frame Error Flag in reception and transmitter mode (slave only)

• 16-bit register for transmission and reception with one data register for both channel
sides

• Supported I2S protocols:

– I2S Philips standard

– MSB-Justified standard (Left-Justified)

– LSB-Justified standard (Right-Justified)

– PCM standard (with short and long frame synchronization on 16-bit channel frame
or 16-bit data frame extended to 32-bit channel frame)

• Data direction is always MSB first

• DMA capability for transmission and reception (16-bit wide)

• Master clock can be output to drive an external audio component. Ratio is fixed at
256 × FS (where FS is the audio sampling frequency)

• I2S (I2S1, I2S2 and I2S5) clock can be derived from an external clock mapped on the
I2S_CKIN pin.

25.2 SPI/I2S implementation

This manual describes the full set of features implemented in SPI1, SPI2 and SPI5.

Table 124. STM32F410 SPI implementation

SPI Features(1)

1. X = supported.

SPI1 SPI2 SPI5

Hardware CRC calculation X X X

I2S mode X X X

TI mode X X X

RM0401 Rev 3 683/771

RM0401 Serial peripheral interface/ inter-IC sound (SPI/I2S)

731

25.3 SPI functional description

25.3.1 General description

The SPI allows synchronous, serial communication between the MCU and external devices.
Application software can manage the communication by polling the status flag or using
dedicated SPI interrupt. The main elements of SPI and their interactions are shown in the
following block diagram Figure 239.

Figure 239. SPI block diagram

Four I/O pins are dedicated to SPI communication with external devices.

• MISO: Master In / Slave Out data. In the general case, this pin is used to transmit data
in slave mode and receive data in master mode.

• MOSI: Master Out / Slave In data. In the general case, this pin is used to transmit data
in master mode and receive data in slave mode.

• SCK: Serial Clock output pin for SPI masters and input pin for SPI slaves.

• NSS: Slave select pin. Depending on the SPI and NSS settings, this pin can be used to
either:

– select an individual slave device for communication

– synchronize the data frame or

– detect a conflict between multiple masters

See Section 25.3.5: Slave select (NSS) pin management for details.

The SPI bus allows the communication between one master device and one or more slave
devices. The bus consists of at least two wires - one for the clock signal and the other for
synchronous data transfer. Other signals can be added depending on the data exchange
between SPI nodes and their slave select signal management.

Serial peripheral interface/ inter-IC sound (SPI/I2S) RM0401

684/771 RM0401 Rev 3

25.3.2 Communications between one master and one slave

The SPI allows the MCU to communicate using different configurations, depending on the
device targeted and the application requirements. These configurations use 2 or 3 wires
(with software NSS management) or 3 or 4 wires (with hardware NSS management).
Communication is always initiated by the master.

Full-duplex communication

By default, the SPI is configured for full-duplex communication. In this configuration, the
shift registers of the master and slave are linked using two unidirectional lines between the
MOSI and the MISO pins. During SPI communication, data is shifted synchronously on the
SCK clock edges provided by the master. The master transmits the data to be sent to the
slave via the MOSI line and receives data from the slave via the MISO line. When the data
frame transfer is complete (all the bits are shifted) the information between the master and
slave is exchanged.

Figure 240. Full-duplex single master/ single slave application

1. The NSS pins can be used to provide a hardware control flow between master and slave. Optionally, the
pins can be left unused by the peripheral. Then the flow has to be handled internally for both master and
slave. For more details see Section 25.3.5: Slave select (NSS) pin management.

Half-duplex communication

The SPI can communicate in half-duplex mode by setting the BIDIMODE bit in the
SPIx_CR1 register. In this configuration, one single cross connection line is used to link the
shift registers of the master and slave together. During this communication, the data is
synchronously shifted between the shift registers on the SCK clock edge in the transfer
direction selected reciprocally by both master and slave with the BDIOE bit in their
SPIx_CR1 registers. In this configuration, the master’s MISO pin and the slave’s MOSI pin
are free for other application uses and act as GPIOs.

RM0401 Rev 3 685/771

RM0401 Serial peripheral interface/ inter-IC sound (SPI/I2S)

731

Figure 241. Half-duplex single master/ single slave application

1. The NSS pins can be used to provide a hardware control flow between master and slave. Optionally, the
pins can be left unused by the peripheral. Then the flow has to be handled internally for both master and
slave. For more details see Section 25.3.5: Slave select (NSS) pin management.

2. In this configuration, the master’s MISO pin and the slave’s MOSI pin can be used as GPIOs.

3. A critical situation can happen when communication direction is changed not synchronously between two
nodes working at bidirectionnal mode and new transmitter accesses the common data line while former
transmitter still keeps an opposite value on the line (the value depends on SPI configuration and
communication data). Both nodes then fight while providing opposite output levels on the common line
temporary till next node changes its direction settings correspondingly, too. It is suggested to insert a serial
resistance between MISO and MOSI pins at this mode to protect the outputs and limit the current blowing
between them at this situation.

Simplex communications

The SPI can communicate in simplex mode by setting the SPI in transmit-only or in receive-
only using the RXONLY bit in the SPIx_CR2 register. In this configuration, only one line is
used for the transfer between the shift registers of the master and slave. The remaining
MISO and MOSI pins pair is not used for communication and can be used as standard
GPIOs.

• Transmit-only mode (RXONLY=0): The configuration settings are the same as for full-
duplex. The application has to ignore the information captured on the unused input pin.
This pin can be used as a standard GPIO.

• Receive-only mode (RXONLY=1): The application can disable the SPI output function
by setting the RXONLY bit. In slave configuration, the MISO output is disabled and the
pin can be used as a GPIO. The slave continues to receive data from the MOSI pin
while its slave select signal is active (see 25.3.5: Slave select (NSS) pin management).
Received data events appear depending on the data buffer configuration. In the master
configuration, the MOSI output is disabled and the pin can be used as a GPIO. The
clock signal is generated continuously as long as the SPI is enabled. The only way to
stop the clock is to clear the RXONLY bit or the SPE bit and wait until the incoming
pattern from the MISO pin is finished and fills the data buffer structure, depending on its
configuration.

Serial peripheral interface/ inter-IC sound (SPI/I2S) RM0401

686/771 RM0401 Rev 3

Figure 242. Simplex single master/single slave application (master in transmit-only/
slave in receive-only mode)

1. The NSS pins can be used to provide a hardware control flow between master and slave. Optionally, the
pins can be left unused by the peripheral. Then the flow has to be handled internally for both master and
slave. For more details see Section 25.3.5: Slave select (NSS) pin management.

2. An accidental input information is captured at the input of transmitter Rx shift register. All the events
associated with the transmitter receive flow must be ignored in standard transmit only mode (e.g. OVF
flag).

3. In this configuration, both the MISO pins can be used as GPIOs.

Note: Any simplex communication can be alternatively replaced by a variant of the half-duplex
communication with a constant setting of the transaction direction (bidirectional mode is
enabled while BDIO bit is not changed).

RM0401 Rev 3 687/771

RM0401 Serial peripheral interface/ inter-IC sound (SPI/I2S)

731

25.3.3 Standard multi-slave communication

In a configuration with two or more independent slaves, the master uses GPIO pins to
manage the chip select lines for each slave (see Figure 243.). The master must select one
of the slaves individually by pulling low the GPIO connected to the slave NSS input. When
this is done, a standard master and dedicated slave communication is established.

Figure 243. Master and three independent slaves

1. NSS pin is not used on master side at this configuration. It has to be managed internally (SSM=1, SSI=1) to
prevent any MODF error.

2. As MISO pins of the slaves are connected together, all slaves must have the GPIO configuration of their
MISO pin set as alternate function open-drain (see Section 6.3.7: I/O alternate function input/output on
page 162).

Serial peripheral interface/ inter-IC sound (SPI/I2S) RM0401

688/771 RM0401 Rev 3

25.3.4 Multi-master communication

Unless SPI bus is not designed for a multi-master capability primarily, the user can use build
in feature which detects a potential conflict between two nodes trying to master the bus at
the same time. For this detection, NSS pin is used configured at hardware input mode.

The connection of more than two SPI nodes working at this mode is impossible as only one
node can apply its output on a common data line at time.

When nodes are non active, both stay at slave mode by default. Once one node wants to
overtake control on the bus, it switches itself into master mode and applies active level on
the slave select input of the other node via dedicated GPIO pin. After the session is
completed, the active slave select signal is released and the node mastering the bus
temporary returns back to passive slave mode waiting for next session start.

If potentially both nodes raised their mastering request at the same time a bus conflict event
appears (see mode fault MODF event). Then the user can apply some simple arbitration
process (e.g. to postpone next attempt by predefined different time-outs applied at both
nodes).

Figure 244. Multi-master application

1. The NSS pin is configured at hardware input mode at both nodes. Its active level enables the MISO line
output control as the passive node is configured as a slave.

25.3.5 Slave select (NSS) pin management

In slave mode, the NSS works as a standard “chip select” input and lets the slave
communicate with the master. In master mode, NSS can be used either as output or input.
As an input it can prevent multimaster bus collision, and as an output it can drive a slave
select signal of a single slave.

Hardware or software slave select management can be set using the SSM bit in the
SPIx_CR1 register:

• Software NSS management (SSM = 1): in this configuration, slave select information
is driven internally by the SSI bit value in register SPIx_CR1. The external NSS pin is
free for other application uses.

• Hardware NSS management (SSM = 0): in this case, there are two possible
configurations. The configuration used depends on the NSS output configuration
(SSOE bit in register SPIx_CR1).

RM0401 Rev 3 689/771

RM0401 Serial peripheral interface/ inter-IC sound (SPI/I2S)

731

– NSS output enable (SSM=0,SSOE = 1): this configuration is only used when the
MCU is set as master. The NSS pin is managed by the hardware. The NSS signal
is driven low as soon as the SPI is enabled in master mode (SPE=1), and is kept
low until the SPI is disabled (SPE =0).

– NSS output disable (SSM=0, SSOE = 0): if the microcontroller is acting as the
master on the bus, this configuration allows multimaster capability. If the NSS pin
is pulled low in this mode, the SPI enters master mode fault state and the device is
automatically reconfigured in slave mode. In slave mode, the NSS pin works as a
standard “chip select” input and the slave is selected while NSS line is at low level.

Figure 245. Hardware/software slave select management

Serial peripheral interface/ inter-IC sound (SPI/I2S) RM0401

690/771 RM0401 Rev 3

25.3.6 Communication formats

During SPI communication, receive and transmit operations are performed simultaneously.
The serial clock (SCK) synchronizes the shifting and sampling of the information on the data
lines. The communication format depends on the clock phase, the clock polarity and the
data frame format. To be able to communicate together, the master and slaves devices must
follow the same communication format.

Clock phase and polarity controls

Four possible timing relationships may be chosen by software, using the CPOL and CPHA
bits in the SPIx_CR1 register. The CPOL (clock polarity) bit controls the idle state value of
the clock when no data is being transferred. This bit affects both master and slave modes. If
CPOL is reset, the SCK pin has a low-level idle state. If CPOL is set, the SCK pin has a
high-level idle state.

If the CPHA bit is set, the second edge on the SCK pin captures the first data bit transacted
(falling edge if the CPOL bit is reset, rising edge if the CPOL bit is set). Data are latched on
each occurrence of this clock transition type. If the CPHA bit is reset, the first edge on the
SCK pin captures the first data bit transacted (falling edge if the CPOL bit is set, rising edge
if the CPOL bit is reset). Data are latched on each occurrence of this clock transition type.

The combination of CPOL (clock polarity) and CPHA (clock phase) bits selects the data
capture clock edge.

Figure 246, shows an SPI full-duplex transfer with the four combinations of the CPHA and
CPOL bits.

Note: Prior to changing the CPOL/CPHA bits the SPI must be disabled by resetting the SPE bit.

The idle state of SCK must correspond to the polarity selected in the SPIx_CR1 register (by
pulling up SCK if CPOL=1 or pulling down SCK if CPOL=0).

RM0401 Rev 3 691/771

RM0401 Serial peripheral interface/ inter-IC sound (SPI/I2S)

731

Figure 246. Data clock timing diagram

Note: The order of data bits depends on LSBFIRST bit setting.

Data frame format

The SPI shift register can be set up to shift out MSB-first or LSB-first, depending on the
value of the LSBFIRST bit. Each data frame is 8 or 16 bit long depending on the size of the
data programmed using the DFF bit in the SPI_CR1 register. The selected data frame
format is applicable both for transmission and reception.

Serial peripheral interface/ inter-IC sound (SPI/I2S) RM0401

692/771 RM0401 Rev 3

25.3.7 SPI configuration

The configuration procedure is almost the same for master and slave. For specific mode
setups, follow the dedicated chapters. When a standard communication is to be initialized,
perform these steps:

1. Write proper GPIO registers: Configure GPIO for MOSI, MISO and SCK pins.

2. Write to the SPI_CR1 register:

a) Configure the serial clock baud rate using the BR[2:0] bits (Note: 3).

b) Configure the CPOL and CPHA bits combination to define one of the four
relationships between the data transfer and the serial clock. (Note: 2 - except the
case when CRC is enabled at TI mode).

c) Select simplex or half-duplex mode by configuring RXONLY or BIDIMODE and
BIDIOE (RXONLY and BIDIMODE can't be set at the same time).

d) Configure the LSBFIRST bit to define the frame format (Note: 2).

e) Configure the CRCEN and CRCEN bits if CRC is needed (while SCK clock signal
is at idle state).

f) Configure SSM and SSI (Note: 2).

g) Configure the MSTR bit (in multimaster NSS configuration, avoid conflict state on
NSS if master is configured to prevent MODF error).

h) Set the DFF bit to configure the data frame format (8 or 16 bits).

3. Write to SPI_CR2 register:

a) Configure SSOE (Note: 1 & 2).

b) Set the FRF bit if the TI protocol is required.

4. Write to SPI_CRCPR register: Configure the CRC polynomial if needed.

5. Write proper DMA registers: Configure DMA streams dedicated for SPI Tx and Rx in
DMA registers if the DMA streams are used.

Note: (1) Step is not required in slave mode.

(2) Step is not required in TI mode.

(3) The step is not required in slave mode except slave working at TI mode.

25.3.8 Procedure for enabling SPI

It is recommended to enable the SPI slave before the master sends the clock. Otherwise,
undesired data transmission might occur. The slave data register must already contain data
to be sent before starting communication with the master (either on the first edge of the
communication clock, or before the end of the ongoing communication if the clock signal is
continuous). The SCK signal must be settled at an idle state level corresponding to the
selected polarity before the SPI slave is enabled.

At full-duplex (or in any transmit-only mode), the master starts communicating when the SPI
is enabled and data to be sent is written in the Tx Buffer.

In any master receive-only mode (RXONLY=1 or BIDIMODE=1 & BIDIOE=0), the master
starts communicating and the clock starts running immediately after the SPI is enabled.

The slave starts communicating when it receives a correct clock signal from the master. The
slave software must write the data to be sent before the SPI master initiates the transfer.

Refer to Section 25.3.11: Communication using DMA (direct memory addressing) for details
on how to handle DMA.

RM0401 Rev 3 693/771

RM0401 Serial peripheral interface/ inter-IC sound (SPI/I2S)

731

25.3.9 Data transmission and reception procedures

Rx and Tx buffers

In reception, data are received and then stored into an internal Rx buffer while in
transmission, data are first stored into an internal Tx buffer before being transmitted. A read
access to the SPI_DR register returns the Rx buffered value whereas a write access to the
SPI_DR stores the written data into the Tx buffer.

Tx buffer handling

The data frame is loaded from the Tx buffer into the shift register during the first bit
transmission. Bits are then shifted out serially from the shift register to a dedicated output
pin depending on LSBFIRST bit setting.The TXE flag (Tx buffer empty) is set when the data
are transferred from the Tx buffer to the shift register. It indicates that the internal Tx buffer is
ready to be loaded with the next data. An interrupt can be generated if the TXEIE bit of the
SPI_CR2 register is set. Clearing the TXE bit is performed by writing to the SPI_DR register.

A continuous transmit stream can be achieved if the next data to be transmitted are stored
in the Tx buffer while previous frame transmission is still ongoing. When the software writes
to Tx buffer while the TXE flag is not set, the data waiting for transaction is overwritten.

Rx buffer handling

The RXNE flag (Rx buffer not empty) is set on the last sampling clock edge, when the data
are transferred from the shift register to the Rx buffer. It indicates that data are ready to be
read from the SPI_DR register. An interrupt can be generated if the RXNEIE bit in the
SPI_CR2 register is set. Clearing the RXNE bit is performed by reading the SPI_DR
register.

If a device has not cleared the RXNE bit resulting from the previous data byte transmitted,
an overrun condition occurs when the next value is buffered. The OVR bit is set and an
interrupt is generated if the ERRIE bit is set.

Another way to manage the data exchange is to use DMA (see Section 8.2: DMA main
features).

Sequence handling

The BSY bit is set when a current data frame transaction is ongoing. When the clock signal
runs continuously, the BSY flag remains set between data frames on the master side.
However, on the slave side, it becomes low for a minimum duration of one SPI clock cycle
between each data frame transfer.

For some configurations, the BSY flag can be used during the last data transfer to wait until
the completion of the transfer.

When a receive-only mode is configured on the master side, either in half-duplex
(BIDIMODE=1, BIDIOE=0) or simplex configuration (BIDIMODE=0, RXONLY=1), the
master starts the receive sequence as soon as the SPI is enabled. Then the clock signal is
provided by the master and it does not stop until either the SPI or the receive-only mode is
disabled by the master. The master receives data frames continuously up to this moment.

While the master can provide all the transactions in continuous mode (SCK signal is
continuous), it has to respect slave capability to handle data flow and its content at anytime.
When necessary, the master must slow down the communication and provide either a
slower clock or separate frames or data sessions with sufficient delays. Be aware there is no

Serial peripheral interface/ inter-IC sound (SPI/I2S) RM0401

694/771 RM0401 Rev 3

underflow error signal for slave operating in SPI mode, and that data from the slave are
always transacted and processed by the master even if the slave cannot not prepare them
correctly in time. It is preferable for the slave to use DMA, especially when data frames are
shorter and bus rate is high.

Each sequence must be encased by the NSS pulse in parallel with the multislave system to
select just one of the slaves for communication. In single slave systems, using NSS to
control the slave is not necessary. However, the NSS pulse can be used to synchronize the
slave with the beginning of each data transfer sequence. NSS can be managed either by
software or by hardware (see Section 25.3.4: Multi-master communication).

Refer to Figure 247 and Figure 248 for a description of continuous transfers in master / full-
duplex and slave full-duplex mode.

Figure 247. TXE/RXNE/BSY behavior in master / full-duplex mode (BIDIMODE=0,
RXONLY=0) in the case of continuous transfers

RM0401 Rev 3 695/771

RM0401 Serial peripheral interface/ inter-IC sound (SPI/I2S)

731

Figure 248. TXE/RXNE/BSY behavior in slave / full-duplex mode (BIDIMODE=0,
RXONLY=0) in the case of continuous transfers

25.3.10 Procedure for disabling the SPI

When SPI is disabled, it is mandatory to follow the disable procedures described in this
paragraph. It is important to do this before the system enters a low-power mode when the
peripheral clock is stopped. Ongoing transactions can be corrupted in this case. In some
modes the disable procedure is the only way to stop continuous communication running.

Master in full-duplex or transmit only mode can finish any transaction when it stops
providing data for transmission. In this case, the clock stops after the last data transaction.

Standard disable procedure is based on pulling BSY status together with TXE flag to check
if a transmission session is fully completed. This check can be done in specific cases, too,
when it is necessary to identify the end of ongoing transactions, for example:

• When NSS signal is managed by an arbitrary GPIO toggle and the master has to
provide proper end of NSS pulse for slave, or

• When transactions’ streams from DMA are completed while the last data frame or CRC
frame transaction is still ongoing in the peripheral bus.

The correct disable procedure is (except when receive-only mode is used):

1. Wait until RXNE=1 to receive the last data.

2. Wait until TXE=1 and then wait until BSY=0 before disabling the SPI.

3. Read received data.

Serial peripheral interface/ inter-IC sound (SPI/I2S) RM0401

696/771 RM0401 Rev 3

Note: During discontinuous communications, there is a 2 APB clock period delay between the
write operation to the SPI_DR register and BSY bit setting. As a consequence it is
mandatory to wait first until TXE is set and then until BSY is cleared after writing the last
data.

The correct disable procedure for certain receive-only modes is:

1. Interrupt the receive flow by disabling SPI (SPE=0) in the specific time window while
the last data frame is ongoing.

2. Wait until BSY=0 (the last data frame is processed).

3. Read received data.

Note: To stop a continuous receive sequence, a specific time window must be respected during
the reception of the last data frame. It starts when the first bit is sampled and ends before
the last bit transfer starts.

25.3.11 Communication using DMA (direct memory addressing)

To operate at its maximum speed and to facilitate the data register read/write process
required to avoid overrun, the SPI features a DMA capability, which implements a simple
request/acknowledge protocol.

A DMA access is requested when the TXE or RXNE enable bit in the SPIx_CR2 register is
set. Separate requests must be issued to the Tx and Rx buffers.

• In transmission, a DMA request is issued each time TXE is set to 1. The DMA then
writes to the SPIx_DR register.

• In reception, a DMA request is issued each time RXNE is set to 1. The DMA then reads
the SPIx_DR register.

Refer to Figure 249 and Figure 250 for a description of the DMA transmission and reception
waveforms.

When the SPI is used only to transmit data, it is possible to enable only the SPI Tx DMA
channel. In this case, the OVR flag is set because the data received is not read. When the
SPI is used only to receive data, it is possible to enable only the SPI Rx DMA channel.

In transmission mode, when the DMA has written all the data to be transmitted (the TCIF
flag is set in the DMA_ISR register), the BSY flag can be monitored to ensure that the SPI
communication is complete. This is required to avoid corrupting the last transmission before
disabling the SPI or entering the Stop mode. The software must first wait until TXE = 1 and
then until BSY = 0.

When starting communication using DMA, to prevent DMA channel management raising
error events, these steps must be followed in order:

1. Enable DMA Rx buffer in the RXDMAEN bit in the SPI_CR2 register, if DMA Rx is
used.

2. Enable DMA streams for Tx and Rx in DMA registers, if the streams are used.

3. Enable DMA Tx buffer in the TXDMAEN bit in the SPI_CR2 register, if DMA Tx is used.

4. Enable the SPI by setting the SPE bit.

RM0401 Rev 3 697/771

RM0401 Serial peripheral interface/ inter-IC sound (SPI/I2S)

731

To close communication it is mandatory to follow these steps in order:

1. Disable DMA streams for Tx and Rx in the DMA registers, if the streams are used.

2. Disable the SPI by following the SPI disable procedure.

3. Disable DMA Tx and Rx buffers by clearing the TXDMAEN and RXDMAEN bits in the
SPI_CR2 register, if DMA Tx and/or DMA Rx are used.

Figure 249. Transmission using DMA

Serial peripheral interface/ inter-IC sound (SPI/I2S) RM0401

698/771 RM0401 Rev 3

Figure 250. Reception using DMA

25.3.12 SPI status flags

Three status flags are provided for the application to completely monitor the state of the SPI
bus.

Tx buffer empty flag (TXE)

When it is set, the TXE flag indicates that the Tx buffer is empty and that the next data to be
transmitted can be loaded into the buffer. The TXE flag is cleared by writing to the SPI_DR
register.

Rx buffer not empty (RXNE)

When set, the RXNE flag indicates that there are valid received data in the Rx buffer. It is
cleared by reading from the SPI_DR register.

Busy flag (BSY)

The BSY flag is set and cleared by hardware (writing to this flag has no effect).

When BSY is set, it indicates that a data transfer is in progress on the SPI (the SPI bus is
busy). There is one exception in master bidirectional receive mode (MSTR=1 and BDM=1
and BDOE=0) where the BSY flag is kept low during reception.

The BSY flag can be used in certain modes to detect the end of a transfer, thus preventing
corruption of the last transfer when the SPI peripheral clock is disabled before entering a
low-power mode or an NSS pulse end is handled by software.

The BSY flag is also useful for preventing write collisions in a multimaster system.

RM0401 Rev 3 699/771

RM0401 Serial peripheral interface/ inter-IC sound (SPI/I2S)

731

The BSY flag is cleared under any one of the following conditions:

• When the SPI is correctly disabled

• When a fault is detected in Master mode (MODF bit set to 1)

• In Master mode, when it finishes a data transmission and no new data is ready to be
sent

• In Slave mode, when the BSY flag is set to '0' for at least one SPI clock cycle between
each data transfer.

Note: It is recommended to use always the TXE and RXNE flags (instead of the BSY flags) to
handle data transmission or reception operations.

25.3.13 SPI error flags

An SPI interrupt is generated if one of the following error flags is set and interrupt is enabled
by setting the ERRIE bit.

Overrun flag (OVR)

An overrun condition occurs when the master or the slave completes the reception of the
next data frame while the read operation of the previous frame from the Rx buffer has not
completed (case RXNE flag is set).

In this case, the content of the Rx buffer is not updated with the new data received. A read
operation from the SPI_DR register returns the frame previously received. All other
subsequently transmitted data are lost.

Clearing the OVR bit is done by a read access to the SPI_DR register followed by a read
access to the SPI_SR register.

Mode fault (MODF)

Mode fault occurs when the master device has its internal NSS signal (NSS pin in NSS
hardware mode, or SSI bit in NSS software mode) pulled low. This automatically sets the
MODF bit. Master mode fault affects the SPI interface in the following ways:

• The MODF bit is set and an SPI interrupt is generated if the ERRIE bit is set.

• The SPE bit is cleared. This blocks all output from the device and disables the SPI
interface.

• The MSTR bit is cleared, thus forcing the device into slave mode.

Use the following software sequence to clear the MODF bit:

1. Make a read or write access to the SPIx_SR register while the MODF bit is set.

2. Then write to the SPIx_CR1 register.

To avoid any multiple slave conflicts in a system comprising several MCUs, the NSS pin
must be pulled high during the MODF bit clearing sequence. The SPE and MSTR bits can
be restored to their original state after this clearing sequence. As a security, hardware does
not allow the SPE and MSTR bits to be set while the MODF bit is set. In a slave device the
MODF bit cannot be set except as the result of a previous multimaster conflict.

Serial peripheral interface/ inter-IC sound (SPI/I2S) RM0401

700/771 RM0401 Rev 3

CRC error (CRCERR)

This flag is used to verify the validity of the value received when the CRCEN bit in the
SPIx_CR1 register is set. The CRCERR flag in the SPIx_SR register is set if the value
received in the shift register does not match the receiver SPIx_RXCRC value. The flag is
cleared by the software.

TI mode frame format error (FRE)

A TI mode frame format error is detected when an NSS pulse occurs during an ongoing
communication when the SPI is operating in slave mode and configured to conform to the TI
mode protocol. When this error occurs, the FRE flag is set in the SPIx_SR register. The SPI
is not disabled when an error occurs, the NSS pulse is ignored, and the SPI waits for the
next NSS pulse before starting a new transfer. The data may be corrupted since the error
detection may result in the loss of two data bytes.

The FRE flag is cleared when SPIx_SR register is read. If the ERRIE bit is set, an interrupt
is generated on the NSS error detection. In this case, the SPI should be disabled because
data consistency is no longer guaranteed and communications should be re-initiated by the
master when the slave SPI is enabled again.

25.4 SPI special features

25.4.1 TI mode

TI protocol in master mode

The SPI interface is compatible with the TI protocol. The FRF bit of the SPIx_CR2 register
can be used to configure the SPI to be compliant with this protocol.

The clock polarity and phase are forced to conform to the TI protocol requirements whatever
the values set in the SPIx_CR1 register. NSS management is also specific to the TI protocol
which makes the configuration of NSS management through the SPIx_CR1 and SPIx_CR2
registers (SSM, SSI, SSOE) impossible in this case.

In slave mode, the SPI baud rate prescaler is used to control the moment when the MISO
pin state changes to HiZ when the current transaction finishes (see Figure 251). Any baud
rate can be used, making it possible to determine this moment with optimal flexibility.
However, the baud rate is generally set to the external master clock baud rate. The delay for
the MISO signal to become HiZ (trelease) depends on internal resynchronization and on the
baud rate value set in through the BR[2:0] bits in the SPIx_CR1 register. It is given by the
formula:

If the slave detects a misplaced NSS pulse during a data frame transaction the TIFRE flag is
set.

This feature is not available for Motorola SPI communications (FRF bit set to 0).

tbaud_rate

2
---------------------- 4 tpclk×+ trelease

tbaud_rate

2
---------------------- 6 tpclk×+< <

RM0401 Rev 3 701/771

RM0401 Serial peripheral interface/ inter-IC sound (SPI/I2S)

731

Note: To detect TI frame errors in slave transmitter only mode by using the Error interrupt
(ERRIE=1), the SPI must be configured in 2-line unidirectional mode by setting BIDIMODE
and BIDIOE to 1 in the SPI_CR1 register. When BIDIMODE is set to 0, OVR is set to 1
because the data register is never read and error interrupts are always generated, while
when BIDIMODE is set to 1, data are not received and OVR is never set.

Figure 251 shows the SPI communication waveforms when TI mode is selected.

Figure 251. TI mode transfer

25.4.2 CRC calculation

Two separate CRC calculators (on transmission and reception data flows) are implemented
in order to check the reliability of transmitted and received data. The SPI offers CRC8 or
CRC16 calculation depending on the data format selected through the DFF bit. The CRC is
calculated serially using the polynomial programmed in the SPI_CRCPR register.

CRC principle

CRC calculation is enabled by setting the CRCEN bit in the SPIx_CR1 register before the
SPI is enabled (SPE = 1). The CRC value is calculated using an odd programmable
polynomial on each bit. The calculation is processed on the sampling clock edge defined by
the CPHA and CPOL bits in the SPIx_CR1 register. The calculated CRC value is checked
automatically at the end of the data block as well as for transfer managed by CPU or by the
DMA. When a mismatch is detected between the CRC calculated internally on the received
data and the CRC sent by the transmitter, a CRCERR flag is set to indicate a data corruption
error. The right procedure for handling the CRC calculation depends on the SPI
configuration and the chosen transfer management.

Note: The polynomial value should only be odd. No even values are supported.

CRC transfer managed by CPU

Communication starts and continues normally until the last data frame has to be sent or
received in the SPIx_DR register. Then CRCNEXT bit has to be set in the SPIx_CR1
register to indicate that the CRC frame transaction will follow after the transaction of the
currently processed data frame. The CRCNEXT bit must be set before the end of the last
data frame transaction. CRC calculation is frozen during CRC transaction.

Serial peripheral interface/ inter-IC sound (SPI/I2S) RM0401

702/771 RM0401 Rev 3

The received CRC is stored in the Rx buffer like any other data frame.

A CRC-format transaction takes one more data frame to communicate at the end of data
sequence.

When the last CRC data is received, an automatic check is performed comparing the
received value and the value in the SPIx_RXCRC register. Software has to check the
CRCERR flag in the SPIx_SR register to determine if the data transfers were corrupted or
not. Software clears the CRCERR flag by writing '0' to it.

After the CRC reception, the CRC value is stored in the Rx buffer and must be read in the
SPIx_DR register in order to clear the RXNE flag.

CRC transfer managed by DMA

When SPI communication is enabled with CRC communication and DMA mode, the
transmission and reception of the CRC at the end of communication is automatic (with the
exception of reading CRC data in receive-only mode). The CRCNEXT bit does not have to
be handled by the software. The counter for the SPI transmission DMA channel has to be
set to the number of data frames to transmit excluding the CRC frame. On the receiver side,
the received CRC value is handled automatically by DMA at the end of the transaction but
user must take care to flush out the CRC frame received from SPI_DR as it is always loaded
into it.

At the end of the data and CRC transfers, the CRCERR flag in the SPIx_SR register is set if
corruption occurred during the transfer.

Resetting the SPIx_TXCRC and SPIx_RXCRC values

The SPIx_TXCRC and SPIx_RXCRC values are cleared automatically when CRC
calculation is enabled.

When the SPI is configured in slave mode with the CRC feature enabled, a CRC calculation
is performed even if a high level is applied on the NSS pin. This may happen for example in
case of a multislave environment where the communication master addresses slaves
alternately.

Between a slave disabling (high level on NSS) and a new slave enabling (low level on NSS),
the CRC value should be cleared on both master and slave sides to resynchronize the
master and slave respective CRC calculation.

To clear the CRC, follow the below sequence:

1. Disable the SPI

2. Clear the CRCEN bit

3. Enable the CRCEN bit

4. Enable the SPI

Note: When the SPI interface is configured as a slave, the NSS internal signal needs to be kept
low during transaction of the CRC phase once the CRCNEXT signal is released, (see more
details at the product errata sheet).

At TI mode, despite the fact that the clock phase and clock polarity setting is fixed and
independent on the SPIx_CR1 register, the corresponding setting CPOL=0 CPHA=1 has to
be kept at the SPIx_CR1 register anyway if CRC is applied. In addition, the CRC calculation
has to be reset between sessions by the SPI disable sequence by re-enabling the CRCEN
bit described above at both master and slave sides, else the CRC calculation can be
corrupted at this specific mode.

RM0401 Rev 3 703/771

RM0401 Serial peripheral interface/ inter-IC sound (SPI/I2S)

731

25.5 SPI interrupts

During SPI communication an interrupts can be generated by the following events:

• Transmit Tx buffer ready to be loaded

• Data received in Rx buffer

• Master mode fault

• Overrun error

• TI frame format error

Interrupts can be enabled and disabled separately.

Table 125. SPI interrupt requests

Interrupt event Event flag Enable Control bit

Transmit Tx buffer ready to be loaded TXE TXEIE

Data received in Rx buffer RXNE RXNEIE

Master Mode fault event MODF

ERRIE
Overrun error OVR

CRC error CRCERR

TI frame format error FRE

Serial peripheral interface/ inter-IC sound (SPI/I2S) RM0401

704/771 RM0401 Rev 3

25.6 I2S functional description

25.6.1 I2S general description

The block diagram of the I2S is shown in Figure 252.

Figure 252. I2S block diagram

1. MCK is mapped on the MISO pin.

The SPI can function as an audio I2S interface when the I2S capability is enabled (by setting
the I2SMOD bit in the SPIx_I2SCFGR register). This interface mainly uses the same pins,
flags and interrupts as the SPI.

RM0401 Rev 3 705/771

RM0401 Serial peripheral interface/ inter-IC sound (SPI/I2S)

731

The I2S shares three common pins with the SPI:

• SD: Serial Data (mapped on the MOSI pin) to transmit or receive the two time-
multiplexed data channels (in half-duplex mode only).

• WS: Word Select (mapped on the NSS pin) is the data control signal output in master
mode and input in slave mode.

• CK: Serial Clock (mapped on the SCK pin) is the serial clock output in master mode
and serial clock input in slave mode.

An additional pin can be used when a master clock output is needed for some external
audio devices:

• MCK: Master Clock (mapped separately) is used, when the I2S is configured in master
mode (and when the MCKOE bit in the SPIx_I2SPR register is set), to output this
additional clock generated at a preconfigured frequency rate equal to 256 × fS, where
fS is the audio sampling frequency.

The I2S uses its own clock generator to produce the communication clock when it is set in
master mode. This clock generator is also the source of the master clock output. Two
additional registers are available in I2S mode. One is linked to the clock generator
configuration SPIx_I2SPR and the other one is a generic I2S configuration register
SPIx_I2SCFGR (audio standard, slave/master mode, data format, packet frame, clock
polarity, etc.).

The SPIx_CR1 register and all CRC registers are not used in the I2S mode. Likewise, the
SSOE bit in the SPIx_CR2 register and the MODF and CRCERR bits in the SPIx_SR are
not used.

The I2S uses the same SPI register for data transfer (SPIx_DR) in 16-bit wide mode.

25.6.2 I2S full-duplex

Figure 253 shows how to perform full-duplex communications using two SPI/I2S instances.
In this case, the WS and CK IOs of both SPI2S must be connected together.

For the master full-duplex mode, one of the SPI2S block must be programmed in master
(I2SCFG = ‘10’ or ‘11’), and the other SPI2S block must be programmed in slave (I2SCFG =
‘00’ or ‘01’). The MCK can be generated or not, depending on the application needs.

For the slave full-duplex mode, both SPI2S blocks must be programmed in slave. One of
them in the slave receiver (I2SCFG = ‘01’), and the other in the slave transmitter (I2SCFG =
‘00’). The master external device then provides the bit clock (CK) and the frame
synchronization (WS).

Note that the full-duplex mode can be used for all the supported standards: I2S Philips, MSB
justified, LSB justified and PCM.

For the full-duplex mode, both SPI2S instances must use the same standard, with the same
parameters: I2SMOD, I2SSTD, CKPOL, PCMSYNC, DATLEN and CHLEN must contain the
same value on both instances.

Serial peripheral interface/ inter-IC sound (SPI/I2S) RM0401

706/771 RM0401 Rev 3

Figure 253. Full-duplex communication

25.6.3 Supported audio protocols

The three-line bus has to handle only audio data generally time-multiplexed on two
channels: the right channel and the left channel. However there is only one 16-bit register
for transmission or reception. So, it is up to the software to write into the data register the
appropriate value corresponding to each channel side, or to read the data from the data
register and to identify the corresponding channel by checking the CHSIDE bit in the
SPIx_SR register. Channel left is always sent first followed by the channel right (CHSIDE
has no meaning for the PCM protocol).

Four data and packet frames are available. Data may be sent with a format of:

• 16-bit data packed in a 16-bit frame

• 16-bit data packed in a 32-bit frame

• 24-bit data packed in a 32-bit frame

• 32-bit data packed in a 32-bit frame

When using 16-bit data extended on 32-bit packet, the first 16 bits (MSB) are the significant
bits, the 16-bit LSB is forced to 0 without any need for software action or DMA request (only
one read/write operation).

The 24-bit and 32-bit data frames need two CPU read or write operations to/from the
SPIx_DR register or two DMA operations if the DMA is preferred for the application. For 24-
bit data frame specifically, the 8 non significant bits are extended to 32 bits with 0-bits (by
hardware).

For all data formats and communication standards, the most significant bit is always sent
first (MSB first).

RM0401 Rev 3 707/771

RM0401 Serial peripheral interface/ inter-IC sound (SPI/I2S)

731

The I2S interface supports four audio standards, configurable using the I2SSTD[1:0] and
PCMSYNC bits in the SPIx_I2SCFGR register.

I2S Philips standard

For this standard, the WS signal is used to indicate which channel is being transmitted. It is
activated one CK clock cycle before the first bit (MSB) is available.

Figure 254. I2S Philips protocol waveforms (16/32-bit full accuracy, CPOL = 0)

Data are latched on the falling edge of CK (for the transmitter) and are read on the rising
edge (for the receiver). The WS signal is also latched on the falling edge of CK.

Figure 255. I2S Philips standard waveforms (24-bit frame with CPOL = 0)

This mode needs two write or read operations to/from the SPIx_DR register.

Serial peripheral interface/ inter-IC sound (SPI/I2S) RM0401

708/771 RM0401 Rev 3

• In transmission mode:

If 0x8EAA33 has to be sent (24-bit):

Figure 256. Transmitting 0x8EAA33

• In reception mode:

If data 0x8EAA33 is received:

Figure 257. Receiving 0x8EAA33

Figure 258. I2S Philips standard (16-bit extended to 32-bit packet frame with
CPOL = 0)

When 16-bit data frame extended to 32-bit channel frame is selected during the I2S
configuration phase, only one access to the SPIx_DR register is required. The 16 remaining
bits are forced by hardware to 0x0000 to extend the data to 32-bit format.

If the data to transmit or the received data are 0x76A3 (0x76A30000 extended to 32-bit), the
operation shown in Figure 259 is required.

RM0401 Rev 3 709/771

RM0401 Serial peripheral interface/ inter-IC sound (SPI/I2S)

731

Figure 259. Example of 16-bit data frame extended to 32-bit channel frame

For transmission, each time an MSB is written to SPIx_DR, the TXE flag is set and its
interrupt, if allowed, is generated to load the SPIx_DR register with the new value to send.
This takes place even if 0x0000 have not yet been sent because it is done by hardware.

For reception, the RXNE flag is set and its interrupt, if allowed, is generated when the first
16 MSB half-word is received.

In this way, more time is provided between two write or read operations, which prevents
underrun or overrun conditions (depending on the direction of the data transfer).

MSB justified standard

For this standard, the WS signal is generated at the same time as the first data bit, which is
the MSBit.

Figure 260. MSB Justified 16-bit or 32-bit full-accuracy length with CPOL = 0

Data are latched on the falling edge of CK (for transmitter) and are read on the rising edge
(for the receiver).

Figure 261. MSB justified 24-bit frame length with CPOL = 0

Serial peripheral interface/ inter-IC sound (SPI/I2S) RM0401

710/771 RM0401 Rev 3

Figure 262. MSB justified 16-bit extended to 32-bit packet frame with CPOL = 0

LSB justified standard

This standard is similar to the MSB justified standard (no difference for the 16-bit and 32-bit
full-accuracy frame formats).

Figure 263. LSB justified 16-bit or 32-bit full-accuracy with CPOL = 0

Figure 264. LSB justified 24-bit frame length with CPOL = 0

RM0401 Rev 3 711/771

RM0401 Serial peripheral interface/ inter-IC sound (SPI/I2S)

731

• In transmission mode:

If data 0x3478AE have to be transmitted, two write operations to the SPIx_DR register
are required by software or by DMA. The operations are shown below.

Figure 265. Operations required to transmit 0x3478AE

• In reception mode:

If data 0x3478AE are received, two successive read operations from the SPIx_DR
register are required on each RXNE event.

Figure 266. Operations required to receive 0x3478AE

Figure 267. LSB justified 16-bit extended to 32-bit packet frame with CPOL = 0

When 16-bit data frame extended to 32-bit channel frame is selected during the I2S
configuration phase, Only one access to the SPIx_DR register is required. The 16 remaining
bits are forced by hardware to 0x0000 to extend the data to 32-bit format. In this case it
corresponds to the half-word MSB.

If the data to transmit or the received data are 0x76A3 (0x0000 76A3 extended to 32-bit),
the operation shown in Figure 268 is required.

Serial peripheral interface/ inter-IC sound (SPI/I2S) RM0401

712/771 RM0401 Rev 3

Figure 268. Example of 16-bit data frame extended to 32-bit channel frame

In transmission mode, when a TXE event occurs, the application has to write the data to be
transmitted (in this case 0x76A3). The 0x000 field is transmitted first (extension on 32-bit).
The TXE flag is set again as soon as the effective data (0x76A3) is sent on SD.

In reception mode, RXNE is asserted as soon as the significant half-word is received (and
not the 0x0000 field).

In this way, more time is provided between two write or read operations to prevent underrun
or overrun conditions.

PCM standard

For the PCM standard, there is no need to use channel-side information. The two PCM
modes (short and long frame) are available and configurable using the PCMSYNC bit in
SPIx_I2SCFGR register.

Figure 269. PCM standard waveforms (16-bit)

For long frame synchronization, the WS signal assertion time is fixed to 13 bits in master
mode.

For short frame synchronization, the WS synchronization signal is only one cycle long.

Figure 270. PCM standard waveforms (16-bit extended to 32-bit packet frame)

RM0401 Rev 3 713/771

RM0401 Serial peripheral interface/ inter-IC sound (SPI/I2S)

731

Note: For both modes (master and slave) and for both synchronizations (short and long), the
number of bits between two consecutive pieces of data (and so two synchronization signals)
needs to be specified (DATLEN and CHLEN bits in the SPIx_I2SCFGR register) even in
slave mode.

25.6.4 Clock generator

The I2S bitrate determines the data flow on the I2S data line and the I2S clock signal
frequency.

I2S bitrate = number of bits per channel × number of channels × sampling audio frequency

For a 16-bit audio, left and right channel, the I2S bitrate is calculated as follows:

I2S bitrate = 16 × 2 × fS

It will be: I2S bitrate = 32 x 2 x fS if the packet length is 32-bit wide.

Figure 271. Audio sampling frequency definition

When the master mode is configured, a specific action needs to be taken to properly
program the linear divider in order to communicate with the desired audio frequency.

Figure 272 presents the communication clock architecture. The I2Sx clock is always the
system clock.

Figure 272. I2S clock generator architecture

1. Where x = 2.

Serial peripheral interface/ inter-IC sound (SPI/I2S) RM0401

714/771 RM0401 Rev 3

The audio sampling frequency may be 192 KHz, 96 kHz, 48 kHz, 44.1 kHz, 32 kHz,
22.05 kHz, 16 kHz, 11.025 kHz or 8 kHz (or any other value within this range). In order to
reach the desired frequency, the linear divider needs to be programmed according to the
formulas below:

When the master clock is generated (MCKOE in the SPIx_I2SPR register is set):

fS = I2SxCLK / [(16*2)*((2*I2SDIV)+ODD)*8)] when the channel frame is 16-bit wide

fS = I2SxCLK / [(32*2)*((2*I2SDIV)+ODD)*4)] when the channel frame is 32-bit wide

When the master clock is disabled (MCKOE bit cleared):

fS = I2SxCLK / [(16*2)*((2*I2SDIV)+ODD))] when the channel frame is 16-bit wide

fS = I2SxCLK / [(32*2)*((2*I2SDIV)+ODD))] when the channel frame is 32-bit wide

Table 126 provides example precision values for different clock configurations.

Note: Other configurations are possible that allow optimum clock precision.

Table 126. Audio-frequency precision using standard 8 MHz HSE(1)

SYSCLK

(MHz)
Data

length
I2SDIV I2SODD MCLK

Target fS
(Hz)

Real fS (KHz) Error

48 16 8 0 No 96000 93750 2.3438%

48 32 4 0 No 96000 93750 2.3438%

48 16 15 1 No 48000 48387.0968 0.8065%

48 32 8 0 No 48000 46875 2.3438%

48 16 17 0 No 44100 44117.647 0.0400%

48 32 8 1 No 44100 44117.647 0.0400%

48 16 23 1 No 32000 31914.8936 0.2660%

48 32 11 1 No 32000 32608.696 1.9022%

48 16 34 0 No 22050 22058.8235 0.0400%

48 32 17 0 No 22050 22058.8235 0.0400%

48 16 47 0 No 16000 15957.4468 0.2660%

48 32 23 1 No 16000 15957.447 0.2660%

48 16 68 0 No 11025 11029.4118 0.0400%

48 32 34 0 No 11025 11029.412 0.0400%

48 16 94 0 No 8000 7978.7234 0.2660%

48 32 47 0 No 8000 7978.7234 0.2660%

48 16 2 0 Yes 48000 46875 2.3430%

48 32 2 0 Yes 48000 46875 2.3430%

48 16 2 0 Yes 44100 46875 6.2925%

48 32 2 0 Yes 44100 46875 6.2925%

48 16 3 0 Yes 32000 31250 2.3438%

48 32 3 0 Yes 32000 31250 2.3438%

48 16 4 1 Yes 22050 20833.333 5.5178%

RM0401 Rev 3 715/771

RM0401 Serial peripheral interface/ inter-IC sound (SPI/I2S)

731

25.6.5 I2S master mode

The I2S can be configured in master mode. This means that the serial clock is generated on
the CK pin as well as the Word Select signal WS. Master clock (MCK) may be output or not,
controlled by the MCKOE bit in the SPIx_I2SPR register.

Procedure

1. Select the I2SDIV[7:0] bits in the SPIx_I2SPR register to define the serial clock baud
rate to reach the proper audio sample frequency. The ODD bit in the SPIx_I2SPR
register also has to be defined.

2. Select the CKPOL bit to define the steady level for the communication clock. Set the
MCKOE bit in the SPIx_I2SPR register if the master clock MCK needs to be provided
to the external ADC audio component (the I2SDIV and ODD values should be
computed depending on the state of the MCK output, for more details refer to
Section 25.6.4: Clock generator).

3. Set the I2SMOD bit in the SPIx_I2SCFGR register to activate the I2S functions and
choose the I2S standard through the I2SSTD[1:0] and PCMSYNC bits, the data length
through the DATLEN[1:0] bits and the number of bits per channel by configuring the
CHLEN bit. Select also the I2S master mode and direction (Transmitter or Receiver)
through the I2SCFG[1:0] bits in the SPIx_I2SCFGR register.

4. If needed, select all the potential interrupt sources and the DMA capabilities by writing
the SPIx_CR2 register.

5. The I2SE bit in SPIx_I2SCFGR register must be set.

WS and CK are configured in output mode. MCK is also an output, if the MCKOE bit in
SPIx_I2SPR is set.

Transmission sequence

The transmission sequence begins when a half-word is written into the Tx buffer.

Lets assume the first data written into the Tx buffer corresponds to the left channel data.
When data are transferred from the Tx buffer to the shift register, TXE is set and data
corresponding to the right channel have to be written into the Tx buffer. The CHSIDE flag

48 32 4 1 Yes 22050 20833.333 5.5178%

48 16 6 0 Yes 16000 15625 2.3438%

48 32 6 0 Yes 16000 15625 2.3438%

48 16 8 1 Yes 11025 11029.4118 0.0400%

48 32 8 1 Yes 11025 11029.4118 0.0400%

48 16 11 1 Yes 8000 8152.17391 1.9022%

48 32 11 1 Yes 8000 8152.17391 1.9022%

1. This table gives only example values for different clock configurations. Other configurations allowing
optimum clock precision are possible.

Table 126. Audio-frequency precision using standard 8 MHz HSE(1) (continued)

SYSCLK

(MHz)
Data

length
I2SDIV I2SODD MCLK

Target fS
(Hz)

Real fS (KHz) Error

Serial peripheral interface/ inter-IC sound (SPI/I2S) RM0401

716/771 RM0401 Rev 3

indicates which channel is to be transmitted. It has a meaning when the TXE flag is set
because the CHSIDE flag is updated when TXE goes high.

A full frame has to be considered as a left channel data transmission followed by a right
channel data transmission. It is not possible to have a partial frame where only the left
channel is sent.

The data half-word is parallel loaded into the 16-bit shift register during the first bit
transmission, and then shifted out, serially, to the MOSI/SD pin, MSB first. The TXE flag is
set after each transfer from the Tx buffer to the shift register and an interrupt is generated if
the TXEIE bit in the SPIx_CR2 register is set.

For more details about the write operations depending on the I2S Standard-mode selected,
refer to Section 25.6.3: Supported audio protocols).

To ensure a continuous audio data transmission, it is mandatory to write the SPIx_DR
register with the next data to transmit before the end of the current transmission.

To switch off the I2S, by clearing I2SE, it is mandatory to wait for TXE = 1 and BSY = 0.

Reception sequence

The operating mode is the same as for transmission mode except for the point 3 (refer to the
procedure described in Section 25.6.5: I2S master mode), where the configuration should
set the master reception mode through the I2SCFG[1:0] bits.

Whatever the data or channel length, the audio data are received by 16-bit packets. This
means that each time the Rx buffer is full, the RXNE flag is set and an interrupt is generated
if the RXNEIE bit is set in SPIx_CR2 register. Depending on the data and channel length
configuration, the audio value received for a right or left channel may result from one or two
receptions into the Rx buffer.

Clearing the RXNE bit is performed by reading the SPIx_DR register.

CHSIDE is updated after each reception. It is sensitive to the WS signal generated by the
I2S cell.

For more details about the read operations depending on the I2S Standard-mode selected,
refer to Section 25.6.3: Supported audio protocols.

If data are received while the previously received data have not been read yet, an overrun is
generated and the OVR flag is set. If the ERRIE bit is set in the SPIx_CR2 register, an
interrupt is generated to indicate the error.

To switch off the I2S, specific actions are required to ensure that the I2S completes the
transfer cycle properly without initiating a new data transfer. The sequence depends on the
configuration of the data and channel lengths, and on the audio protocol mode selected. In
the case of:

• 16-bit data length extended on 32-bit channel length (DATLEN = 00 and CHLEN = 1)
using the LSB justified mode (I2SSTD = 10)

a) Wait for the second to last RXNE = 1 (n – 1)

b) Then wait 17 I2S clock cycles (using a software loop)

c) Disable the I2S (I2SE = 0)

• 16-bit data length extended on 32-bit channel length (DATLEN = 00 and CHLEN = 1) in
MSB justified, I2S or PCM modes (I2SSTD = 00, I2SSTD = 01 or I2SSTD = 11,
respectively)

a) Wait for the last RXNE

RM0401 Rev 3 717/771

RM0401 Serial peripheral interface/ inter-IC sound (SPI/I2S)

731

b) Then wait 1 I2S clock cycle (using a software loop)

c) Disable the I2S (I2SE = 0)

• For all other combinations of DATLEN and CHLEN, whatever the audio mode selected
through the I2SSTD bits, carry out the following sequence to switch off the I2S:

a) Wait for the second to last RXNE = 1 (n – 1)

b) Then wait one I2S clock cycle (using a software loop)

c) Disable the I2S (I2SE = 0)

Note: The BSY flag is kept low during transfers.

25.6.6 I2S slave mode

For the slave configuration, the I2S can be configured in transmission or reception mode.

The operating mode is following mainly the same rules as described for the I2S master
configuration. In slave mode, there is no clock to be generated by the I2S interface. The
clock and WS signals are input from the external master connected to the I2S interface.
There is then no need, for the user, to configure the clock.

The configuration steps to follow are listed below:

1. Set the I2SMOD bit in the SPIx_I2SCFGR register to select I2S mode and choose the
I2S standard through the I2SSTD[1:0] bits, the data length through the DATLEN[1:0]
bits and the number of bits per channel for the frame configuring the CHLEN bit. Select
also the mode (transmission or reception) for the slave through the I2SCFG[1:0] bits in
SPIx_I2SCFGR register.

2. If needed, select all the potential interrupt sources and the DMA capabilities by writing
the SPIx_CR2 register.

3. The I2SE bit in SPIx_I2SCFGR register must be set.

Transmission sequence

The transmission sequence begins when the external master device sends the clock and
when the NSS_WS signal requests the transfer of data. The slave has to be enabled before
the external master starts the communication. The I2S data register has to be loaded before
the master initiates the communication.

For the I2S, MSB justified and LSB justified modes, the first data item to be written into the
data register corresponds to the data for the left channel. When the communication starts,
the data are transferred from the Tx buffer to the shift register. The TXE flag is then set in
order to request the right channel data to be written into the I2S data register.

The CHSIDE flag indicates which channel is to be transmitted. Compared to the master
transmission mode, in slave mode, CHSIDE is sensitive to the WS signal coming from the
external master. This means that the slave needs to be ready to transmit the first data
before the clock is generated by the master. WS assertion corresponds to left channel
transmitted first.

Note: The I2SE has to be written at least two PCLK cycles before the first clock of the master
comes on the CK line.

The data half-word is parallel-loaded into the 16-bit shift register (from the internal bus)
during the first bit transmission, and then shifted out serially to the MOSI/SD pin MSB first.
The TXE flag is set after each transfer from the Tx buffer to the shift register and an interrupt
is generated if the TXEIE bit in the SPIx_CR2 register is set.

Serial peripheral interface/ inter-IC sound (SPI/I2S) RM0401

718/771 RM0401 Rev 3

Note that the TXE flag should be checked to be at 1 before attempting to write the Tx buffer.

For more details about the write operations depending on the I2S Standard-mode selected,
refer to Section 25.6.3: Supported audio protocols.

To secure a continuous audio data transmission, it is mandatory to write the SPIx_DR
register with the next data to transmit before the end of the current transmission. An
underrun flag is set and an interrupt may be generated if the data are not written into the
SPIx_DR register before the first clock edge of the next data communication. This indicates
to the software that the transferred data are wrong. If the ERRIE bit is set into the SPIx_CR2
register, an interrupt is generated when the UDR flag in the SPIx_SR register goes high. In
this case, it is mandatory to switch off the I2S and to restart a data transfer starting from the
left channel.

To switch off the I2S, by clearing the I2SE bit, it is mandatory to wait for TXE = 1 and
BSY = 0.

Reception sequence

The operating mode is the same as for the transmission mode except for the point 1 (refer to
the procedure described in Section 25.6.6: I2S slave mode), where the configuration should
set the master reception mode using the I2SCFG[1:0] bits in the SPIx_I2SCFGR register.

Whatever the data length or the channel length, the audio data are received by 16-bit
packets. This means that each time the RX buffer is full, the RXNE flag in the SPIx_SR
register is set and an interrupt is generated if the RXNEIE bit is set in the SPIx_CR2
register. Depending on the data length and channel length configuration, the audio value
received for a right or left channel may result from one or two receptions into the RX buffer.

The CHSIDE flag is updated each time data are received to be read from the SPIx_DR
register. It is sensitive to the external WS line managed by the external master component.

Clearing the RXNE bit is performed by reading the SPIx_DR register.

For more details about the read operations depending the I2S Standard-mode selected,
refer to Section 25.6.3: Supported audio protocols.

If data are received while the preceding received data have not yet been read, an overrun is
generated and the OVR flag is set. If the bit ERRIE is set in the SPIx_CR2 register, an
interrupt is generated to indicate the error.

To switch off the I2S in reception mode, I2SE has to be cleared immediately after receiving
the last RXNE = 1.

Note: The external master components should have the capability of sending/receiving data in 16-
bit or 32-bit packets via an audio channel.

25.6.7 I2S status flags

Three status flags are provided for the application to fully monitor the state of the I2S bus.

Busy flag (BSY)

The BSY flag is set and cleared by hardware (writing to this flag has no effect). It indicates
the state of the communication layer of the I2S.

When BSY is set, it indicates that the I2S is busy communicating. There is one exception in
master receive mode (I2SCFG = 11) where the BSY flag is kept low during reception.

RM0401 Rev 3 719/771

RM0401 Serial peripheral interface/ inter-IC sound (SPI/I2S)

731

The BSY flag is useful to detect the end of a transfer if the software needs to disable the I2S.
This avoids corrupting the last transfer. For this, the procedure described below must be
strictly respected.

The BSY flag is set when a transfer starts, except when the I2S is in master receiver mode.

The BSY flag is cleared:

• When a transfer completes (except in master transmit mode, in which the
communication is supposed to be continuous)

• When the I2S is disabled

When communication is continuous:

• In master transmit mode, the BSY flag is kept high during all the transfers

• In slave mode, the BSY flag goes low for one I2S clock cycle between each transfer

Note: Do not use the BSY flag to handle each data transmission or reception. It is better to use the
TXE and RXNE flags instead.

Tx buffer empty flag (TXE)

When set, this flag indicates that the Tx buffer is empty and the next data to be transmitted
can then be loaded into it. The TXE flag is reset when the Tx buffer already contains data to
be transmitted. It is also reset when the I2S is disabled (I2SE bit is reset).

RX buffer not empty (RXNE)

When set, this flag indicates that there are valid received data in the RX Buffer. It is reset
when SPIx_DR register is read.

Channel Side flag (CHSIDE)

In transmission mode, this flag is refreshed when TXE goes high. It indicates the channel
side to which the data to transfer on SD has to belong. In case of an underrun error event in
slave transmission mode, this flag is not reliable and I2S needs to be switched off and
switched on before resuming the communication.

In reception mode, this flag is refreshed when data are received into SPIx_DR. It indicates
from which channel side data have been received. Note that in case of error (like OVR) this
flag becomes meaningless and the I2S should be reset by disabling and then enabling it
(with configuration if it needs changing).

This flag has no meaning in the PCM standard (for both Short and Long frame modes).

When the OVR or UDR flag in the SPIx_SR is set and the ERRIE bit in SPIx_CR2 is also
set, an interrupt is generated. This interrupt can be cleared by reading the SPIx_SR status
register (once the interrupt source has been cleared).

25.6.8 I2S error flags

There are three error flags for the I2S cell.

Underrun flag (UDR)

In slave transmission mode this flag is set when the first clock for data transmission appears
while the software has not yet loaded any value into SPIx_DR. It is available when the
I2SMOD bit in the SPIx_I2SCFGR register is set. An interrupt may be generated if the

Serial peripheral interface/ inter-IC sound (SPI/I2S) RM0401

720/771 RM0401 Rev 3

ERRIE bit in the SPIx_CR2 register is set.
The UDR bit is cleared by a read operation on the SPIx_SR register.

Overrun flag (OVR)

This flag is set when data are received and the previous data have not yet been read from
the SPIx_DR register. As a result, the incoming data are lost. An interrupt may be generated
if the ERRIE bit is set in the SPIx_CR2 register.

In this case, the receive buffer contents are not updated with the newly received data from
the transmitter device. A read operation to the SPIx_DR register returns the previous
correctly received data. All other subsequently transmitted half-words are lost.

Clearing the OVR bit is done by a read operation on the SPIx_DR register followed by a
read access to the SPIx_SR register.

Frame error flag (FRE)

This flag can be set by hardware only if the I2S is configured in Slave mode. It is set if the
external master is changing the WS line while the slave is not expecting this change. If the
synchronization is lost, the following steps are required to recover from this state and
resynchronize the external master device with the I2S slave device:

1. Disable the I2S.

2. Enable it again when the correct level is detected on the WS line (WS line is high in I2S
mode or low for MSB- or LSB-justified or PCM modes.

Desynchronization between master and slave devices may be due to noisy environment on
the SCK communication clock or on the WS frame synchronization line. An error interrupt
can be generated if the ERRIE bit is set. The desynchronization flag (FRE) is cleared by
software when the status register is read.

25.6.9 I2S interrupts

Table 127 provides the list of I2S interrupts.

25.6.10 DMA features

In I2S mode, the DMA works in exactly the same way as it does in SPI mode. There is no
difference except that the CRC feature is not available in I2S mode since there is no data
transfer protection system.

Table 127. I2S interrupt requests

Interrupt event Event flag Enable control bit

Transmit buffer empty flag TXE TXEIE

Receive buffer not empty flag RXNE RXNEIE

Overrun error OVR

ERRIEUnderrun error UDR

Frame error flag FRE

RM0401 Rev 3 721/771

RM0401 Serial peripheral interface/ inter-IC sound (SPI/I2S)

731

25.7 SPI and I2S registers

The peripheral registers can be accessed by half-words (16-bit) or words (32-bit). SPI_DR
in addition by can be accessed by 8-bit access.

Refer to Section 1.2 for a list of abbreviations used in register descriptions.

The peripheral registers can be accessed by half-words (16 bits) or words (32 bits).

25.7.1 SPI control register 1 (SPI_CR1) (not used in I2S mode)

Address offset: 0x00

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

BIDI
MODE

BIDI
OE

CRC
EN

CRC
NEXT

DFF
RX

ONLY
SSM SSI

LSB
FIRST

SPE BR [2:0] MSTR CPOL CPHA

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bit 15 BIDIMODE: Bidirectional data mode enable

This bit enables half-duplex communication using common single bidirectional data line.
Keep RXONLY bit clear when bidirectional mode is active.
0: 2-line unidirectional data mode selected
1: 1-line bidirectional data mode selected

Note: This bit is not used in I2S mode

Bit 14 BIDIOE: Output enable in bidirectional mode

This bit combined with the BIDIMODE bit selects the direction of transfer in bidirectional
mode
0: Output disabled (receive-only mode)
1: Output enabled (transmit-only mode)

Note: In master mode, the MOSI pin is used while the MISO pin is used in slave mode.

This bit is not used in I2S mode.

Bit 13 CRCEN: Hardware CRC calculation enable

0: CRC calculation disabled
1: CRC calculation enabled

Note: This bit should be written only when SPI is disabled (SPE = ‘0’) for correct operation.

It is not used in I2S mode.

Bit 12 CRCNEXT: CRC transfer next

0: Data phase (no CRC phase)
1: Next transfer is CRC (CRC phase)

Note: When the SPI is configured in full-duplex or transmitter only modes, CRCNEXT must be
written as soon as the last data is written to the SPI_DR register.
When the SPI is configured in receiver only mode, CRCNEXT must be set after the
second last data reception.
This bit should be kept cleared when the transfers are managed by DMA.
It is not used in I2S mode.

Serial peripheral interface/ inter-IC sound (SPI/I2S) RM0401

722/771 RM0401 Rev 3

Bit 11 DFF: Data frame format

0: 8-bit data frame format is selected for transmission/reception
1: 16-bit data frame format is selected for transmission/reception

Note: This bit should be written only when SPI is disabled (SPE = ‘0’) for correct operation.

It is not used in I2S mode.

Bit 10 RXONLY: Receive only mode enable

This bit enables simplex communication using a single unidirectional line to receive data
exclusively. Keep BIDIMODE bit clear when receive only mode is active.
This bit is also useful in a multislave system in which this particular slave is not accessed, the
output from the accessed slave is not corrupted.
0: full-duplex (Transmit and receive)
1: Output disabled (Receive-only mode)

Note: This bit is not used in I2S mode

Bit 9 SSM: Software slave management

When the SSM bit is set, the NSS pin input is replaced with the value from the SSI bit.
0: Software slave management disabled
1: Software slave management enabled

Note: This bit is not used in I2S mode and SPI TI mode

Bit 8 SSI: Internal slave select

This bit has an effect only when the SSM bit is set. The value of this bit is forced onto the
NSS pin and the IO value of the NSS pin is ignored.

Note: This bit is not used in I2S mode and SPI TI mode

Bit 7 LSBFIRST: Frame format

0: MSB transmitted first
1: LSB transmitted first

Note: This bit should not be changed when communication is ongoing.

It is not used in I2S mode and SPI TI mode

Bit 6 SPE: SPI enable

0: Peripheral disabled
1: Peripheral enabled

Note: When disabling the SPI, follow the procedure described in Section 25.3.10: Procedure
for disabling the SPI.

This bit is not used in I2S mode.

Bits 5:3 BR[2:0]: Baud rate control

000: fPCLK/2
001: fPCLK/4
010: fPCLK/8
011: fPCLK/16
100: fPCLK/32
101: fPCLK/64
110: fPCLK/128
111: fPCLK/256

Note: These bits should not be changed when communication is ongoing.

They are not used in I2S mode.

RM0401 Rev 3 723/771

RM0401 Serial peripheral interface/ inter-IC sound (SPI/I2S)

731

25.7.2 SPI control register 2 (SPI_CR2)

Address offset: 0x04

Reset value: 0x0000

Bit 2 MSTR: Master selection

0: Slave configuration
1: Master configuration

Note: This bit should not be changed when communication is ongoing.

It is not used in I2S mode.

Bit1 CPOL: Clock polarity

0: CK to 0 when idle
1: CK to 1 when idle

Note: This bit should not be changed when communication is ongoing.

It is not used in I2S mode and SPI TI mode except the case when CRC is applied
at TI mode.

Bit 0 CPHA: Clock phase

0: The first clock transition is the first data capture edge
1: The second clock transition is the first data capture edge

Note: This bit should not be changed when communication is ongoing.

It is not used in I2S mode and SPI TI mode except the case when CRC is applied
at TI mode.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. TXEIE RXNEIE ERRIE FRF Res. SSOE TXDMAEN RXDMAEN

rw rw rw rw rw rw rw

Bits 15:8 Reserved, must be kept at reset value.

Bit 7 TXEIE: Tx buffer empty interrupt enable

0: TXE interrupt masked
1: TXE interrupt not masked. Used to generate an interrupt request when the TXE flag is set.

Bit 6 RXNEIE: RX buffer not empty interrupt enable

0: RXNE interrupt masked
1: RXNE interrupt not masked. Used to generate an interrupt request when the RXNE flag is
set.

Bit 5 ERRIE: Error interrupt enable

This bit controls the generation of an interrupt when an error condition occurs (OVR,
CRCERR, MODF, FRE in SPI mode, and UDR, OVR, FRE in I2S mode).
0: Error interrupt is masked
1: Error interrupt is enabled

Bit 4 FRF: Frame format

0: SPI Motorola mode
1 SPI TI mode

Note: This bit is not used in I2S mode.

Bit 3 Reserved. Forced to 0 by hardware.

Serial peripheral interface/ inter-IC sound (SPI/I2S) RM0401

724/771 RM0401 Rev 3

25.7.3 SPI status register (SPI_SR)

Address offset: 0x08

Reset value: 0x0002

Bit 2 SSOE: SS output enable

0: SS output is disabled in master mode and the cell can work in multimaster configuration
1: SS output is enabled in master mode and when the cell is enabled. The cell cannot work
in a multimaster environment.

Note: This bit is not used in I2S mode and SPI TI mode.

Bit 1 TXDMAEN: Tx buffer DMA enable

When this bit is set, the DMA request is made whenever the TXE flag is set.
0: Tx buffer DMA disabled
1: Tx buffer DMA enabled

Bit 0 RXDMAEN: Rx buffer DMA enable

When this bit is set, the DMA request is made whenever the RXNE flag is set.
0: Rx buffer DMA disabled
1: Rx buffer DMA enabled

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. FRE BSY OVR MODF
CRC
ERR

UDR CHSIDE TXE RXNE

r r r r rc_w0 r r r r

Bits 15:9 Reserved. Forced to 0 by hardware.

Bit 8 FRE: Frame Error

0: No frame error
1: Frame error occurred.
This bit is set by hardware and cleared by software when the SPI_SR register is read.
This bit is used in SPI TI mode or in I2S mode whatever the audio protocol selected. It
detects a change on NSS or WS line which takes place in slave mode at a non expected
time, informing about a desynchronization between the external master device and the
slave.

Bit 7 BSY: Busy flag

0: SPI (or I2S) not busy
1: SPI (or I2S) is busy in communication or Tx buffer is not empty
This flag is set and cleared by hardware.

Note: BSY flag must be used with caution: refer to Section 25.3.12: SPI status flags and
Section 25.3.10: Procedure for disabling the SPI.

Bit 6 OVR: Overrun flag

0: No overrun occurred
1: Overrun occurred
This flag is set by hardware and reset by a software sequence. Refer to Section 25.3.13: SPI
error flags for the software sequence.

RM0401 Rev 3 725/771

RM0401 Serial peripheral interface/ inter-IC sound (SPI/I2S)

731

Bit 5 MODF: Mode fault

0: No mode fault occurred
1: Mode fault occurred
This flag is set by hardware and reset by a software sequence. Refer to Section 25.4 on
page 700 for the software sequence.

Note: This bit is not used in I2S mode

Bit 4 CRCERR: CRC error flag

0: CRC value received matches the SPI_RXCRCR value
1: CRC value received does not match the SPI_RXCRCR value
This flag is set by hardware and cleared by software writing 0.

Note: This bit is not used in I2S mode.

Bit 3 UDR: Underrun flag

0: No underrun occurred
1: Underrun occurred

This flag is set by hardware and reset by a software sequence. Refer to Section 25.6.8: I2S
error flags for the software sequence.

Note: This bit is not used in SPI mode.

Bit 2 CHSIDE: Channel side

0: Channel Left has to be transmitted or has been received
1: Channel Right has to be transmitted or has been received

Note: This bit is not used for SPI mode and is meaningless in PCM mode.

Bit 1 TXE: Transmit buffer empty

0: Tx buffer not empty
1: Tx buffer empty

Bit 0 RXNE: Receive buffer not empty

0: Rx buffer empty
1: Rx buffer not empty

Serial peripheral interface/ inter-IC sound (SPI/I2S) RM0401

726/771 RM0401 Rev 3

25.7.4 SPI data register (SPI_DR)

Address offset: 0x0C

Reset value: 0x0000

25.7.5 SPI CRC polynomial register (SPI_CRCPR) (not used in I2S
mode)

Address offset: 0x10

Reset value: 0x0007

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

DR[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 DR[15:0]: Data register

Data received or to be transmitted.
The data register is split into 2 buffers - one for writing (Transmit Buffer) and another one for
reading (Receive buffer). A write to the data register will write into the Tx buffer and a read
from the data register will return the value held in the Rx buffer.

Note: These notes apply to SPI mode:

Depending on the data frame format selection bit (DFF in SPI_CR1 register), the data
sent or received is either 8-bit or 16-bit. This selection has to be made before enabling
the SPI to ensure correct operation.

For an 8-bit data frame, the buffers are 8-bit and only the LSB of the register
(SPI_DR[7:0]) is used for transmission/reception. When in reception mode, the MSB of
the register (SPI_DR[15:8]) is forced to 0.

For a 16-bit data frame, the buffers are 16-bit and the entire register, SPI_DR[15:0] is
used for transmission/reception.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

CRCPOLY[15:0]

rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw rw

Bits 15:0 CRCPOLY[15:0]: CRC polynomial register

This register contains the polynomial for the CRC calculation.
The CRC polynomial (0007h) is the reset value of this register. Another polynomial can be
configured as required.

Note: These bits are not used for the I2S mode.

RM0401 Rev 3 727/771

RM0401 Serial peripheral interface/ inter-IC sound (SPI/I2S)

731

25.7.6 SPI RX CRC register (SPI_RXCRCR) (not used in I2S mode)

Address offset: 0x14

Reset value: 0x0000

25.7.7 SPI TX CRC register (SPI_TXCRCR) (not used in I2S mode)

Address offset: 0x18

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

RXCRC[15:0]

r r r r r r r r r r r r r r r r

Bits 15:0 RXCRC[15:0]: Rx CRC register

When CRC calculation is enabled, the RxCRC[15:0] bits contain the computed CRC value of
the subsequently received bytes. This register is reset when the CRCEN bit in SPI_CR1
register is written to 1. The CRC is calculated serially using the polynomial programmed in
the SPI_CRCPR register.
Only the 8 LSB bits are considered when the data frame format is set to be 8-bit data (DFF
bit of SPI_CR1 is cleared). CRC calculation is done based on any CRC8 standard.
The entire 16-bits of this register are considered when a 16-bit data frame format is selected
(DFF bit of the SPI_CR1 register is set). CRC calculation is done based on any CRC16
standard.

Note: A read to this register when the BSY Flag is set could return an incorrect value.These
bits are not used for I2S mode.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

TXCRC[15:0]

r r r r r r r r r r r r r r r r

Bits 15:0 TXCRC[15:0]: Tx CRC register

When CRC calculation is enabled, the TxCRC[7:0] bits contain the computed CRC value of
the subsequently transmitted bytes. This register is reset when the CRCEN bit of SPI_CR1
is written to 1. The CRC is calculated serially using the polynomial programmed in the
SPI_CRCPR register.
Only the 8 LSB bits are considered when the data frame format is set to be 8-bit data (DFF
bit of SPI_CR1 is cleared). CRC calculation is done based on any CRC8 standard.
The entire 16-bits of this register are considered when a 16-bit data frame format is selected
(DFF bit of the SPI_CR1 register is set). CRC calculation is done based on any CRC16
standard.

Note: A read to this register when the BSY flag is set could return an incorrect value. These
bits are not used for I2S mode.

Serial peripheral interface/ inter-IC sound (SPI/I2S) RM0401

728/771 RM0401 Rev 3

25.7.8 SPI_I2S configuration register (SPI_I2SCFGR)

Address offset: 0x1C

Reset value: 0x0000

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res.
ASTRE

N
I2SMOD I2SE I2SCFG

PCMSY
NC

Res. I2SSTD CKPOL DATLEN CHLEN

rw rw rw rw rw rw rw rw rw rw rw

Bits 15:13 Reserved, must be kept at reset value.

Bit 12 ASTREN: Asynchronous start enable.

0: The Asynchronous start is disabled. When the I2S is enabled in slave mode, the I2S slave starts
the transfer when the I2S clock is received and an appropriate transition (depending on the protocol
selected) is detected on the WS signal.
1: The Asynchronous start is enabled. When the I2S is enabled in slave mode, the I2S slave starts
immediately the transfer when the I2S clock is received from the master without checking the
expected transition of WS signal.

Note: Note: The appropriate transition is a falling edge on WS signal when I2S Philips Standard is
used, or a rising edge for other standards.

Bit 11 I2SMOD: I2S mode selection

0: SPI mode is selected
1: I2S mode is selected

Note: This bit should be configured when the SPI or I2S is disabled

Bit 10 I2SE: I2S Enable

0: I2S peripheral is disabled
1: I2S peripheral is enabled

Note: This bit is not used in SPI mode.

Bits 9:8 I2SCFG: I2S configuration mode

00: Slave - transmit
01: Slave - receive
10: Master - transmit
11: Master - receive

Note: This bit should be configured when the I2S is disabled.

It is not used in SPI mode.

Bit 7 PCMSYNC: PCM frame synchronization

0: Short frame synchronization
1: Long frame synchronization

Note: This bit has a meaning only if I2SSTD = 11 (PCM standard is used)

It is not used in SPI mode.

Bit 6 Reserved: forced at 0 by hardware

RM0401 Rev 3 729/771

RM0401 Serial peripheral interface/ inter-IC sound (SPI/I2S)

731

25.7.9 SPI_I2S prescaler register (SPI_I2SPR)

Address offset: 0x20

Reset value: 0000 0010 (0x0002)

Bits 5:4 I2SSTD: I2S standard selection

00: I2S Philips standard.
01: MSB justified standard (left justified)
10: LSB justified standard (right justified)
11: PCM standard

For more details on I2S standards, refer to Section 25.6.3 on page 706. Not used in SPI mode.

Note: For correct operation, these bits should be configured when the I2S is disabled.

Bit 3 CKPOL: Steady state clock polarity

0: I2S clock steady state is low level
1: I2S clock steady state is high level

Note: For correct operation, this bit should be configured when the I2S is disabled.

This bit is not used in SPI mode

Bits 2:1 DATLEN: Data length to be transferred

00: 16-bit data length
01: 24-bit data length
10: 32-bit data length
11: Not allowed

Note: For correct operation, these bits should be configured when the I2S is disabled.

This bit is not used in SPI mode.

Bit 0 CHLEN: Channel length (number of bits per audio channel)

0: 16-bit wide
1: 32-bit wide
The bit write operation has a meaning only if DATLEN = 00 otherwise the channel length is fixed to
32-bit by hardware whatever the value filled in. Not used in SPI mode.

Note: For correct operation, this bit should be configured when the I2S is disabled.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. MCKOE ODD I2SDIV

rw rw rw

Bits 15:10 Reserved, must be kept at reset value.

Serial peripheral interface/ inter-IC sound (SPI/I2S) RM0401

730/771 RM0401 Rev 3

Bit 9 MCKOE: Master clock output enable

0: Master clock output is disabled
1: Master clock output is enabled

Note: This bit should be configured when the I2S is disabled. It is used only when the I2S is in master
mode.

This bit is not used in SPI mode.

Bit 8 ODD: Odd factor for the prescaler

0: real divider value is = I2SDIV *2
1: real divider value is = (I2SDIV * 2)+1

Refer to Section 25.6.4 on page 713. Not used in SPI mode.

Note: This bit should be configured when the I2S is disabled. It is used only when the I2S is in master
mode.

Bits 7:0 I2SDIV: I2S Linear prescaler

I2SDIV [7:0] = 0 or I2SDIV [7:0] = 1 are forbidden values.
Refer to Section 25.6.4 on page 713. Not used in SPI mode.

Note: These bits should be configured when the I2S is disabled. It is used only when the I2S is in
master mode.

RM0401 Rev 3 731/771

RM0401 Serial peripheral interface/ inter-IC sound (SPI/I2S)

731

25.7.10 SPI register map

The table provides shows the SPI register map and reset values.

Refer to Section 2.2 on page 41 for the register boundary addresses.

Table 128. SPI register map and reset values

Offset Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2 11 1
0 9 8 7 6 5 4 3 2 1 0

0x00
SPI_CR1

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

B
ID

IM
O

D
E

B
ID

IO
E

C
R

C
E

N
C

R
C

N
E

X
T

D
F

F
R

X
O

N
LY

S
S

M
S

S
I

LS
B

F
IR

S
T

S
P

E BR
[2:0]

M
S

T
R

C
P

O
L

C
P

H
A

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x04
SPI_CR2

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

T
X

E
IE

R
X

N
E

IE
E

R
R

IE
F

R
F

R
es

.
S

S
O

E
T

X
D

M
A

E
N

R
X

D
M

A
E

N

Reset value 0 0 0 0 0 0 0

0x08
SPI_SR

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
F

R
E

B
S

Y
O

V
R

M
O

D
F

C
R

C
E

R
R

U
D

R
C

H
S

ID
E

T
X

E
R

X
N

E

Reset value 0 0 0 0 0 0 0 1 0

0x0C
SPI_DR

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

DR[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x10
SPI_CRCPR

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

CRCPOLY[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

0x14
SPI_RXCRCR

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s. RxCRC[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x18
SPI_TXCRCR

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

TxCRC[15:0]

Reset value 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0x1C
SPI_I2SCFGR

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
A

S
T

R
E

N
I2

S
M

O
D

I2
S

E

I2
S

C
F

G

P
C

M
S

Y
N

C
R

es
.

I2
S

S
T

D

C
K

P
O

L

D
A

T
L

E
N

C
H

L
E

N

Reset value 0 0 0 0 0 0 0 0 0 0 0 0

0x20
SPI_I2SPR

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

M
C

K
O

E
O

D
D I2SDIV

Reset value 0 0 0 0 0 0 0 0 1 0

Debug support (DBG) RM0401

732/771 RM0401 Rev 3

26 Debug support (DBG)

26.1 Overview

The STM32F410 is built around a Cortex®-M4 with FPU core which contains hardware
extensions for advanced debugging features. The debug extensions allow the core to be
stopped either on a given instruction fetch (breakpoint) or data access (watchpoint). When
stopped, the core’s internal state and the system’s external state may be examined. Once
examination is complete, the core and the system may be restored and program execution
resumed.

The debug features are used by the debugger host when connecting to and debugging the
STM32F410 MCUs.

Two interfaces for debug are available:

• Serial wire

• JTAG debug port

Figure 273. Block diagram of STM32 MCU and Cortex®-M4 with FPU-level
debug support

Note: The debug features embedded in the Cortex®-M4 with FPU core are a subset of the Arm®
CoreSight Design Kit.

RM0401 Rev 3 733/771

RM0401 Debug support (DBG)

762

The Arm® Cortex®-M4 with FPU core provides integrated on-chip debug support. It is
comprised of:

• SWJ-DP: Serial wire / JTAG debug port

• AHP-AP: AHB access port

• ITM: Instrumentation trace macrocell

• FPB: Flash patch breakpoint

• DWT: Data watchpoint trigger

• TPUI: Trace port unit interface (available on larger packages, where the corresponding
pins are mapped)

• ETM: Embedded Trace Macrocell (available on larger packages, where the
corresponding pins are mapped)

It also includes debug features dedicated to the STM32F410:

• Flexible debug pinout assignment

• MCU debug box (support for low-power modes, control over peripheral clocks, etc.)

Note: For further information on debug functionality supported by the Arm® Cortex®-M4 with FPU
core, refer to the Cortex®-M4 with FPU-r0p1 Technical Reference Manual and to the
CoreSight Design Kit-r0p1 TRM (see Section 26.2: Reference Arm® documentation).

26.2 Reference Arm® documentation

• Cortex®-M4 with FPU r0p1 Technical Reference Manual (TRM)

(see Related documents on page 1)

• Arm® Debug Interface V5

• Arm® CoreSight Design Kit revision r0p1 Technical Reference Manual

26.3 SWJ debug port (serial wire and JTAG)

The STM32F410 core of the integrates the Serial Wire / JTAG Debug Port (SWJ-DP). It is
an Arm® standard CoreSight debug port that combines a JTAG-DP (5-pin) interface and a
SW-DP (2-pin) interface.

• The JTAG Debug Port (JTAG-DP) provides a 5-pin standard JTAG interface to the
AHP-AP port.

• The Serial Wire Debug Port (SW-DP) provides a 2-pin (clock + data) interface to the
AHP-AP port.

In the SWJ-DP, the two JTAG pins of the SW-DP are multiplexed with some of the five JTAG
pins of the JTAG-DP.

Debug support (DBG) RM0401

734/771 RM0401 Rev 3

Figure 274. SWJ debug port

Figure 274 shows that the asynchronous TRACE output (TRACESWO) is multiplexed with
TDO. This means that the asynchronous trace can only be used with SW-DP, not JTAG-DP.

26.3.1 Mechanism to select the JTAG-DP or the SW-DP

By default, the JTAG-Debug Port is active.

If the debugger host wants to switch to the SW-DP, it must provide a dedicated JTAG
sequence on TMS/TCK (respectively mapped to SWDIO and SWCLK) which disables the
JTAG-DP and enables the SW-DP. This way it is possible to activate the SWDP using only
the SWCLK and SWDIO pins.

This sequence is:

1. Send more than 50 TCK cycles with TMS (SWDIO) =1

2. Send the 16-bit sequence on TMS (SWDIO) = 0111100111100111 (MSB transmitted
first)

3. Send more than 50 TCK cycles with TMS (SWDIO) =1

26.4 Pinout and debug port pins

The STM32F410 MCUs are available in various packages with different numbers of
available pins. As a result, some functionality (ETM) related to pin availability may differ
between packages.

TRACESWO

JTDO

JTDI

NJTRST nTRST

TDI

TDO

SWJ-DP

TDO

TDI

nTRST

TCK

TMS
nPOTRST

JTAG-DP

nPOTRST

From
power-on
reset

DBGRESETn

DBGDI

DBGDO

DBGDOEN

DBGCLK

SW-DP

SWCLKTCK

SWDOEN

SWDO

SWDITMS

SWD/JTAG
select

JTMS/SWDIO

JTCK/SWCLK

(asynchronous trace)

ai17139

RM0401 Rev 3 735/771

RM0401 Debug support (DBG)

762

26.4.1 SWJ debug port pins

Five pins are used as outputs from the STM32F410 for the SWJ-DP as alternate functions
of general-purpose I/Os. These pins are available on all packages.

26.4.2 Flexible SWJ-DP pin assignment

After RESET (SYSRESETn or PORESETn), all five pins used for the SWJ-DP are assigned
as dedicated pins immediately usable by the debugger host (note that the trace outputs are
not assigned except if explicitly programmed by the debugger host).

However, the STM32F410 MCUs offers the possibility of disabling some or all of the SWJ-
DP ports and so, of releasing the associated pins for general-purpose IO (GPIO) usage. For
more details on how to disable SWJ-DP port pins, please refer to Section 6.3.2: I/O pin
multiplexer and mapping.

.

Note: When the APB bridge write buffer is full, it takes one extra APB cycle when writing the
GPIO_AFR register. This is because the deactivation of the JTAGSW pins is done in two
cycles to guarantee a clean level on the nTRST and TCK input signals of the core.

• Cycle 1: the JTAGSW input signals to the core are tied to 1 or 0 (to 1 for nTRST, TDI
and TMS, to 0 for TCK)

• Cycle 2: the GPIO controller takes the control signals of the SWJTAG IO pins (like
controls of direction, pull-up/down, Schmitt trigger activation, etc.).

Table 129. SWJ debug port pins

SWJ-DP pin name
JTAG debug port SW debug port Pin

assign
mentType Description Type Debug assignment

JTMS/SWDIO I
JTAG Test Mode
Selection

IO
Serial Wire Data
Input/Output

PA13

JTCK/SWCLK I JTAG Test Clock I Serial Wire Clock PA14

JTDI I JTAG Test Data Input - - PA15

JTDO/TRACESWO O JTAG Test Data Output -
TRACESWO if async trace
is enabled

PB3

NJTRST I JTAG Test nReset - - PB4

Table 130. Flexible SWJ-DP pin assignment

Available debug ports

SWJ IO pin assigned

PA13 /
JTMS /
SWDIO

PA14 /
JTCK /
SWCLK

PA15 /
JTDI

PB3 /
JTDO

PB4 /
NJTRST

Full SWJ (JTAG-DP + SW-DP) - Reset State X X X X X

Full SWJ (JTAG-DP + SW-DP) but without NJTRST X X X X

JTAG-DP Disabled and SW-DP Enabled X X

JTAG-DP Disabled and SW-DP Disabled Released

Debug support (DBG) RM0401

736/771 RM0401 Rev 3

26.4.3 Internal pull-up and pull-down on JTAG pins

It is necessary to ensure that the JTAG input pins are not floating since they are directly
connected to flip-flops to control the debug mode features. Special care must be taken with
the SWCLK/TCK pin which is directly connected to the clock of some of these flip-flops.

To avoid any uncontrolled IO levels, the devices internal pull-ups and pull-downs on the
JTAG input pins:

• NJTRST: Internal pull-up

• JTDI: Internal pull-up

• JTMS/SWDIO: Internal pull-up

• TCK/SWCLK: Internal pull-down

Once a JTAG IO is released by the user software, the GPIO controller takes control again.
The reset states of the GPIO control registers put the I/Os in the equivalent state:

• NJTRST: AF input pull-up

• JTDI: AF input pull-up

• JTMS/SWDIO: AF input pull-up

• JTCK/SWCLK: AF input pull-down

• JTDO: AF output floating

The software can then use these I/Os as standard GPIOs.

Note: The JTAG IEEE standard recommends to add pull-ups on TDI, TMS and nTRST but there is
no special recommendation for TCK. However, for TCK, the devices needs an integrated
pull-down.

Having embedded pull-ups and pull-downs removes the need to add external resistors.

RM0401 Rev 3 737/771

RM0401 Debug support (DBG)

762

26.4.4 Using serial wire and releasing the unused debug pins as GPIOs

To use the serial wire DP to release some GPIOs, the user software must change the GPIO
(PA15, PB3 and PB4) configuration mode in the GPIO_MODER register. This releases
PA15, PB3 and PB4 which now become available as GPIOs.

When debugging, the host performs the following actions:

• Under system reset, all SWJ pins are assigned (JTAG-DP + SW-DP).

• Under system reset, the debugger host sends the JTAG sequence to switch from the
JTAG-DP to the SW-DP.

• Still under system reset, the debugger sets a breakpoint on vector reset.

• The system reset is released and the Core halts.

• All the debug communications from this point are done using the SW-DP. The other
JTAG pins can then be reassigned as GPIOs by the user software.

Note: For user software designs, note that:

To release the debug pins, remember that they will be first configured either in input-pull-up
(nTRST, TMS, TDI) or pull-down (TCK) or output tristate (TDO) for a certain duration after
reset until the instant when the user software releases the pins.

When debug pins (JTAG or SW or TRACE) are mapped, changing the corresponding IO pin
configuration in the IOPORT controller has no effect.

26.5 JTAG TAP connection

The MCUs integrate two serially connected JTAG TAPs, the boundary scan TAP (IR is 5-bit
wide) and the Cortex®-M4 with FPU TAP (IR is 4-bit wide).

To access the TAP of the Cortex®-M4 with FPU for debug purposes:

1. First, it is necessary to shift the BYPASS instruction of the boundary scan TAP.

2. Then, for each IR shift, the scan chain contains 9 bits (=5+4) and the unused TAP
instruction must be shifted in using the BYPASS instruction.

3. For each data shift, the unused TAP, which is in BYPASS mode, adds 1 extra data bit in
the data scan chain.

Note: Important: Once Serial-Wire is selected using the dedicated Arm® JTAG sequence, the
boundary scan TAP is automatically disabled (JTMS forced high).

Debug support (DBG) RM0401

738/771 RM0401 Rev 3

Figure 275. JTAG TAP connections

RM0401 Rev 3 739/771

RM0401 Debug support (DBG)

762

26.6 ID codes and locking mechanism

There are several ID codes inside the MCUs. ST strongly recommends tools designers to
lock their debuggers using the MCU DEVICE ID code located in the external PPB memory
map at address 0xE0042000.

26.6.1 MCU device ID code

The MCUs integrate an MCU ID code. This ID identifies the ST MCU part-number and the
die revision. It is part of the DBG_MCU component and is mapped on the external PPB bus
(see Section 26.16 on page 751). This code is accessible using the JTAG debug port (4 to 5
pins) or the SW debug port (two pins) or by the user software. It is even accessible while the
MCU is under system reset.

Only the DEV_ID(11:0) should be used for identification by the debugger/programmer tools.

DBGMCU_IDCODE

Address: 0xE004 2000

Only 32-bits access supported. Read-only.

26.6.2 Boundary scan TAP

JTAG ID code

The TAP of the BSC (boundary scan) integrates a JTAG ID code equal to: 0x0645 8041

26.6.3 Cortex®-M4 with FPU TAP

The TAP of the Arm® Cortex®-M4 with FPU integrates a JTAG ID code. This ID code is the
Arm® default one and has not been modified. This code is only accessible by the JTAG
Debug Port.
This code is 0x4BA0 0477 (corresponds to Cortex®-M4 with FPU r0p1, see Section 26.2:
Reference Arm® documentation).

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

REV_ID

r r r r r r r r r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. DEV_ID

r r r r r r r r r r r r

Bits 31:16 REV_ID(15:0) Revision identifier

This field indicates the revision of the device:
0x1000 = Revision A

Bits 15:12 Reserved, must be kept at reset value.

Bits 11:0 DEV_ID(11:0): Device identifier

The device ID is 0x458

Debug support (DBG) RM0401

740/771 RM0401 Rev 3

26.6.4 Cortex®-M4 with FPU JEDEC-106 ID code

The Arm® Cortex®-M4 with FPU integrates a JEDEC-106 ID code. It is located in the 4KB
ROM table mapped on the internal PPB bus at address 0xE00F FFD0_0xE00F FFE0.

This code is accessible by the JTAG Debug Port (4 to 5 pins) or by the SW Debug Port (two
pins) or by the user software.

26.7 JTAG debug port

A standard JTAG state machine is implemented with a 4-bit instruction register (IR) and five
data registers (for full details, refer to the Cortex®-M4 with FPUr0p1 Technical Reference
Manual (TRM), for references, please see Section 26.2: Reference Arm® documentation).

Table 131. JTAG debug port data registers

IR(3:0) Data register Details

1111
BYPASS

[1 bit]

1110
IDCODE

[32 bits]

ID CODE

0x4BA0 0477 (Arm® Cortex®-M4 with FPU r0p1 ID Code)

1010
DPACC

[35 bits]

Debug port access register

This initiates a debug port and allows access to a debug port register.

– When transferring data IN:
Bits 34:3 = DATA[31:0] = 32-bit data to transfer for a write request
Bits 2:1 = A[3:2] = 2-bit address of a debug port register.
Bit 0 = RnW = Read request (1) or write request (0).

– When transferring data OUT:
Bits 34:3 = DATA[31:0] = 32-bit data which is read following a read
request
Bits 2:0 = ACK[2:0] = 3-bit Acknowledge:
010 = OK/FAULT
001 = WAIT
OTHER = reserved

Refer to Table 132 for a description of the A[3:2] bits

RM0401 Rev 3 741/771

RM0401 Debug support (DBG)

762

1011
APACC

[35 bits]

Access port access register

Initiates an access port and allows access to an access port register.

– When transferring data IN:
Bits 34:3 = DATA[31:0] = 32-bit data to shift in for a write request
Bits 2:1 = A[3:2] = 2-bit address (sub-address AP registers).
Bit 0 = RnW= Read request (1) or write request (0).

– When transferring data OUT:
Bits 34:3 = DATA[31:0] = 32-bit data which is read following a read
request
Bits 2:0 = ACK[2:0] = 3-bit Acknowledge:
010 = OK/FAULT
001 = WAIT
OTHER = reserved

There are many AP Registers (see AHB-AP) addressed as the
combination of:

– The shifted value A[3:2]

– The current value of the DP SELECT register

1000
ABORT

[35 bits]

Abort register

– Bits 31:1 = Reserved

– Bit 0 = DAPABORT: write 1 to generate a DAP abort.

Table 132. 32-bit debug port registers addressed through the shifted value A[3:2]

Address A[3:2] value Description

0x0 00 Reserved, must be kept at reset value.

0x4 01

DP CTRL/STAT register. Used to:

– Request a system or debug power-up

– Configure the transfer operation for AP accesses

– Control the pushed compare and pushed verify operations.

– Read some status flags (overrun, power-up acknowledges)

0x8 10

DP SELECT register: Used to select the current access port and the
active 4-words register window.

– Bits 31:24: APSEL: select the current AP

– Bits 23:8: reserved

– Bits 7:4: APBANKSEL: select the active 4-words register window on the
current AP

– Bits 3:0: reserved

0xC 11
DP RDBUFF register: Used to allow the debugger to get the final result
after a sequence of operations (without requesting new JTAG-DP
operation)

Table 131. JTAG debug port data registers (continued)

IR(3:0) Data register Details

Debug support (DBG) RM0401

742/771 RM0401 Rev 3

26.8 SW debug port

26.8.1 SW protocol introduction

This synchronous serial protocol uses two pins:

• SWCLK: clock from host to target

• SWDIO: bidirectional

The protocol allows two banks of registers (DPACC registers and APACC registers) to be
read and written to.

Bits are transferred LSB-first on the wire.

For SWDIO bidirectional management, the line must be pulled-up on the board (100 KΩ
recommended by Arm®).

Each time the direction of SWDIO changes in the protocol, a turnaround time is inserted
where the line is not driven by the host nor the target. By default, this turnaround time is one
bit time, however this can be adjusted by configuring the SWCLK frequency.

26.8.2 SW protocol sequence

Each sequence consist of three phases:

1. Packet request (8 bits) transmitted by the host

2. Acknowledge response (3 bits) transmitted by the target

3. Data transfer phase (33 bits) transmitted by the host or the target

Refer to the Cortex®-M4 with FPU r0p1 TRM for a detailed description of DPACC and
APACC registers.

The packet request is always followed by the turnaround time (default 1 bit) where neither
the host nor target drive the line.

Table 133. Packet request (8-bits)

Bit Name Description

0 Start Must be “1”

1 APnDP
0: DP Access

1: AP Access

2 RnW
0: Write Request

1: Read Request

4:3 A[3:2] Address field of the DP or AP registers (refer to Table 132)

5 Parity Single bit parity of preceding bits

6 Stop 0

7 Park
Not driven by the host. Must be read as “1” by the target because of
the pull-up

RM0401 Rev 3 743/771

RM0401 Debug support (DBG)

762

The ACK Response must be followed by a turnaround time only if it is a READ transaction
or if a WAIT or FAULT acknowledge has been received.

The DATA transfer must be followed by a turnaround time only if it is a READ transaction.

26.8.3 SW-DP state machine (reset, idle states, ID code)

The State Machine of the SW-DP has an internal ID code which identifies the SW-DP. It
follows the JEP-106 standard. This ID code is the default Arm® one and is set to
0x2BA01477 (corresponding to Cortex®-M4 with FPU r0p1).

Note: Note that the SW-DP state machine is inactive until the target reads this ID code.

• The SW-DP state machine is in RESET STATE either after power-on reset, or after the
DP has switched from JTAG to SWD or after the line is high for more than 50 cycles

• The SW-DP state machine is in IDLE STATE if the line is low for at least two cycles
after RESET state.

• After RESET state, it is mandatory to first enter into an IDLE state AND to perform a
READ access of the DP-SW ID CODE register. Otherwise, the target will issue a
FAULT acknowledge response on another transactions.

Further details of the SW-DP state machine can be found in the Cortex®-M4 with FPU r0p1
TRM and the CoreSight Design Kit r0p1 TRM.

26.8.4 DP and AP read/write accesses

• Read accesses to the DP are not posted: the target response can be immediate (if
ACK=OK) or can be delayed (if ACK=WAIT).

• Read accesses to the AP are posted. This means that the result of the access is
returned on the next transfer. If the next access to be done is NOT an AP access, then
the DP-RDBUFF register must be read to obtain the result.
The READOK flag of the DP-CTRL/STAT register is updated on every AP read access
or RDBUFF read request to know if the AP read access was successful.

• The SW-DP implements a write buffer (for both DP or AP writes), that enables it to
accept a write operation even when other transactions are still outstanding. If the write
buffer is full, the target acknowledge response is “WAIT”. With the exception of

Table 134. ACK response (3 bits)

Bit Name Description

0..2 ACK

001: FAULT

010: WAIT

100: OK

Table 135. DATA transfer (33 bits)

Bit Name Description

0..31 WDATA or RDATA Write or Read data

32 Parity Single parity of the 32 data bits

Debug support (DBG) RM0401

744/771 RM0401 Rev 3

IDCODE read or CTRL/STAT read or ABORT write which are accepted even if the write
buffer is full.

• Because of the asynchronous clock domains SWCLK and HCLK, two extra SWCLK
cycles are needed after a write transaction (after the parity bit) to make the write
effective internally. These cycles should be applied while driving the line low (IDLE
state)
This is particularly important when writing the CTRL/STAT for a power-up request. If the
next transaction (requiring a power-up) occurs immediately, it will fail.

26.8.5 SW-DP registers

Access to these registers are initiated when APnDP=0

Table 136. SW-DP registers

A[3:2] R/W
CTRLSEL bit
of SELECT

register
Register Notes

00 Read - IDCODE
The manufacturer code is not set to ST
code. 0x2BA01477 (identifies the SW-DP)

00 Write - ABORT -

01 Read/Write 0
DP-
CTRL/STAT

Purpose is to:

– request a system or debug power-up

– configure the transfer operation for AP
accesses

– control the pushed compare and pushed
verify operations.

– read some status flags (overrun, power-
up acknowledges)

01 Read/Write 1
WIRE
CONTROL

Purpose is to configure the physical serial
port protocol (like the duration of the
turnaround time)

10 Read
READ
RESEND

Enables recovery of the read data from a
corrupted debugger transfer, without
repeating the original AP transfer.

10 Write SELECT
The purpose is to select the current access
port and the active 4-words register window

11 Read/Write
READ
BUFFER

This read buffer is useful because AP
accesses are posted (the result of a read AP
request is available on the next AP
transaction).

This read buffer captures data from the AP,
presented as the result of a previous read,
without initiating a new transaction

RM0401 Rev 3 745/771

RM0401 Debug support (DBG)

762

26.8.6 SW-AP registers

Access to these registers are initiated when APnDP=1

There are many AP Registers (see AHB-AP) addressed as the combination of:

• The shifted value A[3:2]

• The current value of the DP SELECT register

26.9 AHB-AP (AHB access port) - valid for both JTAG-DP
and SW-DP

Features:

• System access is independent of the processor status.

• Either SW-DP or JTAG-DP accesses AHB-AP.

• The AHB-AP is an AHB master into the Bus Matrix. Consequently, it can access all the
data buses (Dcode Bus, System Bus, internal and external PPB bus) but the ICode
bus.

• Bitband transactions are supported.

• AHB-AP transactions bypass the FPB.

The address of the 32-bits AHP-AP resisters are 6-bits wide (up to 64 words or 256 bytes)
and consists of:

d) Bits [7:4] = the bits [7:4] APBANKSEL of the DP SELECT register

e) Bits [3:2] = the 2 address bits of A[3:2] of the 35-bit packet request for SW-DP.

The AHB-AP of the Cortex®-M4 with FPU includes 9 x 32-bits registers:

Refer to the Cortex®-M4 with FPU r0p1 TRM for further details.

Table 137. Cortex®-M4 with FPU AHB-AP registers

Address
offset

Register name Notes

0x00
AHB-AP Control and Status
Word

Configures and controls transfers through the AHB
interface (size, hprot, status on current transfer, address
increment type

0x04 AHB-AP Transfer Address -

0x0C AHB-AP Data Read/Write -

0x10 AHB-AP Banked Data 0

Directly maps the 4 aligned data words without rewriting
the Transfer Address Register.

0x14 AHB-AP Banked Data 1

0x18 AHB-AP Banked Data 2

0x1C AHB-AP Banked Data 3

0xF8 AHB-AP Debug ROM Address Base Address of the debug interface

0xFC AHB-AP ID Register -

Debug support (DBG) RM0401

746/771 RM0401 Rev 3

26.10 Core debug

Core debug is accessed through the core debug registers. Debug access to these registers
is by means of the Advanced High-performance Bus (AHB-AP) port. The processor can
access these registers directly over the internal Private Peripheral Bus (PPB).

It consists of 4 registers:

Note: Important: these registers are not reset by a system reset. They are only reset by a power-
on reset.

Refer to the Cortex®-M4 with FPU r0p1 TRM for further details.

To Halt on reset, it is necessary to:

• enable the bit0 (VC_CORRESET) of the Debug and Exception Monitor Control
Register

• enable the bit0 (C_DEBUGEN) of the Debug Halting Control and Status Register.

Table 138. Core debug registers

Register Description

DHCSR
The 32-bit Debug Halting Control and Status Register

This provides status information about the state of the processor enable core debug
halt and step the processor

DCRSR
The 17-bit Debug Core Register Selector Register:

This selects the processor register to transfer data to or from.

DCRDR
The 32-bit Debug Core Register Data Register:

This holds data for reading and writing registers to and from the processor selected
by the DCRSR (Selector) register.

DEMCR
The 32-bit Debug Exception and Monitor Control Register:

This provides Vector Catching and Debug Monitor Control. This register contains a
bit named TRCENA which enable the use of a TRACE.

RM0401 Rev 3 747/771

RM0401 Debug support (DBG)

762

26.11 Capability of the debugger host to connect under system
reset

The reset system of the MCUs comprises the following reset sources:

• POR (power-on reset) which asserts a RESET at each power-up.

• Internal watchdog reset

• Software reset

• External reset

The Cortex®-M4 with FPU differentiates the reset of the debug part (generally
PORRESETn) and the other one (SYSRESETn)

This way, it is possible for the debugger to connect under System Reset, programming the
Core Debug Registers to halt the core when fetching the reset vector. Then the host can
release the system reset and the core will immediately halt without having executed any
instructions. In addition, it is possible to program any debug features under System Reset.

Note: It is highly recommended for the debugger host to connect (set a breakpoint in the reset
vector) under system reset.

26.12 FPB (Flash patch breakpoint)

The FPB unit:

• implements hardware breakpoints

• patches code and data from code space to system space. This feature gives the
possibility to correct software bugs located in the Code Memory Space.

The use of a Software Patch or a Hardware Breakpoint is exclusive.

The FPB consists of:

• 2 literal comparators for matching against literal loads from Code Space and remapping
to a corresponding area in the System Space.

• 6 instruction comparators for matching against instruction fetches from Code Space.
They can be used either to remap to a corresponding area in the System Space or to
generate a Breakpoint Instruction to the core.

Debug support (DBG) RM0401

748/771 RM0401 Rev 3

26.13 DWT (data watchpoint trigger)

The DWT unit consists of four comparators. They are configurable as:

• a hardware watchpoint or

• a trigger to an ETM or

• a PC sampler or

• a data address sampler

The DWT also provides some means to give some profiling informations. For this, some
counters are accessible to give the number of:

• Clock cycle

• Folded instructions

• Load store unit (LSU) operations

• Sleep cycles

• CPI (clock per instructions)

• Interrupt overhead

26.14 ITM (instrumentation trace macrocell)

26.14.1 General description

The ITM is an application-driven trace source that supports printf style debugging to trace
Operating System (OS) and application events, and emits diagnostic system information.
The ITM emits trace information as packets which can be generated as:

• Software trace. Software can write directly to the ITM stimulus registers to emit
packets.

• Hardware trace. The DWT generates these packets, and the ITM emits them.

• Time stamping. Timestamps are emitted relative to packets. The ITM contains a 21-bit
counter to generate the timestamp. The Cortex®-M4 with FPU clock or the bit clock rate
of the Serial Wire Viewer (SWV) output clocks the counter.

The packets emitted by the ITM are output to the TPIU (Trace Port Interface Unit). The
formatter of the TPIU adds some extra packets (refer to TPIU) and then output the complete
packets sequence to the debugger host.

The bit TRCEN of the Debug Exception and Monitor Control Register must be enabled
before you program or use the ITM.

26.14.2 Time stamp packets, synchronization and overflow packets

Time stamp packets encode time stamp information, generic control and synchronization. It
uses a 21-bit timestamp counter (with possible prescalers) which is reset at each time
stamp packet emission. This counter can be either clocked by the CPU clock or the SWV
clock.

A synchronization packet consists of 6 bytes equal to 0x80_00_00_00_00_00 which is
emitted to the TPIU as 00 00 00 00 00 80 (LSB emitted first).

A synchronization packet is a timestamp packet control. It is emitted at each DWT trigger.

RM0401 Rev 3 749/771

RM0401 Debug support (DBG)

762

For this, the DWT must be configured to trigger the ITM: the bit CYCCNTENA (bit0) of the
DWT Control Register must be set. In addition, the bit2 (SYNCENA) of the ITM Trace
Control Register must be set.

Note: If the SYNENA bit is not set, the DWT generates Synchronization triggers to the TPIU which
will send only TPIU synchronization packets and not ITM synchronization packets.

An overflow packet consists is a special timestamp packets which indicates that data has
been written but the FIFO was full.

Table 139. Main ITM registers

Address Register Details

@E0000FB0 ITM lock access
Write 0xC5ACCE55 to unlock Write Access to the other ITM
registers

@E0000E80 ITM trace control

Bits 31-24 = Always 0

Bits 23 = Busy

Bits 22-16 = 7-bits ATB ID which identifies the source of the
trace data.

Bits 15-10 = Always 0

Bits 9:8 = TSPrescale = Time Stamp Prescaler

Bits 7-5 = Reserved

Bit 4 = SWOENA = Enable SWV behavior (to clock the
timestamp counter by the SWV clock).

Bit 3 = DWTENA: Enable the DWT Stimulus

Bit 2 = SYNCENA: this bit must be to 1 to enable the DWT to
generate synchronization triggers so that the TPIU can then
emit the synchronization packets.

Bit 1 = TSENA (Timestamp Enable)

Bit 0 = ITMENA: Global Enable Bit of the ITM

@E0000E40 ITM trace privilege

Bit 3: mask to enable tracing ports31:24

Bit 2: mask to enable tracing ports23:16

Bit 1: mask to enable tracing ports15:8

Bit 0: mask to enable tracing ports7:0

@E0000E00 ITM trace enable
Each bit enables the corresponding Stimulus port to generate
trace.

@E0000000-
E000007C

Stimulus port
registers 0-31

Write the 32-bits data on the selected Stimulus Port (32
available) to be traced out.

Debug support (DBG) RM0401

750/771 RM0401 Rev 3

Example of configuration

To output a simple value to the TPIU:

• Configure the TPIU and assign TRACE I/Os by configuring the DBGMCU_CR (refer to
Section 26.17.2: TRACE pin assignment and Section 26.16.3: Debug MCU
configuration register)

• Write 0xC5ACCE55 to the ITM Lock Access Register to unlock the write access to the
ITM registers

• Write 0x00010005 to the ITM Trace Control Register to enable the ITM with Sync
enabled and an ATB ID different from 0x00

• Write 0x1 to the ITM Trace Enable Register to enable the Stimulus Port 0

• Write 0x1 to the ITM Trace Privilege Register to unmask stimulus ports 7:0

• Write the value to output in the Stimulus Port Register 0: this can be done by software
(using a printf function)

26.15 ETM (Embedded trace macrocell)

26.15.1 General description

The ETM enables the reconstruction of program execution. Data are traced using the Data
Watchpoint and Trace (DWT) component or the Instruction Trace Macrocell (ITM) whereas
instructions are traced using the Embedded Trace Macrocell (ETM).

The ETM transmits information as packets and is triggered by embedded resources. These
resources must be programmed independently and the trigger source is selected using the
Trigger Event Register (0xE0041008). An event could be a simple event (address match
from an address comparator) or a logic equation between 2 events. The trigger source is
one of the fourth comparators of the DWT module, The following events can be monitored:

• Clock cycle matching

• Data address matching

For more informations on the trigger resources refer to Section 26.13: DWT (data
watchpoint trigger).

The packets transmitted by the ETM are output to the TPIU (Trace Port Interface Unit). The
formatter of the TPIU adds some extra packets (refer to Section 26.17: TPIU (trace port
interface unit)) and then outputs the complete packet sequence to the debugger host.

26.15.2 Signal protocol, packet types

This part is described in the chapter 7 ETMv3 Signal Protocol of the Arm® IHI 0014N
document.

26.15.3 Main ETM registers

For more information on registers refer to the chapter 3 of the Arm® IHI 0014N specification.

RM0401 Rev 3 751/771

RM0401 Debug support (DBG)

762

26.15.4 Configuration example

To output a simple value to the TPIU:

1. Configure the TPIU and enable the I/IO_TRACEN to assign TRACE I/Os in the debug
configuration register.

2. Write 0xC5ACCE55 to the ETM Lock Access Register to unlock the write access to the
ITM registers

3. Write 0x00001D1E to the control register (configure the trace)

4. Write 0000406F to the Trigger Event register (define the trigger event)

5. Write 0000006F to the Trace Enable Event register (define an event to start/stop)

6. Write 00000001 to the Trace Start/stop register (enable the trace)

7. Write 0000191E to the ETM Control Register (end of configuration).

26.16 MCU debug component (DBGMCU)

The MCU debug component helps the debugger provide support for:

• Low-power modes

• Clock control for timers, watchdog and I2C during a breakpoint

• Control of the trace pins assignment

26.16.1 Debug support for low-power modes

To enter low-power mode, the instruction WFI or WFE must be executed.

The MCU implements several low-power modes which can either deactivate the CPU clock
or reduce the power of the CPU.

The core does not allow FCLK or HCLK to be turned off during a debug session. As these
are required for the debugger connection, during a debug, they must remain active. The
MCU integrates special means to allow the user to debug software in low-power modes.

Table 140. Main ETM registers

Address Register Details

0xE0041FB0 ETM Lock Access
Write 0xC5ACCE55 to unlock the write access to the
other ETM registers.

0xE0041000 ETM Control
This register controls the general operation of the ETM,
for instance how tracing is enabled.

0xE0041010 ETM Status
This register provides information about the current status
of the trace and trigger logic.

0xE0041008 ETM Trigger Event This register defines the event that will control trigger.

0xE004101C
ETM Trace Enable
Control

This register defines which comparator is selected.

0xE0041020 ETM Trace Enable Event This register defines the trace enabling event.

0xE0041024 ETM Trace Start/Stop
This register defines the traces used by the trigger source
to start and stop the trace, respectively.

Debug support (DBG) RM0401

752/771 RM0401 Rev 3

For this, the debugger host must first set some debug configuration registers to change the
low-power mode behavior:

• In Sleep mode, DBG_SLEEP bit of DBGMCU_CR register must be previously set by
the debugger. This will feed HCLK with the same clock that is provided to FCLK
(system clock previously configured by the software).

• In Stop mode, the bit DBG_STOP must be previously set by the debugger. This will
enable the internal RC oscillator clock to feed FCLK and HCLK in STOP mode.

26.16.2 Debug support for timers, watchdog, and I2C

During a breakpoint, it is necessary to choose how the counter of timers and watchdog
should behave:

• They can continue to count inside a breakpoint. This is usually required when a PWM is
controlling a motor, for example.

• They can stop to count inside a breakpoint. This is required for watchdog purposes.

For the I2C, the user can choose to block the SMBUS timeout during a breakpoint.

26.16.3 Debug MCU configuration register

This register allows the configuration of the MCU under DEBUG. This concerns:

• Low-power mode support

• Timer and watchdog counter support

• Trace pin assignment

This DBGMCU_CR is mapped on the External PPB bus at address 0xE0042004

It is asynchronously reset by the PORESET (and not the system reset). It can be written by
the debugger under system reset.

If the debugger host does not support these features, it is still possible for the user software
to write to these registers.

DBGMCU_CR register

Address: 0xE004 2004

Only 32-bit access supported

POR Reset: 0x0000 0000 (not reset by system reset)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res.
TRACE_
MODE
[1:0]

TRACE
_IOEN

Res. Res.
DBG_

STAND
BY

DBG_
STOP

DBG_
SLEEP

rw rw rw rw rw rw

RM0401 Rev 3 753/771

RM0401 Debug support (DBG)

762

26.16.4 Debug MCU APB1 freeze register (DBGMCU_APB1_FZ)

The DBGMCU_APB1_FZ register is used to configure the MCU under Debug. It concerns
APB1 peripherals. It is mapped on the external PPB bus at address 0xE004 2008.

The register is asynchronously reset by the POR (and not the system reset). It can be
written by the debugger under system reset.

Address : 0xE004 2008

Only 32-bits access are supported.

Power-on reset (POR): 0x0000 0000 (not reset by system reset)

Bits 31:8 Reserved, must be kept at reset value.

Bits 7:5 TRACE_MODE[1:0] and TRACE_IOEN: Trace pin assignment control

– With TRACE_IOEN=0:

TRACE_MODE=xx: TRACE pins not assigned (default state)

– With TRACE_IOEN=1:

– TRACE_MODE=00: TRACE pin assignment for Asynchronous Mode

– TRACE_MODE=01: TRACE pin assignment for Synchronous Mode with a
TRACEDATA size of 1

– TRACE_MODE=10: TRACE pin assignment for Synchronous Mode with a
TRACEDATA size of 2

– TRACE_MODE=11: TRACE pin assignment for Synchronous Mode with a
TRACEDATA size of 4

Bits 4:3 Reserved, must be kept at reset value.

Bit 2 DBG_STANDBY: Debug Standby mode

0: (FCLK=Off, HCLK=Off) The whole digital part is unpowered.
From software point of view, exiting from Standby is identical than fetching reset vector
(except a few status bit indicated that the MCU is resuming from Standby)
1: (FCLK=On, HCLK=On) In this case, the digital part is not unpowered and FCLK and
HCLK are provided by the internal RC oscillator which remains active. In addition, the MCU
generate a system reset during Standby mode so that exiting from Standby is identical than
fetching from reset

Bit 1 DBG_STOP: Debug Stop mode

0: (FCLK=Off, HCLK=Off) In STOP mode, the clock controller disables all clocks (including
HCLK and FCLK). When exiting from STOP mode, the clock configuration is identical to the
one after RESET (CPU clocked by the 8 MHz internal RC oscillator (HSI)). Consequently,
the software must reprogram the clock controller to enable the PLL, the Xtal, etc.
1: (FCLK=On, HCLK=On) In this case, when entering STOP mode, FCLK and HCLK are
provided by the internal RC oscillator which remains active in STOP mode. When exiting
STOP mode, the software must reprogram the clock controller to enable the PLL, the Xtal,
etc. (in the same way it would do in case of DBG_STOP=0)

Bit 0 DBG_SLEEP: Debug Sleep mode

0: (FCLK=On, HCLK=Off) In Sleep mode, FCLK is clocked by the system clock as
previously configured by the software while HCLK is disabled.
In Sleep mode, the clock controller configuration is not reset and remains in the previously
programmed state. Consequently, when exiting from Sleep mode, the software does not
need to reconfigure the clock controller.
1: (FCLK=On, HCLK=On) In this case, when entering Sleep mode, HCLK is fed by the same
clock that is provided to FCLK (system clock as previously configured by the software).

Debug support (DBG) RM0401

754/771 RM0401 Rev 3

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res.

D
B

G
_

I2
C

F
M

P
_

S
M

B
U

S
_

T
IM

E
O

U
T

Res.

D
B

G
_

I2
C

2
_

S
M

B
U

S
_

T
IM

E
O

U
T

D
B

G
_

I2
C

1
_

S
M

B
U

S
_

T
IM

E
O

U
T

Res. Res. Res. Res. Res.

rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res.

D
B

G
_I

W
D

G
_

S
T

O
P

D
B

G
_

W
W

D
G

_
S

T
O

P

D
B

G
_

R
T

C
_

S
T

O
P

Res. Res. Res. Res. Res.

D
B

G
_

T
IM

6
_S

T
O

P

D
B

G
_

T
IM

5
_S

T
O

P

Res. Res. Res.

rw rw rw rw rw

Bits 31:25 Reserved, must be kept at reset value.

Bit 24 DBG_I2CFMP_SMBUS_TIMEOUT: FMPI2C SMBUS timeout mode stopped when Core is
halted

0: Same behavior as in normal mode
1: The SMBUS timeout is frozen

Bit 23 DBG_I2C3_SMBUS_TIMEOUT: SMBUS timeout mode stopped when Core is halted

0: Same behavior as in normal mode
1: The SMBUS timeout is frozen

Bit 22 DBG_I2C2_SMBUS_TIMEOUT: I2C2 SMBUS timeout mode stopped when Core is halted

0: Same behavior as in normal mode
1: The SMBUS timeout is frozen

Bit 21 DBG_I2C1_SMBUS_TIMEOUT: I2C1 SMBUS timeout mode stopped when Core is halted

0: Same behavior as in normal mode
1: The SMBUS timeout is frozen

Bits 20:13 Reserved, must be kept at reset value.

Bit 12 DBG_IWDG_STOP: Debug independent watchdog stopped when core is halted

0: The independent watchdog counter clock continues even if the core is halted
1: The independent watchdog counter clock is stopped when the core is halted

Bit 11 DBG_WWDG_STOP: Debug Window Watchdog stopped when Core is halted

0: The window watchdog counter clock continues even if the core is halted
1: The window watchdog counter clock is stopped when the core is halted

Bit 10 DBG_RTC_STOP: RTC stopped when Core is halted

0: The RTC counter clock continues even if the core is halted
1: The RTC counter clock is stopped when the core is halted

Bits 9:5 Reserved, must be kept at reset value.

RM0401 Rev 3 755/771

RM0401 Debug support (DBG)

762

26.16.5 Debug MCU APB2 Freeze register (DBGMCU_APB2_FZ)

The DBGMCU_APB2_FZ register is used to configure the MCU under Debug. It concerns
APB2 peripherals.

This register is mapped on the external PPB bus at address 0xE004 200C

It is asynchronously reset by the POR (and not the system reset). It can be written by the
debugger under system reset.

Address: 0xE004 200C

Only 32-bit access is supported.

POR: 0x0000 0000 (not reset by system reset)

Bit 4 DBG_TIM6_STOP: TIM6 counter stopped when core is halted

0: The clock of the involved Timer Counter is fed even if the core is halted
1: The clock of the involved Timer counter is stopped when the core is halted

Bit 3 DBG_TIM5_STOP: TIM5 counter stopped when core is halted

0: The clock of the involved Timer Counter is fed even if the core is halted
1: The clock of the involved Timer counter is stopped when the core is halted

Bits 2:0 Reserved, must be kept at reset value.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.
DBG_TIM11

_STOP
Res.

DBG_TIM9_
STOP

rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res. Res.
DBG_TIM1_

STOP

rw

Bits 31:19 Reserved, must be kept at reset value.

Bit 18 DBG_TIMx_STOP: TIM11 counter stopped when core is halted

0: The clock of the involved Timer Counter is fed even if the core is halted
1: The clock of the involved Timer counter is stopped when the core is halted

Bit 17 Reserved, must be kept at reset value.

Bit 16 DBG_TIM9_STOP: TIM9 counter stopped when core is halted

0: The clock of the involved Timer Counter is fed even if the core is halted
1: The clock of the involved Timer counter is stopped when the core is halted

Bit 0 DBG_TIM1_STOP: TIM1 counter stopped when core is halted

0: The clock of the involved Timer Counter is fed even if the core is halted
1: The clock of the involved Timer counter is stopped when the core is halted

Debug support (DBG) RM0401

756/771 RM0401 Rev 3

26.17 TPIU (trace port interface unit)

26.17.1 Introduction

The TPIU acts as a bridge between the on-chip trace data from the ITM and the ETM.

The output data stream encapsulates the trace source ID, that is then captured by a trace
port analyzer (TPA).

The core embeds a simple TPIU, especially designed for low-cost debug (consisting of a
special version of the CoreSight TPIU).

Figure 276. TPIU block diagram

formatter
Trace out
(serializer)

TRACECLKIN

TRACECK

TRACEDATA
[3:0]

TRACESWO

CLK domain TRACECLKIN domain

External PPB bus

TPIU

TPIU

Asynchronous

FIFO

Asynchronous
FIFO

ETM

ITM

ai17114

RM0401 Rev 3 757/771

RM0401 Debug support (DBG)

762

26.17.2 TRACE pin assignment

• Asynchronous mode

The asynchronous mode requires 1 extra pin and is available on all packages. It is only
available if using Serial Wire mode (not in JTAG mode).

• Synchronous mode

The synchronous mode requires from 2 to 6 extra pins depending on the data trace
size and is only available in the larger packages. In addition it is available in JTAG
mode and in Serial Wire mode and provides better bandwidth output capabilities than
asynchronous trace.

TPUI TRACE pin assignment

By default, these pins are NOT assigned. They can be assigned by setting the
TRACE_IOEN and TRACE_MODE bits in the MCU Debug component configuration
register. This configuration has to be done by the debugger host.

In addition, the number of pins to assign depends on the trace configuration (asynchronous
or synchronous).

• Asynchronous mode: 1 extra pin is needed

• Synchronous mode: from 2 to 5 extra pins are needed depending on the size of the
data trace port register (1, 2 or 4):

– TRACECK

– TRACED(0) if port size is configured to 1, 2 or 4

– TRACED(1) if port size is configured to 2 or 4

– TRACED(2) if port size is configured to 4

– TRACED(3) if port size is configured to 4

To assign the TRACE pin, the debugger host must program the bits TRACE_IOEN and
TRACE_MODE[1:0] of the Debug MCU configuration Register (DBGMCU_CR). By default
the TRACE pins are not assigned.

This register is mapped on the external PPB and is reset by the PORESET (and not by the
SYSTEM reset). It can be written by the debugger under SYSTEM reset.

Table 141. Asynchronous TRACE pin assignment

TPUI pin name
Trace synchronous mode

Pin assignment
Type Description

TRACESWO O TRACE Async Data Output PB3

Table 142. Synchronous TRACE pin assignment

TPUI pin name
Trace synchronous mode

Pin assignment
Type Description

TRACECK O TRACE Clock PC6

TRACED[3:0] O
TRACE Sync Data Outputs

Can be 1, 2 or 4.
PC[10:12], PB11

Debug support (DBG) RM0401

758/771 RM0401 Rev 3

Note: By default, the TRACECLKIN input clock of the TPIU is tied to GND. It is assigned to HCLK
two clock cycles after the bit TRACE_IOEN has been set.

The debugger must then program the Trace Mode by writing the PROTOCOL[1:0] bits in the
SPP_R (Selected Pin Protocol) register of the TPIU.

• PROTOCOL=00: Trace Port Mode (synchronous)

• PROTOCOL=01 or 10: Serial Wire (Manchester or NRZ) Mode (asynchronous mode).
Default state is 01

It then also configures the TRACE port size by writing the bits [3:0] in the CPSPS_R
(Current Sync Port Size Register) of the TPIU:

• 0x1 for 1 pin (default state)

• 0x2 for 2 pins

• 0x8 for 4 pins

26.17.3 TPUI formatter

The formatter protocol outputs data in 16-byte frames:

• seven bytes of data

• eight bytes of mixed-use bytes consisting of:

– 1 bit (LSB) to indicate it is a DATA byte (‘0) or an ID byte (‘1).

– 7 bits (MSB) which can be data or change of source ID trace.

• one byte of auxiliary bits where each bit corresponds to one of the eight mixed-use
bytes:

– if the corresponding byte was a data, this bit gives bit0 of the data.

– if the corresponding byte was an ID change, this bit indicates when that ID change
takes effect.

Table 143. Flexible TRACE pin assignment

DBGMCU_CR
register

Pins
assigned for:

TRACE IO pin assigned

TRAC
E_IOE

N

TRACE
_MODE

[1:0]

PB3 /JTDO/
TRACESW

O

PC6

TRACEC
K

PC10/
TRACED[0

]

PC11/
TRACED[1

]

PC12/
TRACED[2

]

PB11/
TRACED[3

]

0 XX
No Trace

(default state)
Released (1) -

1 00
Asynchronou

s Trace
TRACESW

O
- -

Released
(usable as GPIO)

1 01
Synchronous

Trace 1 bit

Released (1)

TRACECK TRACED[0] - - -

1 10
Synchronous

Trace 2 bit
TRACECK TRACED[0] TRACED[1] - -

1 11
Synchronous

Trace 4 bit
TRACECK TRACED[0] TRACED[1] TRACED[2] TRACED[3]

1. When Serial Wire mode is used, it is released. But when JTAG is used, it is assigned to JTDO.

RM0401 Rev 3 759/771

RM0401 Debug support (DBG)

762

Note: Refer to the Arm® CoreSight Architecture Specification v1.0 (Arm® IHI 0029B) for further
information

26.17.4 TPUI frame synchronization packets

The TPUI can generate two types of synchronization packets:

• The Frame Synchronization packet (or Full Word Synchronization packet)

It consists of the word: 0x7F_FF_FF_FF (LSB emitted first). This sequence can not
occur at any other time provided that the ID source code 0x7F has not been used.

It is output periodically between frames.

In continuous mode, the TPA must discard all these frames once a synchronization
frame has been found.

• The Half-Word Synchronization packet

It consists of the half word: 0x7F_FF (LSB emitted first).

It is output periodically between or within frames.

These packets are only generated in continuous mode and enable the TPA to detect
that the TRACE port is in IDLE mode (no TRACE to be captured). When detected by
the TPA, it must be discarded.

26.17.5 Transmission of the synchronization frame packet

There is no Synchronization Counter register implemented in the TPIU of the core.
Consequently, the synchronization trigger can only be generated by the DWT. Refer to the
registers DWT Control Register (bits SYNCTAP[11:10]) and the DWT Current PC Sampler
Cycle Count Register.

The TPUI Frame synchronization packet (0x7F_FF_FF_FF) is emitted:

• after each TPIU reset release. This reset is synchronously released with the rising
edge of the TRACECLKIN clock. This means that this packet is transmitted when the
TRACE_IOEN bit in the DBGMCU_CFG register is set. In this case, the word
0x7F_FF_FF_FF is not followed by any formatted packet.

• at each DWT trigger (assuming DWT has been previously configured). Two cases
occur:

– If the bit SYNENA of the ITM is reset, only the word 0x7F_FF_FF_FF is emitted
without any formatted stream which follows.

– If the bit SYNENA of the ITM is set, then the ITM synchronization packets will
follow (0x80_00_00_00_00_00), formatted by the TPUI (trace source ID added).

26.17.6 Synchronous mode

The trace data output size can be configured to 4, 2 or 1 pin: TRACED(3:0)

The output clock is output to the debugger (TRACECK)

Here, TRACECLKIN is driven internally and is connected to HCLK only when TRACE is
used.

Note: In this synchronous mode, it is not required to provide a stable clock frequency.

The TRACE I/Os (including TRACECK) are driven by the rising edge of TRACLKIN (equal
to HCLK). Consequently, the output frequency of TRACECK is equal to HCLK/2.

Debug support (DBG) RM0401

760/771 RM0401 Rev 3

26.17.7 Asynchronous mode

This is a low cost alternative to output the trace using only 1 pin: this is the asynchronous
output pin TRACESWO. Obviously there is a limited bandwidth.

TRACESWO is multiplexed with JTDO when using the SW-DP pin. This way, this
functionality is available in all packages.

This asynchronous mode requires a constant frequency for TRACECLKIN. For the standard
UART (NRZ) capture mechanism, 5% accuracy is needed. The Manchester encoded
version is tolerant up to 10%.

26.17.8 TRACECLKIN connection

The TRACECLKIN input is internally connected to HCLK. This means that when in
asynchronous trace mode, the application is restricted to use to time frames where the CPU
frequency is stable.

Note: Important: when using asynchronous trace: it is important to be aware that:

The default clock of the MCUs is the internal RC oscillator. Its frequency under reset is
different from the one after reset release. This is because the RC calibration is the default
one under system reset and is updated at each system reset release.

Consequently, the trace port analyzer (TPA) should not enable the trace (with the
TRACE_IOEN bit) under system reset, because a Synchronization Frame Packet will be
issued with a different bit time than trace packets which will be transmitted after reset
release.

26.17.9 TPIU registers

The TPIU APB registers can be read and written only if the bit TRCENA of the Debug
Exception and Monitor Control Register (DEMCR) is set. Otherwise, the registers are read
as zero (the output of this bit enables the PCLK of the TPIU).

Table 144. Important TPIU registers

Address Register Description

0xE0040004 Current port size

Allows the trace port size to be selected:

Bit 0: Port size = 1
Bit 1: Port size = 2
Bit 2: Port size = 3, not supported
Bit 3: Port Size = 4

Only 1 bit must be set. By default, the port size is one bit. (0x00000001)

0xE00400F0
Selected pin
protocol

Allows the Trace Port Protocol to be selected:

Bit1:0=
00: Sync Trace Port Mode
01: Serial Wire Output - manchester (default value)
10: Serial Wire Output - NRZ
11: reserved

RM0401 Rev 3 761/771

RM0401 Debug support (DBG)

762

26.17.10 Example of configuration

• Set the bit TRCENA in the Debug Exception and Monitor Control Register (DEMCR)

• Write the TPIU Current Port Size Register to the desired value (default is 0x1 for a 1-bit
port size)

• Write TPIU Formatter and Flush Control Register to 0x102 (default value)

• Write the TPIU Select Pin Protocol to select the sync or async mode. Example: 0x2 for
async NRZ mode (UART like)

• Write the DBGMCU control register to 0x20 (bit IO_TRACEN) to assign TRACE I/Os
for async mode. A TPIU Sync packet is emitted at this time (FF_FF_FF_7F)

• Configure the ITM and write the ITM Stimulus register to output a value

0xE0040304
Formatter and flush
control

Bits 31-9 = always ‘0
Bit 8 = TrigIn = always ‘1 to indicate that triggers are indicated
Bits 7-4 = always 0
Bits 3-2 = always 0
Bit 1 = EnFCont. In Sync Trace mode (Select_Pin_Protocol register
bit1:0=00), this bit is forced to ‘1: the formatter is automatically enabled
in continuous mode. In asynchronous mode (Select_Pin_Protocol
register bit1:0 <> 00), this bit can be written to activate or not the
formatter.
Bit 0 = always 0

The resulting default value is 0x102

Note: In synchronous mode, because the TRACECTL pin is not mapped
outside the chip, the formatter is always enabled in continuous mode -this
way the formatter inserts some control packets to identify the source of
the trace packets).

0xE0040300
Formatter and flush
status

Not used in Cortex®-M4 with FPU, always read as 0x00000008

Table 144. Important TPIU registers (continued)

Address Register Description

Debug support (DBG) RM0401

762/771 RM0401 Rev 3

26.18 DBG register map

The following table summarizes the Debug registers.

Table 145. DBG register map and reset values

Addr. Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0xE004
2000

DBGMCU
_IDCODE

REV_ID

R
es

.
R

es
.

R
es

.
R

es
.

DEV_ID

Reset value(1) X

0xE004
2004

DBGMCU_CR

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

R
es

.
R

es
.

T
R

A
C

E
_

M
O

D
E

[1
:0

]

T
R

A
C

E
_

IO
E

N

R
es

.
R

es
.

D
B

G
_

S
TA

N
D

B
Y

D
B

G
_

S
T

O
P

D
B

G
_

S
L

E
E

P

Reset value 0 0 0 0 0 0

0xE004
2008

DBGMCU_
APB1_FZ R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

D
B

G
_

I2
C

F
M

P
_

S
M

B
U

S
_

T
IM

E
O

U
T

R
e

s.
D

B
G

_
I2

C
2

_
S

M
B

U
S

_
T

IM
E

O
U

T

D
B

G
_

I2
C

1
_

S
M

B
U

S
_

T
IM

E
O

U
T

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
D

B
G

_I
W

D
G

_
S

T
O

P

D
B

G
_W

W
D

G
_

S
T

O
P

R
e

s.
D

B
G

_
R

T
C

_
S

T
O

P

R
e

s.
R

e
s.

R
e

s.
R

e
s.

D
B

G
_

T
IM

6_
S

T
O

P

D
B

G
_

T
IM

5_
S

T
O

P

R
e

s.
R

e
s.

R
e

s.

Reset value 0 0 0 0 0 0 0 0

0xE004
200C

DBGMCU_
APB2_FZ R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

D
B

G
_

T
IM

11
_

S
T

O
P

R
e

s.
D

B
G

_
T

IM
9_

S
T

O
P

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
R

e
s.

R
e

s.
D

B
G

_
T

IM
1_

S
T

O
P

Reset value 0 0 0

1. The reset value is product dependent. For more information, refer to Section 26.6.1: MCU device ID code.

RM0401 Rev 3 763/771

RM0401 Device electronic signature

764

27 Device electronic signature

The electronic signature is stored in the Flash memory area. It can be read using the
JTAG/SWD or the CPU. It contains factory-programmed identification data that allow the
user firmware or other external devices to automatically match its interface to the
characteristics of the STM32F4xx microcontrollers.

27.1 Unique device ID register (96 bits)

The unique device identifier is ideally suited:

• for use as serial numbers

• for use as security keys in order to increase the security of code in Flash memory while
using and combining this unique ID with software cryptographic primitives and
protocols before programming the internal Flash memory

• to activate secure boot processes, etc.

The 96-bit unique device identifier provides a reference number which is unique for any
device and in any context. These bits can never be altered by the user.

The 96-bit unique device identifier can also be read in single bytes/half-words/words in
different ways and then be concatenated using a custom algorithm.

Base address: 0x1FFF 7A10

Address offset: 0x00

Read only = 0xXXXX XXXX where X is factory-programmed

Address offset: 0x04

Read only = 0xXXXX XXXX where X is factory-programmed

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

U_ID[31:0]

r r

Bits 31:0 U_ID[31:0]: 31:0 unique ID bits

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

U_ID[63:48]

r r r r r r r r r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

U_ID[47:32]

r r r r r r r r r r r r r r r r

Bits 31:0 U_ID[63:32]: 63:32 unique ID bits

Device electronic signature RM0401

764/771 RM0401 Rev 3

Address offset: 0x08

Read only = 0xXXXX XXXX where X is factory-programmed

27.2 Flash size

Base address: 0x1FFF 7A22

Address offset: 0x00

Read only = 0xXXXX where X is factory-programmed

27.3 Package data register

Base address: 0x1FFF 7BF0

Address offset: 0x00

Read only = 0xXXXX where X is factory-programmed

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

U_ID[95:80]

r r r r r r r r r r r r r r r r

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

U_ID[79:64]

r r r r r r r r r r r r r r r r

Bits 31:0 U_ID[95:64]: 95:64 Unique ID bits.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

F_SIZE

r r r r r r r r r r r r r r r r

Bits 15:0 F_ID[15:0]: Flash memory size

This bitfield indicates the size of the device Flash memory expressed in Kbytes.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. PKG[2:0] Res. Res. Res. Res. Res. Res. Res. Res.

r r r

Bits 15:11 Reserved, must be kept at reset value.

Bits 10:8 PKG[2:0]: Package type

0x111: TQFP64
0x001: UFQFPN48
0x000: WLCSP36
0x111: TQFP64

Bits 7:0 Reserved, must be kept at reset value.

RM0401 Rev 3 765/771

RM0401 Revision history

765

28 Revision history

Table 146. Document revision history

Date Revision Changes

07-Sep-2015 1 Initial release.

26-Oct-2015 2

System and memory overview

Updated Figure 2: Memory map.

Interrupts and events (EXTI)

Updated Section 9.1.2: SysTick calibration value register.

Analog-to-digital converted (ADC)

Removed note in Section : Temperature sensor, VREFINT and VBAT
internal channels.

Digital-to-analog converted (DAC)

Updated Section 12.5.3: DAC output voltage.

Timer 11 (TIM11)

Updated TI1_RMP in Section 16.5.11: TIM11 option register 1
(TIM11_OR).

Real-time clock (RTC)

Updated Figure 175: RTC block diagram.

Universal synchronous asynchronous receiver transmitter
(USART)

Replaced section USART mode configuration by Section 24.3: USART
implementation.

Inter-integrated circuit interface (I2C)

Updated Section 22.4.5: FMPI2C initialization, including Figure 179:
Setup and hold timings.

Updated Section 22.7.5: Timing register (FMPI2C_TIMINGR).

Serial peripheral interface/ inter-IC sound (SPI/I2S)

Updated Figure 240, Figure 241, Figure 242 and Figure 243.

Updated and added notes below Figure 240, Figure 241 and
Figure 242.

Added Section 25.3.4: Multi-master communication.

29-Nov-2018 3

Updated:

– Table 3: Embedded bootloader interfaces

– Table 5: Flash module organization

– Section 13: True random number generator (RNG)

– Section 18: Low-power timer (LPTIM)

– Section 22.6: FMPI2C interrupts

Index RM0401

766/771 RM0401 Rev 3

Index

A
ADC_CCR .240
ADC_CR1 .230
ADC_CR2 .232
ADC_CSR .239
ADC_DR .239
ADC_HTR .235
ADC_JDRx .238
ADC_JOFRx .235
ADC_JSQR .238
ADC_LTR .235
ADC_SMPR1 .234
ADC_SMPR2 .234
ADC_SQR1 .236
ADC_SQR2 .237
ADC_SQR3 .237
ADC_SR .229

C
CRC_DR .212
CRC_IDR .213

D
DAC_CR .251
DAC_DHR12L1 .254
DAC_DHR12R1 .253
DAC_DHR8R1 .254
DAC_DOR1 .254
DAC_SR .255
DAC_SWTRIGR .253
DBGMCU_APB1_FZ 753
DBGMCU_APB2_FZ 755
DBGMCU_CR .752
DBGMCU_IDCODE .739
DMA_HIFCR .186
DMA_HISR .185
DMA_LIFCR .186
DMA_LISR .184
DMA_SxCR .187
DMA_SxFCR .192
DMA_SxM0AR .191
DMA_SxM1AR .191
DMA_SxNDTR .190
DMA_SxPAR .191

RM0401 Rev 3 767/771

RM0401 Index

770

E
EXTI_EMR .206
EXTI_FTSR .207
EXTI_IMR .206
EXTI_PR .208
EXTI_RTSR .207
EXTI_SWIER .208

F
FLASH_ACR .61
FLASH_CR .64
FLASH_KEYR .62
FLASH_OPTCR .65
FLASH_OPTKEYR .62
FLASH_SR .63
FMPI2C_CR1 .575
FMPI2C_CR2 .578
FMPI2C_ICR .587
FMPI2C_ISR .585
FMPI2C_OAR1 .581
FMPI2C_OAR2 .582
FMPI2C_PECR .588
FMPI2C_RXDR .589
FMPI2C_TIMEOUTR584
FMPI2C_TIMINGR .583
FMPI2C_TXDR .589

G
GPIOx_AFRH .152
GPIOx_AFRL .151
GPIOx_BSRR .149
GPIOx_IDR .149
GPIOx_LCKR .150
GPIOx_MODER .147
GPIOx_ODR .149
GPIOx_OSPEEDR .148
GPIOx_OTYPER .147
GPIOx_PUPDR .148

I
I2C_CCR .623
I2C_CR1 .613
I2C_CR2 .615
I2C_DR .618
I2C_OAR1 .617
I2C_OAR2 .617
I2C_SR1 .618
I2C_SR2 .622
I2C_TRISE .624

Index RM0401

768/771 RM0401 Rev 3

I2Cx_CR2 .578
IWDG_KR .482
IWDG_PR .483
IWDG_RLR .484
IWDG_SR .484

L
LPTIM_ARR .470
LPTIM_CFGR .465
LPTIM_CMP .469
LPTIM_CNT .470
LPTIM_CR .468
LPTIM_ICR .463
LPTIM_IER .464
LPTIM_ISR .461
LPTIM1_OR .471

P
PWR_CR .86
PWR_CSR .88

R
RCC_AHB1ENR .116
RCC_AHB1LPENR .121
RCC_AHB1RSTR .111
RCC_APB1ENR .117
RCC_APB1LPENR .123
RCC_APB1RSTR .112
RCC_APB2ENR .119
RCC_APB2LPENR .125
RCC_APB2RSTR .114
RCC_BDCR .127
RCC_CFGR .106
RCC_CIR .109
RCC_CR .102
RCC_CSR .128
RCC_DCKCFGR .131
RCC_DCKCFGR2 .132
RCC_PLLCFGR .104
RCC_SSCGR .130
RNG_CR .265
RNG_DR .267
RNG_SR .266
RTC_ALRMAR .511
RTC_ALRMBR .512
RTC_ALRMBSSR .520
RTC_BKxR .521
RTC_CALIBR .509
RTC_CALR .516
RTC_CR .504

RM0401 Rev 3 769/771

RM0401 Index

770

RTC_DR .503
RTC_ISR .506
RTC_PRER .508
RTC_SHIFTR .514
RTC_SSR .513
RTC_TR .502
RTC_TSDR .515
RTC_TSSSR .516
RTC_TSTR .515
RTC_WPR .513
RTC_WUTR .509

S
SPI_CR1 .721
SPI_CR2 .723
SPI_CRCPR .726
SPI_DR .726
SPI_I2SCFGR .728
SPI_I2SPR .729
SPI_RXCRCR .727
SPI_SR .724
SPI_TXCRCR .727
SYSCFG_CFGR .160
SYSCFG_CFGR2 .159
SYSCFG_CMPCR .159
SYSCFG_EXTICR1 .157
SYSCFG_EXTICR2 .157
SYSCFG_EXTICR3 .158
SYSCFG_EXTICR4 .158
SYSCFG_MEMRMP 155

T
TIM5_OR .387
TIMx_ARR . 383, 422, 433, 448
TIMx_BDTR .334
TIMx_CCER . 327, 381, 421, 432
TIMx_CCMR1 . 323, 377, 417, 429
TIMx_CCMR2 . 326, 380
TIMx_CCR1 . 332, 384, 423, 434
TIMx_CCR2 . 333, 384, 423
TIMx_CCR3 . 333, 384
TIMx_CCR4 . 334, 385
TIMx_CNT . 331, 383, 422, 433, 447
TIMx_CR1 . 313, 369, 411, 426, 445
TIMx_CR2 . 314, 371, 446
TIMx_DCR . 336, 385
TIMx_DIER . 318, 373, 414, 427, 446
TIMx_DMAR . 337, 386
TIMx_EGR . 321, 376, 417, 428, 447
TIMx_PSC . 331, 383, 422, 433, 448
TIMx_RCR .332

Index RM0401

770/771 RM0401 Rev 3

TIMx_SMCR . 316, 372, 413
TIMx_SR . 320, 374, 415, 427, 447

U
USART_BRR .672
USART_CR1 .673
USART_CR2 .675
USART_CR3 .676
USART_DR .672
USART_GTPR .678
USART_SR .669

W
WWDG_CFR .478
WWDG_CR .477
WWDG_SR .478

RM0401 Rev 3 771/771

RM0401

771

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2018 STMicroelectronics – All rights reserved

	1 Documentation conventions
	1.1 General information
	1.2 List of abbreviations for registers
	1.3 Glossary
	1.4 Availability of peripherals

	2 System and memory overview
	2.1 System architecture
	2.1.1 I-bus
	2.1.2 D-bus
	2.1.3 S-bus
	2.1.4 DMA memory bus
	2.1.5 DMA peripheral bus
	2.1.6 BusMatrix
	2.1.7 AHB/APB bridges (APB)

	2.2 Memory organization
	2.2.1 Introduction
	2.2.2 Memory map and register boundary addresses

	2.3 Embedded SRAM
	2.4 Flash memory overview
	2.5 Bit banding
	2.6 Boot configuration

	3 Embedded Flash memory interface
	3.1 Introduction
	3.2 Main features
	3.3 Embedded Flash memory
	Table 5. Flash module organization

	3.4 Read interface
	3.4.1 Relation between CPU clock frequency and Flash memory read time
	Table 6. Number of wait states according to CPU clock (HCLK) frequency
	Increasing the CPU frequency
	Decreasing the CPU frequency

	3.4.2 Adaptive real-time memory accelerator (ART Accelerator™)
	Instruction prefetch
	Instruction cache memory
	Data management

	3.5 Erase and program operations
	3.5.1 Unlocking the Flash control register
	3.5.2 Program/erase parallelism
	Table 7. Program/erase parallelism

	3.5.3 Erase
	Sector Erase
	Mass Erase

	3.5.4 Programming
	Standard programming
	Programming errors
	Programming and caches

	3.5.5 Interrupts
	Table 8. Flash interrupt request

	3.6 Option bytes
	3.6.1 Description of user option bytes
	Table 9. Option byte organization
	Table 10. Description of the option bytes

	3.6.2 Programming user option bytes
	Modifying user option bytes

	3.6.3 Read protection (RDP)
	Table 11. Access versus read protection level

	3.6.4 Write protections
	Write protection error flag

	3.6.5 Proprietary code readout protection (PCROP)

	3.7 One-time programmable bytes
	Table 12. OTP area organization

	3.8 Flash interface registers
	3.8.1 Flash access control register (FLASH_ACR)
	3.8.2 Flash key register (FLASH_KEYR)
	3.8.3 Flash option key register (FLASH_OPTKEYR)
	3.8.4 Flash status register (FLASH_SR)
	3.8.5 Flash control register (FLASH_CR)
	3.8.6 Flash option control register (FLASH_OPTCR)
	3.8.7 Flash interface register map
	Table 13. Flash register map and reset values

	4 Power controller (PWR)
	4.1 Power supplies
	4.1.1 Independent A/D converter supply and reference voltage
	4.1.2 Battery backup domain
	Backup domain description
	Backup domain access
	RTC and RTC backup registers

	4.1.3 Voltage regulator

	4.2 Power supply supervisor
	4.2.1 Power-on reset (POR)/power-down reset (PDR)
	4.2.2 Brownout reset (BOR)
	4.2.3 Programmable voltage detector (PVD)

	4.3 Low-power modes
	Entering low-power mode
	Exiting low-power mode
	Table 14. Low-power mode summary
	4.3.1 Optimizing PLL VCO frequency
	4.3.2 Slowing down system clocks
	4.3.3 Peripheral clock gating
	4.3.4 Flash memory in low-power mode for code execution from RAM
	4.3.5 Sleep mode
	Entering Sleep mode
	Exiting Sleep mode
	Table 15. Sleep-now entry and exit
	Table 16. Sleep-on-exit entry and exit

	4.3.6 Batch acquisition mode
	Entering BAM
	Exiting BAM
	Table 17. BAM-now entry and exit
	Table 18. BAM-on-exit entry and exit

	4.3.7 Stop mode
	Table 19. Stop operating modes
	Entering Stop mode
	Exiting Stop mode
	Table 20. Stop mode entry and exit

	4.3.8 Standby mode
	Entering Standby mode
	Exiting Standby mode
	Table 21. Standby mode entry and exit
	I/O states in Standby mode
	Debug mode

	4.3.9 Programming the RTC alternate functions to wake up the device from the Stop and Standby modes
	RTC alternate functions to wake up the device from the Stop mode
	RTC alternate functions to wake up the device from the Standby mode
	Safe RTC alternate function wakeup flag clearing sequence

	4.4 Power control registers
	4.4.1 PWR power control register (PWR_CR)
	4.4.2 PWR power control/status register (PWR_CSR)

	4.5 PWR register map
	Table 22. PWR - register map and reset values

	5 Reset and clock control (RCC)
	5.1 Reset
	5.1.1 System reset
	Software reset
	Low-power management reset

	5.1.2 Power reset
	5.1.3 Backup domain reset

	5.2 Clocks
	5.2.1 HSE clock
	External source (HSE bypass)
	External crystal/ceramic resonator (HSE crystal)

	5.2.2 HSI clock
	Calibration

	5.2.3 PLL configuration
	5.2.4 LSE clock
	External source (LSE bypass)

	5.2.5 LSI clock
	5.2.6 System clock (SYSCLK) selection
	5.2.7 Clock security system (CSS)
	5.2.8 RTC/AWU clock
	5.2.9 Watchdog clock
	5.2.10 Clock-out capability
	5.2.11 Internal/external clock measurement using TIM5/TIM11
	Internal/external clock measurement using TIM5 channel4
	Internal/external clock measurement using TIM11 channel1

	5.3 RCC registers
	5.3.1 RCC clock control register (RCC_CR)
	5.3.2 RCC PLL configuration register (RCC_PLLCFGR)
	5.3.3 RCC clock configuration register (RCC_CFGR)
	5.3.4 RCC clock interrupt register (RCC_CIR)
	5.3.5 RCC AHB1 peripheral reset register (RCC_AHB1RSTR)
	5.3.6 RCC APB1 peripheral reset register for (RCC_APB1RSTR)
	5.3.7 RCC APB2 peripheral reset register (RCC_APB2RSTR)
	5.3.8 RCC AHB1 peripheral clock enable register (RCC_AHB1ENR)
	5.3.9 RCC APB1 peripheral clock enable register (RCC_APB1ENR)
	5.3.10 RCC APB2 peripheral clock enable register (RCC_APB2ENR)
	5.3.11 RCC AHB1 peripheral clock enable in low power mode register (RCC_AHB1LPENR)
	5.3.12 RCC APB1 peripheral clock enable in low power mode register (RCC_APB1LPENR)
	5.3.13 RCC APB2 peripheral clock enabled in low power mode register (RCC_APB2LPENR)
	5.3.14 RCC Backup domain control register (RCC_BDCR)
	5.3.15 RCC clock control & status register (RCC_CSR)
	5.3.16 RCC spread spectrum clock generation register (RCC_SSCGR)
	5.3.17 RCC Dedicated Clocks Configuration Register (RCC_DCKCFGR)
	5.3.18 RCC dedicated Clocks Configuration Register 2 (RCC_DCKCFGR2)
	5.3.19 RCC register map
	Table 23. RCC register map and reset values

	6 General-purpose I/Os (GPIO)
	6.1 GPIO introduction
	6.2 GPIO main features
	6.3 GPIO functional description
	Table 24. Port bit configuration table
	6.3.1 General-purpose I/O (GPIO)
	6.3.2 I/O pin multiplexer and mapping
	Table 25. Flexible SWJ-DP pin assignment

	6.3.3 I/O port control registers
	6.3.4 I/O port data registers
	6.3.5 I/O data bitwise handling
	6.3.6 GPIO locking mechanism
	6.3.7 I/O alternate function input/output
	6.3.8 External interrupt/wakeup lines
	6.3.9 Input configuration
	6.3.10 Output configuration
	6.3.11 Alternate function configuration
	6.3.12 Analog configuration
	6.3.13 Using the OSC32_IN/OSC32_OUT pins as GPIO PC14/PC15 port pins
	6.3.14 Using the OSC_IN/OSC_OUT pins as GPIO PH0/PH1 port pins
	6.3.15 Selection of RTC additional functions
	Table 26. RTC additional functions

	6.4 GPIO registers
	6.4.1 GPIO port mode register (GPIOx_MODER) (x = A..C and H)
	6.4.2 GPIO port output type register (GPIOx_OTYPER) (x = A..C and H)
	6.4.3 GPIO port output speed register (GPIOx_OSPEEDR) (x = A..C and H)
	6.4.4 GPIO port pull-up/pull-down register (GPIOx_PUPDR) (x = A..C and H)
	6.4.5 GPIO port input data register (GPIOx_IDR) (x = A..C and H)
	6.4.6 GPIO port output data register (GPIOx_ODR) (x = A..C and H)
	6.4.7 GPIO port bit set/reset register (GPIOx_BSRR) (x = A..C and H)
	6.4.8 GPIO port configuration lock register (GPIOx_LCKR) (x = A..C and H)
	6.4.9 GPIO alternate function low register (GPIOx_AFRL) (x = A..C and H)
	6.4.10 GPIO alternate function high register (GPIOx_AFRH) (x = A..C and H)
	6.4.11 GPIO register map
	Table 27. GPIO register map and reset values

	7 System configuration controller (SYSCFG)
	7.1 I/O compensation cell
	7.2 SYSCFG registers
	7.2.1 SYSCFG memory remap register (SYSCFG_MEMRMP)
	7.2.2 SYSCFG peripheral mode configuration register (SYSCFG_PMC)
	7.2.3 SYSCFG external interrupt configuration register 1 (SYSCFG_EXTICR1)
	7.2.4 SYSCFG external interrupt configuration register 2 (SYSCFG_EXTICR2)
	7.2.5 SYSCFG external interrupt configuration register 3 (SYSCFG_EXTICR3)
	7.2.6 SYSCFG external interrupt configuration register 4 (SYSCFG_EXTICR4)
	7.2.7 SYSCFG configuration register 2 (SYSCFG_CFGR2)
	7.2.8 Compensation cell control register (SYSCFG_CMPCR)
	7.2.9 Compensation cell control register (SYSCFG_CFGR)
	7.2.10 SYSCFG register map
	Table 28. SYSCFG register map and reset values

	8 Direct memory access controller (DMA)
	8.1 DMA introduction
	8.2 DMA main features
	8.3 DMA functional description
	8.3.1 DMA block diagram
	8.3.2 DMA overview
	8.3.3 DMA transactions
	8.3.4 Channel selection
	8.3.5 Arbiter
	8.3.6 DMA streams
	8.3.7 Source, destination and transfer modes
	8.3.8 Pointer incrementation
	8.3.9 Circular mode
	8.3.10 Double-buffer mode
	8.3.11 Programmable data width, packing/unpacking, endianness
	8.3.12 Single and burst transfers
	8.3.13 FIFO
	8.3.14 DMA transfer completion
	8.3.15 DMA transfer suspension
	8.3.16 Flow controller
	8.3.17 Summary of the possible DMA configurations
	8.3.18 Stream configuration procedure
	8.3.19 Error management

	8.4 DMA interrupts
	8.5 DMA registers
	8.5.1 DMA low interrupt status register (DMA_LISR)
	8.5.2 DMA high interrupt status register (DMA_HISR)
	8.5.3 DMA low interrupt flag clear register (DMA_LIFCR)
	8.5.4 DMA high interrupt flag clear register (DMA_HIFCR)
	8.5.5 DMA stream x configuration register (DMA_SxCR)
	8.5.6 DMA stream x number of data register (DMA_SxNDTR)
	8.5.7 DMA stream x peripheral address register (DMA_SxPAR)
	8.5.8 DMA stream x memory 0 address register (DMA_SxM0AR)
	8.5.9 DMA stream x memory 1 address register (DMA_SxM1AR)
	8.5.10 DMA stream x FIFO control register (DMA_SxFCR)
	8.5.11 DMA register map

	9 Interrupts and events
	9.1 Nested vectored interrupt controller (NVIC)
	9.1.1 NVIC features
	9.1.2 SysTick calibration value register
	9.1.3 Interrupt and exception vectors

	9.2 External interrupt/event controller (EXTI)
	Table 39. Vector table
	9.2.1 EXTI main features
	9.2.2 EXTI block diagram
	9.2.3 Wakeup event management
	9.2.4 Functional description
	Hardware interrupt selection
	Hardware event selection
	Software interrupt/event selection

	9.2.5 External interrupt/event line mapping

	9.3 EXTI registers
	9.3.1 Interrupt mask register (EXTI_IMR)
	9.3.2 Event mask register (EXTI_EMR)
	9.3.3 Rising trigger selection register (EXTI_RTSR)
	9.3.4 Falling trigger selection register (EXTI_FTSR)
	9.3.5 Software interrupt event register (EXTI_SWIER)
	9.3.6 Pending register (EXTI_PR)
	9.3.7 EXTI register map
	Table 40. External interrupt/event controller register map and reset values

	10 CRC calculation unit
	10.1 CRC introduction
	10.2 CRC main features
	Figure 31. CRC calculation unit block diagram

	10.3 CRC functional description
	10.4 CRC registers
	10.4.1 Data register (CRC_DR)
	10.4.2 Independent data register (CRC_IDR)
	10.4.3 Control register (CRC_CR)
	10.4.4 CRC register map
	Table 41. CRC calculation unit register map and reset values

	11 Analog-to-digital converter (ADC)
	11.1 ADC introduction
	11.2 ADC main features
	11.3 ADC functional description
	Figure 32. Single ADC block diagram
	Table 42. ADC pins
	11.3.1 ADC on-off control
	11.3.2 ADC clock
	11.3.3 Channel selection
	11.3.4 Single conversion mode
	11.3.5 Continuous conversion mode
	11.3.6 Timing diagram
	Figure 33. Timing diagram

	11.3.7 Analog watchdog
	Figure 34. Analog watchdog’s guarded area
	Table 43. Analog watchdog channel selection

	11.3.8 Scan mode
	11.3.9 Injected channel management
	Figure 35. Injected conversion latency

	11.3.10 Discontinuous mode

	11.4 Data alignment
	Figure 36. Right alignment of 12-bit data
	Figure 37. Left alignment of 12-bit data
	Figure 38. Left alignment of 6-bit data

	11.5 Channel-wise programmable sampling time
	11.6 Conversion on external trigger and trigger polarity
	Table 44. Configuring the trigger polarity
	Table 45. External trigger for regular channels
	Table 46. External trigger for injected channels

	11.7 Fast conversion mode
	11.8 Data management
	11.8.1 Using the DMA
	11.8.2 Managing a sequence of conversions without using the DMA
	11.8.3 Conversions without DMA and without overrun detection

	11.9 Temperature sensor
	Figure 39. Temperature sensor and VREFINT channel block diagram

	11.10 Battery charge monitoring
	11.11 ADC interrupts
	Table 47. ADC interrupts

	11.12 ADC registers
	11.12.1 ADC status register (ADC_SR)
	11.12.2 ADC control register 1 (ADC_CR1)
	11.12.3 ADC control register 2 (ADC_CR2)
	11.12.4 ADC sample time register 1 (ADC_SMPR1)
	11.12.5 ADC sample time register 2 (ADC_SMPR2)
	11.12.6 ADC injected channel data offset register x (ADC_JOFRx) (x=1..4)
	11.12.7 ADC watchdog higher threshold register (ADC_HTR)
	11.12.8 ADC watchdog lower threshold register (ADC_LTR)
	11.12.9 ADC regular sequence register 1 (ADC_SQR1)
	11.12.10 ADC regular sequence register 2 (ADC_SQR2)
	11.12.11 ADC regular sequence register 3 (ADC_SQR3)
	11.12.12 ADC injected sequence register (ADC_JSQR)
	11.12.13 ADC injected data register x (ADC_JDRx) (x= 1..4)
	11.12.14 ADC regular data register (ADC_DR)
	11.12.15 ADC Common status register (ADC_CSR)
	11.12.16 ADC common control register (ADC_CCR)
	11.12.17 ADC register map
	Table 48. ADC global register map
	Table 49. ADC register map and reset values
	Table 50. ADC register map and reset values (common ADC registers)

	12 Digital-to-analog converter (DAC)
	12.1 Introduction
	12.2 DAC main features
	Figure 40. DAC channel block diagram
	Table 51. DAC pins

	12.3 DAC output buffer enable
	12.4 DAC channel enable
	12.5 Single mode functional description
	12.5.1 DAC data format
	Figure 41. Data registers in single DAC channel mode

	12.5.2 DAC channel conversion
	Figure 42. Timing diagram for conversion with trigger disabled TEN = 0

	12.5.3 DAC output voltage
	12.5.4 DAC trigger selection
	Table 52. External triggers

	12.6 Noise generation
	Figure 43. DAC LFSR register calculation algorithm
	Figure 44. DAC conversion (SW trigger enabled) with LFSR wave generation

	12.7 Triangle-wave generation
	Figure 45. DAC triangle wave generation
	Figure 46. DAC conversion (SW trigger enabled) with triangle wave generation

	12.8 DMA request
	12.9 DAC registers
	12.9.1 DAC control register (DAC_CR)
	12.9.2 DAC software trigger register (DAC_SWTRIGR)
	12.9.3 DAC channel1 12-bit right-aligned data holding register (DAC_DHR12R1)
	12.9.4 DAC channel1 12-bit left-aligned data holding register (DAC_DHR12L1)
	12.9.5 DAC channel1 8-bit right-aligned data holding register (DAC_DHR8R1)
	12.9.6 DAC channel1 data output register (DAC_DOR1)
	12.9.7 DAC status register (DAC_SR)
	12.9.8 DAC register map
	Table 53. DAC register map and reset values

	13 True random number generator (RNG)
	13.1 Introduction
	13.2 RNG main features
	13.3 RNG functional description
	13.3.1 RNG block diagram
	Figure 47. RNG block diagram

	13.3.2 RNG internal signals
	Table 54. RNG internal input/output signals

	13.3.3 Random number generation
	Figure 48. Entropy source model

	13.3.4 RNG initialization
	13.3.5 RNG operation
	13.3.6 RNG clocking
	13.3.7 Error management

	13.4 RNG low-power usage
	13.5 RNG interrupts
	Table 55. RNG interrupt requests

	13.6 RNG processing time
	13.7 Entropy source validation
	13.7.1 Introduction
	13.7.2 Validation conditions

	13.8 RNG registers
	13.8.1 RNG control register (RNG_CR)
	13.8.2 RNG status register (RNG_SR)
	13.8.3 RNG data register (RNG_DR)
	13.8.4 RNG register map
	Table 56. RNG register map and reset map

	14 Advanced-control timers (TIM1)
	14.1 TIM1 introduction
	14.2 TIM1 main features
	Figure 49. Advanced-control timer block diagram

	14.3 TIM1 functional description
	14.3.1 Time-base unit
	Figure 50. Counter timing diagram with prescaler division change from 1 to 2
	Figure 51. Counter timing diagram with prescaler division change from 1 to 4

	14.3.2 Counter modes
	Figure 52. Counter timing diagram, internal clock divided by 1
	Figure 53. Counter timing diagram, internal clock divided by 2
	Figure 54. Counter timing diagram, internal clock divided by 4
	Figure 55. Counter timing diagram, internal clock divided by N
	Figure 56. Counter timing diagram, update event when ARPE=0 (TIMx_ARR not preloaded)
	Figure 57. Counter timing diagram, update event when ARPE=1 (TIMx_ARR preloaded)
	Figure 58. Counter timing diagram, internal clock divided by 1
	Figure 59. Counter timing diagram, internal clock divided by 2
	Figure 60. Counter timing diagram, internal clock divided by 4
	Figure 61. Counter timing diagram, internal clock divided by N
	Figure 62. Counter timing diagram, update event when repetition counter is not used
	Figure 63. Counter timing diagram, internal clock divided by 1, TIMx_ARR = 0x6
	Figure 64. Counter timing diagram, internal clock divided by 2
	Figure 65. Counter timing diagram, internal clock divided by 4, TIMx_ARR=0x36
	Figure 66. Counter timing diagram, internal clock divided by N
	Figure 67. Counter timing diagram, update event with ARPE=1 (counter underflow)
	Figure 68. Counter timing diagram, update event with ARPE=1 (counter overflow)

	14.3.3 Repetition counter
	Figure 69. Update rate examples depending on mode and TIMx_RCR register settings

	14.3.4 Clock selection
	Figure 70. Control circuit in normal mode, internal clock divided by 1
	Figure 71. TI2 external clock connection example
	Figure 72. Control circuit in external clock mode 1
	Figure 73. External trigger input block
	Figure 74. Control circuit in external clock mode 2

	14.3.5 Capture/compare channels
	Figure 75. Capture/compare channel (example: channel 1 input stage)
	Figure 76. Capture/compare channel 1 main circuit
	Figure 77. Output stage of capture/compare channel (channels 1 to 3)
	Figure 78. Output stage of capture/compare channel (channel 4)

	14.3.6 Input capture mode
	14.3.7 PWM input mode
	Figure 79. PWM input mode timing

	14.3.8 Forced output mode
	14.3.9 Output compare mode
	Figure 80. Output compare mode, toggle on OC1.

	14.3.10 PWM mode
	Figure 81. Edge-aligned PWM waveforms (ARR=8)
	Figure 82. Center-aligned PWM waveforms (ARR=8)

	14.3.11 Complementary outputs and dead-time insertion
	Figure 83. Complementary output with dead-time insertion.
	Figure 84. Dead-time waveforms with delay greater than the negative pulse.
	Figure 85. Dead-time waveforms with delay greater than the positive pulse.

	14.3.12 Using the break function
	Figure 86. Output behavior in response to a break.

	14.3.13 Clearing the OCxREF signal on an external event
	Figure 87. Clearing TIMx OCxREF

	14.3.14 6-step PWM generation
	Figure 88. 6-step generation, COM example (OSSR=1)

	14.3.15 One-pulse mode
	Figure 89. Example of one pulse mode.

	14.3.16 Encoder interface mode
	Table 57. Counting direction versus encoder signals
	Figure 90. Example of counter operation in encoder interface mode.
	Figure 91. Example of encoder interface mode with TI1FP1 polarity inverted.

	14.3.17 Timer input XOR function
	14.3.18 Interfacing with Hall sensors
	Figure 92. Example of Hall sensor interface

	14.3.19 TIMx and external trigger synchronization
	Figure 93. Control circuit in reset mode
	Figure 94. Control circuit in gated mode
	Figure 95. Control circuit in trigger mode
	Figure 96. Control circuit in external clock mode 2 + trigger mode

	14.3.20 Debug mode

	14.4 TIM1 registers
	14.4.1 TIM1 control register 1 (TIMx_CR1)
	14.4.2 TIM1 control register 2 (TIMx_CR2)
	14.4.3 TIM1 slave mode control register (TIMx_SMCR)
	Table 58. TIMx Internal trigger connection

	14.4.4 TIM1 DMA/interrupt enable register (TIMx_DIER)
	14.4.5 TIM1 status register (TIMx_SR)
	14.4.6 TIM1 event generation register (TIMx_EGR)
	14.4.7 TIM1 capture/compare mode register 1 (TIMx_CCMR1)
	14.4.8 TIM1 capture/compare mode register 2 (TIMx_CCMR2)
	14.4.9 TIM1 capture/compare enable register (TIMx_CCER)
	Table 59. Output control bits for complementary OCx and OCxN channels with break feature

	14.4.10 TIM1 counter (TIMx_CNT)
	14.4.11 TIM1 prescaler (TIMx_PSC)
	14.4.12 TIM1 auto-reload register (TIMx_ARR)
	14.4.13 TIM1 repetition counter register (TIMx_RCR)
	14.4.14 TIM1 capture/compare register 1 (TIMx_CCR1)
	14.4.15 TIM1 capture/compare register 2 (TIMx_CCR2)
	14.4.16 TIM1 capture/compare register 3 (TIMx_CCR3)
	14.4.17 TIM1 capture/compare register 4 (TIMx_CCR4)
	14.4.18 TIM1 break and dead-time register (TIMx_BDTR)
	14.4.19 TIM1 DMA control register (TIMx_DCR)
	14.4.20 TIM1 DMA address for full transfer (TIMx_DMAR)
	14.4.21 TIM1 register map
	Table 60. TIM1 register map and reset values

	15 General-purpose timers (TIM5)
	15.1 TIM5 introduction
	15.2 TIM5 main features
	15.3 TIM5 functional description
	15.3.1 Time-base unit
	Prescaler description

	15.3.2 Counter modes
	Upcounting mode
	Downcounting mode
	Center-aligned mode (up/down counting)

	15.3.3 Clock selection
	Internal clock source (CK_INT)
	External clock source mode 1

	15.3.4 Capture/compare channels
	15.3.5 Input capture mode
	15.3.6 PWM input mode
	15.3.7 Forced output mode
	15.3.8 Output compare mode
	15.3.9 PWM mode
	PWM edge-aligned mode
	Upcounting configuration
	Downcounting configuration
	PWM center-aligned mode

	15.3.10 One-pulse mode
	Particular case: OCx fast enable:

	15.3.11 Encoder interface mode
	Table 61. Counting direction versus encoder signals

	15.3.12 Timer input XOR function
	15.3.13 Timers and external trigger synchronization
	Slave mode: Reset mode
	Slave mode: Gated mode
	Slave mode: Trigger mode

	15.3.14 Debug mode

	15.4 TIM5 registers
	15.4.1 TIMx control register 1 (TIMx_CR1)
	15.4.2 TIMx control register 2 (TIMx_CR2)
	15.4.3 TIMx slave mode control register (TIMx_SMCR)
	Table 62. TIMx internal trigger connection

	15.4.4 TIMx DMA/Interrupt enable register (TIMx_DIER)
	15.4.5 TIMx status register (TIMx_SR)
	15.4.6 TIMx event generation register (TIMx_EGR)
	15.4.7 TIMx capture/compare mode register 1 (TIMx_CCMR1)
	Output compare mode
	Input capture mode

	15.4.8 TIMx capture/compare mode register 2 (TIMx_CCMR2)
	Output compare mode
	Input capture mode

	15.4.9 TIMx capture/compare enable register (TIMx_CCER)
	Table 63. Output control bit for standard OCx channels

	15.4.10 TIMx counter (TIMx_CNT)
	15.4.11 TIMx prescaler (TIMx_PSC)
	15.4.12 TIMx auto-reload register (TIMx_ARR)
	15.4.13 TIMx capture/compare register 1 (TIMx_CCR1)
	15.4.14 TIMx capture/compare register 2 (TIMx_CCR2)
	15.4.15 TIMx capture/compare register 3 (TIMx_CCR3)
	15.4.16 TIMx capture/compare register 4 (TIMx_CCR4)
	15.4.17 TIMx DMA control register (TIMx_DCR)
	15.4.18 TIMx DMA address for full transfer (TIMx_DMAR)
	Example of how to use the DMA burst feature

	15.4.19 TIM5 option register (TIM5_OR)
	15.4.20 TIMx register map
	Table 64. TIM5 register map and reset values

	16 General-purpose timers (TIM9 and TIM11)
	16.1 TIM9 and TIM11 introduction
	16.2 TIM9 and TIM11 main features
	16.2.1 TIM9 main features
	Figure 133. General-purpose timer block diagram (TIM9)

	16.2.2 TIM11 main features
	Figure 134. General-purpose timer block diagram (TIM11)

	16.3 TIM9 and TIM11 functional description
	16.3.1 Time-base unit
	Figure 135. Counter timing diagram with prescaler division change from 1 to 2
	Figure 136. Counter timing diagram with prescaler division change from 1 to 4

	16.3.2 Counter modes
	Figure 137. Counter timing diagram, internal clock divided by 1
	Figure 138. Counter timing diagram, internal clock divided by 2
	Figure 139. Counter timing diagram, internal clock divided by 4
	Figure 140. Counter timing diagram, internal clock divided by N
	Figure 141. Counter timing diagram, update event when ARPE=0 (TIMx_ARR not preloaded)
	Figure 142. Counter timing diagram, update event when ARPE=1 (TIMx_ARR preloaded)

	16.3.3 Clock selection
	Figure 143. Control circuit in normal mode, internal clock divided by 1
	Figure 144. TI2 external clock connection example
	Figure 145. Control circuit in external clock mode 1

	16.3.4 Capture/compare channels
	Figure 146. Capture/compare channel (example: channel 1 input stage)
	Figure 147. Capture/compare channel 1 main circuit
	Figure 148. Output stage of capture/compare channel (channel 1)

	16.3.5 Input capture mode
	16.3.6 PWM input mode (only for TIM9)
	Figure 149. PWM input mode timing

	16.3.7 Forced output mode
	16.3.8 Output compare mode
	Figure 150. Output compare mode, toggle on OC1.

	16.3.9 PWM mode
	Figure 151. Edge-aligned PWM waveforms (ARR=8)

	16.3.10 One-pulse mode
	Figure 152. Example of one pulse mode.

	16.3.11 TIM9 external trigger synchronization
	Figure 153. Control circuit in reset mode
	Figure 154. Control circuit in gated mode
	Figure 155. Control circuit in trigger mode

	16.3.12 Debug mode

	16.4 TIM9 registers
	16.4.1 TIM9 control register 1 (TIMx_CR1)
	16.4.2 TIM9 slave mode control register (TIMx_SMCR)
	Table 65. TIMx internal trigger connections

	16.4.3 TIM9 Interrupt enable register (TIMx_DIER)
	16.4.4 TIM9 status register (TIMx_SR)
	16.4.5 TIM9 event generation register (TIMx_EGR)
	16.4.6 TIM9 capture/compare mode register 1 (TIMx_CCMR1)
	16.4.7 TIM9 capture/compare enable register (TIMx_CCER)
	Table 66. Output control bit for standard OCx channels

	16.4.8 TIM9 counter (TIMx_CNT)
	16.4.9 TIM9 prescaler (TIMx_PSC)
	16.4.10 TIM9 auto-reload register (TIMx_ARR)
	16.4.11 TIM9 capture/compare register 1 (TIMx_CCR1)
	16.4.12 TIM9 capture/compare register 2 (TIMx_CCR2)
	16.4.13 TIM9 register map
	Table 67. TIM9 register map and reset values

	16.5 TIM11 registers
	16.5.1 TIM11 control register 1 (TIMx_CR1)
	16.5.2 TIM11 Interrupt enable register (TIMx_DIER)
	16.5.3 TIM11 status register (TIMx_SR)
	16.5.4 TIM11 event generation register (TIMx_EGR)
	16.5.5 TIM11 capture/compare mode register 1 (TIMx_CCMR1)
	16.5.6 TIM11 capture/compare enable register (TIMx_CCER)
	Table 68. Output control bit for standard OCx channels

	16.5.7 TIM11 counter (TIMx_CNT)
	16.5.8 TIM11 prescaler (TIMx_PSC)
	16.5.9 TIM11 auto-reload register (TIMx_ARR)
	16.5.10 TIM11 capture/compare register 1 (TIMx_CCR1)
	16.5.11 TIM11 option register 1 (TIM11_OR)
	16.5.12 TIM11 register map
	Table 69. TIM11 register map and reset values

	17 Basic timers (TIM6)
	17.1 Introduction
	17.2 TIM6 main features
	Figure 156. Basic timer block diagram

	17.3 TIM6 functional description
	17.3.1 Time-base unit
	Figure 157. Counter timing diagram with prescaler division change from 1 to 2
	Figure 158. Counter timing diagram with prescaler division change from 1 to 4

	17.3.2 Counting mode
	Figure 159. Counter timing diagram, internal clock divided by 1
	Figure 160. Counter timing diagram, internal clock divided by 2
	Figure 161. Counter timing diagram, internal clock divided by 4
	Figure 162. Counter timing diagram, internal clock divided by N
	Figure 163. Counter timing diagram, update event when ARPE = 0 (TIMx_ARR not preloaded)
	Figure 164. Counter timing diagram, update event when ARPE=1 (TIMx_ARR preloaded)

	17.3.3 Clock source
	Figure 165. Control circuit in normal mode, internal clock divided by 1

	17.3.4 Debug mode

	17.4 TIM6 registers
	17.4.1 TIM6 control register 1 (TIMx_CR1)
	17.4.2 TIM6 control register 2 (TIMx_CR2)
	17.4.3 TIM6 DMA/Interrupt enable register (TIMx_DIER)
	17.4.4 TIM6 status register (TIMx_SR)
	17.4.5 TIM6 event generation register (TIMx_EGR)
	17.4.6 TIM6 counter (TIMx_CNT)
	17.4.7 TIM6 prescaler (TIMx_PSC)
	17.4.8 TIM6 auto-reload register (TIMx_ARR)
	17.4.9 TIM6 register map
	Table 70. TIM6 register map and reset values

	18 Low-power timer (LPTIM)
	18.1 Introduction
	18.2 LPTIM main features
	18.3 LPTIM implementation
	Table 71. STM32F410 LPTIM features

	18.4 LPTIM functional description
	18.4.1 LPTIM block diagram
	Figure 166. Low-power timer block diagram

	18.4.2 LPTIM trigger mapping
	Table 72. LPTIM1 external trigger connection

	18.4.3 LPTIM input1 multiplexing
	18.4.4 LPTIM reset and clocks
	18.4.5 Glitch filter
	Figure 167. Glitch filter timing diagram

	18.4.6 Prescaler
	Table 73. Prescaler division ratios

	18.4.7 Trigger multiplexer
	18.4.8 Operating mode
	Figure 168. LPTIM output waveform, single counting mode configuration
	Figure 169. LPTIM output waveform, Single counting mode configuration and Set-once mode activated (WAVE bit is set)
	Figure 170. LPTIM output waveform, Continuous counting mode configuration

	18.4.9 Timeout function
	18.4.10 Waveform generation
	Figure 171. Waveform generation

	18.4.11 Register update
	18.4.12 Counter mode
	18.4.13 Timer enable
	18.4.14 Encoder mode
	Table 74. Encoder counting scenarios
	Figure 172. Encoder mode counting sequence

	18.4.15 Debug mode

	18.5 LPTIM low-power modes
	Table 75. Effect of low-power modes on the LPTIM

	18.6 LPTIM interrupts
	Table 76. Interrupt events

	18.7 LPTIM registers
	18.7.1 LPTIM interrupt and status register (LPTIM_ISR)
	18.7.2 LPTIM interrupt clear register (LPTIM_ICR)
	18.7.3 LPTIM interrupt enable register (LPTIM_IER)
	18.7.4 LPTIM configuration register (LPTIM_CFGR)
	18.7.5 LPTIM control register (LPTIM_CR)
	18.7.6 LPTIM compare register (LPTIM_CMP)
	18.7.7 LPTIM autoreload register (LPTIM_ARR)
	18.7.8 LPTIM counter register (LPTIM_CNT)
	18.7.9 LPTIM1 option register (LPTIM1_OR)
	18.7.10 LPTIM register map
	Table 77. LPTIM register map and reset values

	19 Window watchdog (WWDG)
	19.1 WWDG introduction
	19.2 WWDG main features
	19.3 WWDG functional description
	Figure 173. Watchdog block diagram

	19.4 How to program the watchdog timeout
	Figure 174. Window watchdog timing diagram

	19.5 Debug mode
	19.6 WWDG registers
	19.6.1 Control register (WWDG_CR)
	19.6.2 Configuration register (WWDG_CFR)
	19.6.3 Status register (WWDG_SR)
	19.6.4 WWDG register map
	Table 78. WWDG register map and reset values

	20 Independent watchdog (IWDG)
	20.1 IWDG introduction
	20.2 IWDG main features
	20.3 IWDG functional description
	20.3.1 Hardware watchdog
	20.3.2 Register access protection
	20.3.3 Debug mode
	Figure 175. Independent watchdog block diagram
	Table 79. Min/max IWDG timeout period at 32 kHz (LSI)

	20.4 IWDG registers
	20.4.1 Key register (IWDG_KR)
	20.4.2 Prescaler register (IWDG_PR)
	20.4.3 Reload register (IWDG_RLR)
	20.4.4 Status register (IWDG_SR)
	20.4.5 IWDG register map
	Table 80. IWDG register map and reset values

	21 Real-time clock (RTC)
	21.1 Introduction
	21.2 RTC main features
	Figure 176. RTC block diagram

	21.3 RTC functional description
	21.3.1 Clock and prescalers
	21.3.2 Real-time clock and calendar
	21.3.3 Programmable alarms
	21.3.4 Periodic auto-wakeup
	21.3.5 RTC initialization and configuration
	21.3.6 Reading the calendar
	21.3.7 Resetting the RTC
	21.3.8 RTC synchronization
	21.3.9 RTC reference clock detection
	21.3.10 RTC coarse digital calibration
	21.3.11 RTC smooth digital calibration
	21.3.12 Timestamp function
	21.3.13 Tamper detection
	21.3.14 Calibration clock output
	21.3.15 Alarm output

	21.4 RTC and low power modes
	Table 81. Effect of low power modes on RTC

	21.5 RTC interrupts
	Table 82. Interrupt control bits

	21.6 RTC registers
	21.6.1 RTC time register (RTC_TR)
	21.6.2 RTC date register (RTC_DR)
	21.6.3 RTC control register (RTC_CR)
	21.6.4 RTC initialization and status register (RTC_ISR)
	21.6.5 RTC prescaler register (RTC_PRER)
	21.6.6 RTC wakeup timer register (RTC_WUTR)
	21.6.7 RTC calibration register (RTC_CALIBR)
	21.6.8 RTC alarm A register (RTC_ALRMAR)
	21.6.9 RTC alarm B register (RTC_ALRMBR)
	21.6.10 RTC write protection register (RTC_WPR)
	21.6.11 RTC sub second register (RTC_SSR)
	21.6.12 RTC shift control register (RTC_SHIFTR)
	21.6.13 RTC time stamp time register (RTC_TSTR)
	21.6.14 RTC time stamp date register (RTC_TSDR)
	21.6.15 RTC timestamp sub second register (RTC_TSSSR)
	21.6.16 RTC calibration register (RTC_CALR)
	21.6.17 RTC tamper and alternate function configuration register (RTC_TAFCR)
	21.6.18 RTC alarm A sub second register (RTC_ALRMASSR)
	21.6.19 RTC alarm B sub second register (RTC_ALRMBSSR)
	21.6.20 RTC backup registers (RTC_BKPxR)
	21.6.21 RTC register map
	Table 83. RTC register map and reset values

	22 Fast-mode Plus Inter-integrated circuit (FMPI2C) interface
	22.1 Introduction
	22.2 FMPI2C main features
	22.3 FMPI2C implementation
	Table 84. STM32F410 FMPI2C implementation

	22.4 FMPI2C functional description
	22.4.1 FMPI2C block diagram
	Figure 177. FMPI2C block diagram

	22.4.2 FMPI2C pins and internal signals
	Table 85. FMPI2C input/output pins
	Table 86. FMPI2C internal input/output signals

	22.4.3 FMPI2C clock requirements
	22.4.4 Mode selection
	Figure 178. I2C bus protocol

	22.4.5 FMPI2C initialization
	Table 87. Comparison of analog vs. digital filters
	Figure 179. Setup and hold timings
	Table 88. I2C-SMBUS specification data setup and hold times
	Figure 180. FMPI2C initialization flowchart

	22.4.6 Software reset
	22.4.7 Data transfer
	Figure 181. Data reception
	Figure 182. Data transmission
	Table 89. FMPI2C configuration

	22.4.8 FMPI2C slave mode
	Figure 183. Slave initialization flowchart
	Figure 184. Transfer sequence flowchart for FMPI2C slave transmitter, NOSTRETCH= 0
	Figure 185. Transfer sequence flowchart for FMPI2C slave transmitter, NOSTRETCH= 1
	Figure 186. Transfer bus diagrams for FMPI2C slave transmitter
	Figure 187. Transfer sequence flowchart for slave receiver with NOSTRETCH=0
	Figure 188. Transfer sequence flowchart for slave receiver with NOSTRETCH=1
	Figure 189. Transfer bus diagrams for FMPI2C slave receiver

	22.4.9 FMPI2C master mode
	Figure 190. Master clock generation
	Table 90. I2C-SMBUS specification clock timings
	Figure 191. Master initialization flowchart
	Figure 192. 10-bit address read access with HEAD10R=0
	Figure 193. 10-bit address read access with HEAD10R=1
	Figure 194. Transfer sequence flowchart for FMPI2C master transmitter for N≤255 bytes
	Figure 195. Transfer sequence flowchart for FMPI2C master transmitter for N>255 bytes
	Figure 196. Transfer bus diagrams for FMPI2C master transmitter
	Figure 197. Transfer sequence flowchart for FMPI2C master receiver for N≤255 bytes
	Figure 198. Transfer sequence flowchart for FMPI2C master receiver for N >255 bytes
	Figure 199. Transfer bus diagrams for FMPI2C master receiver

	22.4.10 FMPI2C_TIMINGR register configuration examples
	Table 91. Examples of timing settings for fI2CCLK = 8 MHz
	Table 92. Examples of timings settings for fI2CCLK = 16 MHz

	22.4.11 SMBus specific features
	Table 93. SMBus timeout specifications
	Figure 200. Timeout intervals for tLOW:SEXT, tLOW:MEXT.

	22.4.12 SMBus initialization
	Table 94. SMBUS with PEC configuration

	22.4.13 SMBus: FMPI2C_TIMEOUTR register configuration examples
	Table 95. Examples of TIMEOUTA settings for various FMPI2CCLK frequencies (max tTIMEOUT = 25 ms)
	Table 96. Examples of TIMEOUTB settings for various FMPI2CCLK frequencies
	Table 97. Examples of TIMEOUTA settings for various FMPI2CCLK frequencies (max tIDLE = 50 µs)

	22.4.14 SMBus slave mode
	Figure 201. Transfer sequence flowchart for SMBus slave transmitter N bytes + PEC
	Figure 202. Transfer bus diagrams for SMBus slave transmitter (SBC=1)
	Figure 203. Transfer sequence flowchart for SMBus slave receiver N Bytes + PEC
	Figure 204. Bus transfer diagrams for SMBus slave receiver (SBC=1)
	Figure 205. Bus transfer diagrams for SMBus master transmitter
	Figure 206. Bus transfer diagrams for SMBus master receiver

	22.4.15 Error conditions
	22.4.16 DMA requests
	22.4.17 Debug mode

	22.5 FMPI2C low-power modes
	Table 98. Effect of low-power modes on the FMPI2C

	22.6 FMPI2C interrupts
	Table 99. FMPI2C Interrupt requests

	22.7 FMPI2C registers
	22.7.1 FMPI2C control register 1 (FMPI2C_CR1)
	22.7.2 FMPI2C control register 2 (FMPI2C_CR2)
	22.7.3 FMPI2C own address 1 register (FMPI2C_OAR1)
	22.7.4 FMPI2C own address 2 register (FMPI2C_OAR2)
	22.7.5 FMPI2C timing register (FMPI2C_TIMINGR)
	22.7.6 FMPI2C timeout register (FMPI2C_TIMEOUTR)
	22.7.7 FMPI2C interrupt and status register (FMPI2C_ISR)
	22.7.8 FMPI2C interrupt clear register (FMPI2C_ICR)
	22.7.9 FMPI2C PEC register (FMPI2C_PECR)
	22.7.10 FMPI2C receive data register (FMPI2C_RXDR)
	22.7.11 FMPI2C transmit data register (FMPI2C_TXDR)
	22.7.12 FMPI2C register map
	Table 100. FMPI2C register map and reset values

	23 Inter-integrated circuit (I2C) interface
	23.1 I2C introduction
	23.2 I2C main features
	23.3 I2C functional description
	23.3.1 Mode selection
	Figure 207. I2C bus protocol
	Figure 208. I2C block diagram

	23.3.2 I2C slave mode
	Figure 209. Transfer sequence diagram for slave transmitter
	Figure 210. Transfer sequence diagram for slave receiver

	23.3.3 I2C master mode
	Figure 211. Transfer sequence diagram for master transmitter
	Figure 212. Transfer sequence diagram for master receiver

	23.3.4 Error conditions
	23.3.5 Programmable noise filter
	Table 101. Maximum DNF[3:0] value to be compliant with Thd:dat(max)

	23.3.6 SDA/SCL line control
	23.3.7 SMBus
	Table 102. SMBus vs. I2C

	23.3.8 DMA requests
	23.3.9 Packet error checking

	23.4 I2C interrupts
	Table 103. I2C Interrupt requests
	Figure 213. I2C interrupt mapping diagram

	23.5 I2C debug mode
	23.6 I2C registers
	23.6.1 I2C Control register 1 (I2C_CR1)
	23.6.2 I2C Control register 2 (I2C_CR2)
	23.6.3 I2C Own address register 1 (I2C_OAR1)
	23.6.4 I2C Own address register 2 (I2C_OAR2)
	23.6.5 I2C Data register (I2C_DR)
	23.6.6 I2C Status register 1 (I2C_SR1)
	23.6.7 I2C Status register 2 (I2C_SR2)
	23.6.8 I2C Clock control register (I2C_CCR)
	23.6.9 I2C TRISE register (I2C_TRISE)
	23.6.10 I2C FLTR register (I2C_FLTR)
	23.6.11 I2C register map
	Table 104. I2C register map and reset values

	24 Universal synchronous receiver transmitter (USART) /universal asynchronous receiver transmitter (UART)
	24.1 USART introduction
	24.2 USART main features
	24.3 USART implementation
	Table 105. USART features

	24.4 USART functional description
	Figure 214. USART block diagram
	24.4.1 USART character description
	Figure 215. Word length programming

	24.4.2 Transmitter
	Figure 216. Configurable stop bits
	Figure 217. TC/TXE behavior when transmitting

	24.4.3 Receiver
	Figure 218. Start bit detection when oversampling by 16 or 8
	Figure 219. Data sampling when oversampling by 16
	Figure 220. Data sampling when oversampling by 8
	Table 106. Noise detection from sampled data

	24.4.4 Fractional baud rate generation
	Table 107. Error calculation for programmed baud rates at fPCLK = 8 MHz or fPCLK = 12 MHz, oversampling by 16
	Table 108. Error calculation for programmed baud rates at fPCLK = 8 MHz or fPCLK = 12 MHz, oversampling by 8
	Table 109. Error calculation for programmed baud rates at fPCLK = 16 MHz or fPCLK = 24 MHz, oversampling by 16
	Table 110. Error calculation for programmed baud rates at fPCLK = 16 MHz or fPCLK = 24 MHz, oversampling by 8
	Table 111. Error calculation for programmed baud rates at fPCLK = 8 MHz or fPCLK = 16 MHz, oversampling by 16
	Table 112. Error calculation for programmed baud rates at fPCLK = 8 MHz or fPCLK = 16 MHz, oversampling by 8
	Table 113. Error calculation for programmed baud rates at fPCLK = 30 MHz or fPCLK = 60 MHz, oversampling by 16
	Table 114. Error calculation for programmed baud rates at fPCLK = 30 MHz or fPCLK = 60 MHz, oversampling by 8
	Table 115. Error calculation for programmed baud rates at fPCLK = 42 MHz or fPCLK = 84 Hz, oversampling by 16
	Table 116. Error calculation for programmed baud rates at fPCLK = 42 MHz or fPCLK = 84 MHz, oversampling by 8
	Table 117. Error calculation for programmed baud rates at fPCLK = 100 MHz or fPCLK = 50 MHz, oversampling by 16
	Table 118. Error calculation for programmed baud rates at fPCLK = 100 MHz or fPCLK = 50 MHz, oversampling by 8

	24.4.5 USART receiver tolerance to clock deviation
	Table 119. USART receiver tolerance when DIV fraction is 0
	Table 120. USART receiver tolerance when DIV_Fraction is different from 0

	24.4.6 Multiprocessor communication
	Figure 221. Mute mode using Idle line detection
	Figure 222. Mute mode using address mark detection

	24.4.7 Parity control
	Table 121. Frame formats

	24.4.8 LIN (local interconnection network) mode
	Figure 223. Break detection in LIN mode (11-bit break length - LBDL bit is set)
	Figure 224. Break detection in LIN mode vs. Framing error detection

	24.4.9 USART synchronous mode
	Figure 225. USART example of synchronous transmission
	Figure 226. USART data clock timing diagram (M=0)
	Figure 227. USART data clock timing diagram (M=1)
	Figure 228. RX data setup/hold time

	24.4.10 Single-wire half-duplex communication
	24.4.11 Smartcard
	Figure 229. ISO 7816-3 asynchronous protocol
	Figure 230. Parity error detection using the 1.5 stop bits

	24.4.12 IrDA SIR ENDEC block
	Figure 231. IrDA SIR ENDEC- block diagram
	Figure 232. IrDA data modulation (3/16) -Normal mode

	24.4.13 Continuous communication using DMA
	Figure 233. Transmission using DMA
	Figure 234. Reception using DMA

	24.4.14 Hardware flow control
	Figure 235. Hardware flow control between 2 USARTs
	Figure 236. RTS flow control
	Figure 237. CTS flow control

	24.5 USART interrupts
	Table 122. USART interrupt requests
	Figure 238. USART interrupt mapping diagram

	24.6 USART registers
	24.6.1 Status register (USART_SR)
	24.6.2 Data register (USART_DR)
	24.6.3 Baud rate register (USART_BRR)
	24.6.4 Control register 1 (USART_CR1)
	24.6.5 Control register 2 (USART_CR2)
	24.6.6 Control register 3 (USART_CR3)
	24.6.7 Guard time and prescaler register (USART_GTPR)
	24.6.8 USART register map
	Table 123. USART register map and reset values

	25 Serial peripheral interface/ inter-IC sound (SPI/I2S)
	25.1 Introduction
	25.1.1 SPI main features
	25.1.2 SPI extended features
	25.1.3 I2S features

	25.2 SPI/I2S implementation
	Table 124. STM32F410 SPI implementation

	25.3 SPI functional description
	25.3.1 General description
	Figure 239. SPI block diagram

	25.3.2 Communications between one master and one slave
	Figure 240. Full-duplex single master/ single slave application
	Figure 241. Half-duplex single master/ single slave application
	Figure 242. Simplex single master/single slave application (master in transmit-only/ slave in receive-only mode)

	25.3.3 Standard multi-slave communication
	Figure 243. Master and three independent slaves

	25.3.4 Multi-master communication
	Figure 244. Multi-master application

	25.3.5 Slave select (NSS) pin management
	Figure 245. Hardware/software slave select management

	25.3.6 Communication formats
	Figure 246. Data clock timing diagram

	25.3.7 SPI configuration
	25.3.8 Procedure for enabling SPI
	25.3.9 Data transmission and reception procedures
	Figure 247. TXE/RXNE/BSY behavior in master / full-duplex mode (BIDIMODE=0, RXONLY=0) in the case of continuous transfers
	Figure 248. TXE/RXNE/BSY behavior in slave / full-duplex mode (BIDIMODE=0, RXONLY=0) in the case of continuous transfers

	25.3.10 Procedure for disabling the SPI
	25.3.11 Communication using DMA (direct memory addressing)
	Figure 249. Transmission using DMA
	Figure 250. Reception using DMA

	25.3.12 SPI status flags
	25.3.13 SPI error flags

	25.4 SPI special features
	25.4.1 TI mode
	Figure 251. TI mode transfer

	25.4.2 CRC calculation

	25.5 SPI interrupts
	Table 125. SPI interrupt requests

	25.6 I2S functional description
	25.6.1 I2S general description
	Figure 252. I2S block diagram

	25.6.2 I2S full-duplex
	Figure 253. Full-duplex communication

	25.6.3 Supported audio protocols
	Figure 254. I2S Philips protocol waveforms (16/32-bit full accuracy, CPOL = 0)
	Figure 255. I2S Philips standard waveforms (24-bit frame with CPOL = 0)
	Figure 256. Transmitting 0x8EAA33
	Figure 257. Receiving 0x8EAA33
	Figure 258. I2S Philips standard (16-bit extended to 32-bit packet frame with CPOL = 0)
	Figure 259. Example of 16-bit data frame extended to 32-bit channel frame
	Figure 260. MSB Justified 16-bit or 32-bit full-accuracy length with CPOL = 0
	Figure 261. MSB justified 24-bit frame length with CPOL = 0
	Figure 262. MSB justified 16-bit extended to 32-bit packet frame with CPOL = 0
	Figure 263. LSB justified 16-bit or 32-bit full-accuracy with CPOL = 0
	Figure 264. LSB justified 24-bit frame length with CPOL = 0
	Figure 265. Operations required to transmit 0x3478AE
	Figure 266. Operations required to receive 0x3478AE
	Figure 267. LSB justified 16-bit extended to 32-bit packet frame with CPOL = 0
	Figure 268. Example of 16-bit data frame extended to 32-bit channel frame
	Figure 269. PCM standard waveforms (16-bit)
	Figure 270. PCM standard waveforms (16-bit extended to 32-bit packet frame)

	25.6.4 Clock generator
	Figure 271. Audio sampling frequency definition
	Figure 272. I2S clock generator architecture
	Table 126. Audio-frequency precision using standard 8 MHz HSE

	25.6.5 I2S master mode
	25.6.6 I2S slave mode
	25.6.7 I2S status flags
	25.6.8 I2S error flags
	25.6.9 I2S interrupts
	Table 127. I2S interrupt requests

	25.6.10 DMA features

	25.7 SPI and I2S registers
	25.7.1 SPI control register 1 (SPI_CR1) (not used in I2S mode)
	25.7.2 SPI control register 2 (SPI_CR2)
	25.7.3 SPI status register (SPI_SR)
	25.7.4 SPI data register (SPI_DR)
	25.7.5 SPI CRC polynomial register (SPI_CRCPR) (not used in I2S mode)
	25.7.6 SPI RX CRC register (SPI_RXCRCR) (not used in I2S mode)
	25.7.7 SPI TX CRC register (SPI_TXCRCR) (not used in I2S mode)
	25.7.8 SPI_I2S configuration register (SPI_I2SCFGR)
	25.7.9 SPI_I2S prescaler register (SPI_I2SPR)
	25.7.10 SPI register map
	Table 128. SPI register map and reset values

	26 Debug support (DBG)
	26.1 Overview
	Figure 273. Block diagram of STM32 MCU and Cortex®-M4 with FPU-level debug support

	26.2 Reference Arm® documentation
	26.3 SWJ debug port (serial wire and JTAG)
	Figure 274. SWJ debug port
	26.3.1 Mechanism to select the JTAG-DP or the SW-DP

	26.4 Pinout and debug port pins
	26.4.1 SWJ debug port pins
	Table 129. SWJ debug port pins

	26.4.2 Flexible SWJ-DP pin assignment
	Table 130. Flexible SWJ-DP pin assignment

	26.4.3 Internal pull-up and pull-down on JTAG pins
	26.4.4 Using serial wire and releasing the unused debug pins as GPIOs

	26.5 JTAG TAP connection
	Figure 275. JTAG TAP connections

	26.6 ID codes and locking mechanism
	26.6.1 MCU device ID code
	26.6.2 Boundary scan TAP
	26.6.3 Cortex®-M4 with FPU TAP
	26.6.4 Cortex®-M4 with FPU JEDEC-106 ID code

	26.7 JTAG debug port
	Table 131. JTAG debug port data registers
	Table 132. 32-bit debug port registers addressed through the shifted value A[3:2]

	26.8 SW debug port
	26.8.1 SW protocol introduction
	26.8.2 SW protocol sequence
	Table 133. Packet request (8-bits)
	Table 134. ACK response (3 bits)
	Table 135. DATA transfer (33 bits)

	26.8.3 SW-DP state machine (reset, idle states, ID code)
	26.8.4 DP and AP read/write accesses
	26.8.5 SW-DP registers
	Table 136. SW-DP registers

	26.8.6 SW-AP registers

	26.9 AHB-AP (AHB access port) - valid for both JTAG-DP and SW-DP
	Table 137. Cortex®-M4 with FPU AHB-AP registers

	26.10 Core debug
	Table 138. Core debug registers

	26.11 Capability of the debugger host to connect under system reset
	26.12 FPB (Flash patch breakpoint)
	26.13 DWT (data watchpoint trigger)
	26.14 ITM (instrumentation trace macrocell)
	26.14.1 General description
	26.14.2 Time stamp packets, synchronization and overflow packets
	Table 139. Main ITM registers

	26.15 ETM (Embedded trace macrocell)
	26.15.1 General description
	26.15.2 Signal protocol, packet types
	26.15.3 Main ETM registers
	Table 140. Main ETM registers

	26.15.4 Configuration example

	26.16 MCU debug component (DBGMCU)
	26.16.1 Debug support for low-power modes
	26.16.2 Debug support for timers, watchdog, and I2C
	26.16.3 Debug MCU configuration register
	26.16.4 Debug MCU APB1 freeze register (DBGMCU_APB1_FZ)
	26.16.5 Debug MCU APB2 Freeze register (DBGMCU_APB2_FZ)

	26.17 TPIU (trace port interface unit)
	26.17.1 Introduction
	Figure 276. TPIU block diagram

	26.17.2 TRACE pin assignment
	Table 141. Asynchronous TRACE pin assignment
	Table 142. Synchronous TRACE pin assignment
	Table 143. Flexible TRACE pin assignment

	26.17.3 TPUI formatter
	26.17.4 TPUI frame synchronization packets
	26.17.5 Transmission of the synchronization frame packet
	26.17.6 Synchronous mode
	26.17.7 Asynchronous mode
	26.17.8 TRACECLKIN connection
	26.17.9 TPIU registers
	Table 144. Important TPIU registers

	26.17.10 Example of configuration

	26.18 DBG register map
	Table 145. DBG register map and reset values

	27 Device electronic signature
	27.1 Unique device ID register (96 bits)
	27.2 Flash size
	27.3 Package data register

	28 Revision history
	Table 146. Document revision history

