
Quick Reference
Note: This list of commands is not exhaustive.
There's a more detailed and technical document https://espterm.github.io/docs/espterm-xterm.html
available online.

Communication UART (Rx, Tx) can be configured in the System Settings.

Boot log and debug messages are available on pin GPIO2 (P2) at 115200 baud, 1 stop bit, no
parity. Those messages may be disabled through compile flags.

Loopback test: Connect the Rx and Tx pins with a piece of wire. Anything you type in the browser
should appear on the screen. Set Parser Timeout = 0 in Terminal Settings to be able to manually
enter escape sequences.

Use Ctrl+F12 to open a screen debug panel. Additional debugging can be enabled in the Terminal
Settings (near the bottom).

For best performance, use the module in Client mode (connected to external network) and
minimize the number of simultaneous connections. Enabling AP consumes extra RAM because the
DHCP server and Captive Portal DNS server are started.

Check that the WiFi channel used is clear; interference may cause flaky connection. A good
mobile app to use for this is WiFi Analyzer (Google
Play) https://play.google.com/store/apps/details?id=com.farproc.wifi.analyzer. Adjust the hotspot
strength and range using the Tx Power setting.

Hold the BOOT button (GPIO0 to GND) for ~1 second to force enable AP. Hold it for ~6 seconds to
restore default settings. (This is indicated by the blue LED rapidly flashing). Default settings can be
overwritten in the System Settings.

ESPTerm emulates VT102 (pictured) with some additions from
later VT models and Xterm. All commonly used attributes and
commands are supported. ESPTerm is capable of displaying
ncurses applications such as Midnight Commander using
agetty.

ESPTerm accepts UTF-8 characters received on the
communication UART and displays them on the screen,
interpreting some codes as Control Characters. Those are e.g.
Carriage Return (13), Line Feed (10), Tab (9), Backspace (8)
and Bell (7).

Escape sequences start with the control character ESC (27),
followed by any number of ASCII characters forming the body of the command.

Nomenclature & Command Types

Tips & Troubleshooting

Basic Intro & Nomenclature

https://espterm.github.io/docs/espterm-xterm.html
https://espterm.github.io/cfg_system.html
https://espterm.github.io/cfg_term.html
https://espterm.github.io/cfg_term.html
https://play.google.com/store/apps/details?id=com.farproc.wifi.analyzer
https://espterm.github.io/cfg_system.html

Examples on this help page use the following symbols for special characters and command types:
(spaces are for clarity only, DO NOT include them in the commands!)

Name Symbol ASCII C string Function

ESC \e ESC (27) "\e" , "\x1b" ,
"\033"

Introduces an escape sequence.
(Note: \e is a GCC extension)

Bell \a BEL (7) "\a" , "\x7" ,
"\07"

Audible beep

String
Terminator

ST
ESC \ (27 92)
or \a (7)

"\x1b\\" , "\a" Terminates a string command (\a
can be used as an alternative)

Control
Sequence
Introducer

CSI ESC ["\x1b["
Starts a CSI command. Examples:
\e[?7;10h , \e[2J

Operating
System
Command

OSC ESC] "\x1b]"

Starts an OSC command. Is followed
by a command string terminated by
ST . Example:
\e]0;My Screen Title\a

Select
Graphic
Rendition

SGR CSI n;n;nm "\x1b[1;2;3m"

Set text attributes, like color or style.
0 to 10 numbers can be used, \e[m
is treated as \e[0m

There are also some other commands that don't follow the CSI, SGR or OSC pattern, such as \e7 or
\e#8 . A list of the most important escape sequences is presented in the following sections.

The initial screen size, title text and button labels can be configured in Terminal Settings.

Screen updates are sent to the browser through a WebSocket after some time of inactivity on the
communication UART (called "Redraw Delay"). After an update is sent, at least a time of "Redraw
Cooldown" must elapse before the next update can be sent. Those delays are used is to avoid burdening
the server with tiny updates during a large screen repaint. If you experience issues (broken image due to
dropped bytes), try adjusting those config options. It may also be useful to try different baud rates.

UTF-8 support

ESPTerm supports all UTF-8 characters, but to reduce the screen buffer RAM size, only a small amount of
unique multi-byte characters can be used at the same time (up to 160, depending on compile flags).
Unique multi-byte characters are stored in a look-up table and are removed when they are no longer used
on the screen. In rare cases it can happen that a character stays in the table after no longer being used (this
can be noticed when the table fills up and new characters are not shown correctly). This is fixed by
clearing the screen (\e[2J or \ec).

Keyboard

Screen Behavior & Refreshing

User Input: Keyboard, Mouse

https://espterm.github.io/cfg_term.html

The user can input text using their keyboard, or on Android, using the on-screen keyboard which is open
using a button beneath the screen. Supported are all printable characters, as well as many control keys,
such as arrows, Ctrl+letters and function keys. Sequences sent by function keys are based on VT102 and
Xterm.

The codes sent by Home, End, F1-F4 and cursor keys are affected by various keyboard modes
(Application Cursor Keys, Application Numpad Mode, SS3 Fn Keys Mode). Some can be set in the
Terminal Settings, others via commands.

Here are some examples of control key codes:

Key Code Key Code

Up \e[A , \eOA F1 \eOP , \e[11~

Down \e[B , \eOB F2 \eOQ , \e[12~

Right \e[C , \eOC F3 \eOR , \e[13~

Left \e[D , \eOD F4 \eOS , \e[14~

Home \eOH , \e[H , \e[1~ F5 \e[15

End \eOF , \e[F , \e[4~ F6 \e[17~

Insert \e[2~ F7 \e[18~

Delete \e[3~ F8 \e[19~

Page Up \e[5~ F9 \e[20~

Page Down \e[6~ F10 \e[21~

Enter \r (13) F11 \e[23~

Ctrl+Enter \n (10) F12 \e[24~

Tab \t (9) ESC \e (27)

Backspace \b (8) Ctrl+A..Z ASCII 1-26

Action buttons

The blue buttons under the screen send ASCII codes 1, 2, 3, 4, 5, which incidentally correspond to
Ctrl+A,B,C,D,E. This choice was made to make button press parsing as simple as possible.

Mouse

ESPTerm implements standard mouse tracking modes based on Xterm. Mouse tracking can be used to
implement powerful user interactions such as on-screen buttons, draggable sliders or dials, menus etc.
ESPTerm's mouse tracking was tested using VTTest and should be compatible with all terminal
applications that request mouse tracking.

Mouse can be tracked in different ways; some are easier to parse, others more powerful. The coordinates
can also be encoded in different ways. All mouse tracking options are set using option commands: CSI ?

https://espterm.github.io/cfg_term.html

n h to enable, CSI ? n l to disable option n.

Mouse Tracking Modes

All tracking modes produce three numbers which are then encoded and send to the application. First is the
event number N, then the X and Y coordinates, 1-based.

Mouse buttons are numbered: 1=left, 2=middle, 3=right. Wheel works as two buttons (4 and 5) which
generate only press events (no release).

Option Name Description

9 X10 mode This is the most basic tracking mode, in which only button presses are
reported. N = button - 1: (0 left, 1 middle, 2 right, 3, 4 wheel).

1000 Normal mode

In Normal mode, both button presses and releases are reported. The lower
two bits of N indicate the button pressed: 00b (0) left, 01b (1) middle,
10b (2) right, 11b (3) button release. Wheel buttons are reported as 0 and
1 with added 64 (e.g. 64 and 65). Normal mode also supports tracking of
modifier keys, which are added to N as bit masks: 4=Shift, 8=Meta/Alt,
16=Control/Cmd. Example: middle button with Shift = 1 + 4 = 101b (5).

1002
Button-Event
tracking

This is similar to Normal mode (1000), but mouse motion with a button
held is also reported. A motion event is generated when the mouse cursor
moves between screen character cells. A motion event has the same N as a
press event, but 32 is added. For example, drag-drop event with the middle
button will produce N = 1 (press), 33 (dragging) and 3 (release).

1003
Any-Event
tracking

This mode is almost identical to Button Event tracking (1002), but motion
events are sent even when no mouse buttons are held. This could be used to
draw on-screen mouse cursor, for example. Motion events with no buttons
will use N = 32 + 11b (35).

1004 Focus tracking

Focus tracking is a separate function from the other mouse tracking modes,
therefore they can be enabled together. Focus tracking reports when the
terminal window (in Xterm) gets or loses focus, or in ESPTerm's case, when
any user is connected. This can be used to pause/resume a game or on-screen
animations. Focus tracking mode sends CSI I when the terminal receives,
and CSI O when it loses focus.

Mouse Report Encoding

The following encoding schemes can be used with any of the tracking modes (except Focus tracking,
which is not affected).

Option Name Description

Option Name Description

-- Normal encoding

This is the default encoding scheme used when no other option is
selected. In this mode, a mouse report has the format CSI M n x y ,
where n, x and y are characters with ASCII value = 32 (space) + the
respective number, e.g. 0 becomes 32 (space), 1 becomes 33 (!). The
reason for adding 32 is to avoid producing control characters. Example:
\e[M !! - left button press at coordinates 1,1 when using X10 mode.

1005 UTF-8 encoding

This scheme should encode each of the numbers as a UTF-8 code point,
expanding the maximum possible value. Since ESPTerm's screen size is
limited and this has no practical benefit, this serves simply as an alias to
the normal scheme.

1006 SGR encoding

In SGR encoding, the response looks like a SGR sequence with the three
numbers as semicolon-separated ASCII values. In this case 32 is not
added like in the Normal and UTF-8 schemes, because it would serve nor
purpose here. Also, button release is not reported as 11b, but using the
normal button code while changing the final SGR character: M for button
press and m for button release. Example: \e[2;80;24m - the right
button was released at row 80, column 24.

1015 URXVT encoding

This is similar to SGR encoding, but the final character is always M and
the numbers are like in the Normal scheme, with 32 added. This scheme
has no real advantage over the previous schemes and was added solely
for completeness.

ESPTerm implements Alternate Character Sets as a way to print box drawing characters and special
symbols. A character set can change what each received ASCII character is printed as on the screen (eg. "
{" is "π" in codepage 0). The implementation is based on the original VT devices.

Since ESPTerm also supports UTF-8, this feature is the most useful for applications which can't print
UTF-8 or already use alternate character sets for historical reasons.

Supported codepages

B - US ASCII (default)

A - UK ASCII: # replaced with £

0 - Symbols and basic line drawing (standard DEC alternate character set)

1 - Symbols and advanced line drawing (based on DOS codepage 437, ESPTerm specific)

2 - Block characters and thick line drawing (ESPTerm specific)

3 - Extra line drawing (ESPTerm specific)

All codepages use codes 32-127, 32 being space. A character with no entry in the active codepage stays
unchanged.

Alternate Character Sets

Codepage 0

Codepage 1

Codepage 2

96 `

♦

97 a

▒

98 b

␉
99 c

␌
100 d

␍
101 e

␊
102 f

°

103 g

±

104 h

␤
105 i

␋
106 j

┘

107 k

┐

108 l

┌

109 m

└

110 n

┼

111 o

⎺

112 p

⎻

113 q

─

114 r

⎼

115 s

⎽

116 t

├

117 u

┤

118 v

┴

119 w

┬

120 x

│

121 y

≤

122 z

≥

123 {

π

124 |

≠

125 }

£

126 ~

·

33 !

☺

34 "

☻

35 #

♥

36 $

♦

37 %

♣

38 &

♠

39 '

•

40 (

⌛
41)

○

42 *

↯

43 +

♪

44 ,

♫

45 -

☼

46 .

⌂

47 /

☢

48 0

░

49 1

▒

50 2

▓

51 3

│

52 4

┤

53 5

╡

54 6

╢

55 7

╖

56 8

╕

57 9

╣

58 :

║

59 ;

╗

60 <

╝

61 =

╜

62 >

╛

63 ?

┐

64 @

└

65 A

┴

66 B

┬

67 C

├

68 D

─

69 E

┼

70 F

╞

71 G

╟

72 H

╚

73 I

╔

74 J

╩

75 K

╦

76 L

╠

77 M

═

78 N

╬

79 O

╧

80 P

╨

81 Q

╤

82 R

╥

83 S

╙

84 T

╘

85 U

╒

86 V

╓

87 W

╫

88 X

╪

89 Y

┘

90 Z

┌

91 [

█

92 \

▄

93]

▌

94 ^

▐

95 _

▀

96 `

↕

97 a

↑

98 b

↓

99 c

→

100 d

←

101 e

↔

102 f

▲

103 g

▼

104 h

►

105 i

◄

106 j

◢

107 k

◣

108 l

◤

109 m

◥

110 n

╭

111 o

╮

112 p

╯

113 q

╰

114 r

╱

115 s

╲

116 t

╳

117 u

↺

118 v

↻

119 w

¶

120 x

⏻
121 y

122 z

123 {

124 |

125 }

✔

126 ~

✘

33 !

▁

34 "

▂

35 #

▃

36 $

▄

37 %

▅

38 &

▆

39 '

▇

40 (

█

41)

▉

42 *

▊

43 +

▋

44 ,

▌

45 -

▍

46 .

▎

47 /

▏

48 0

▔

49 1

▕

50 2

▐

51 3

▀

52 4

▘

53 5

▝

54 6

▗

55 7

▖

56 8

▟

57 9

▙

58 :

▛

59 ;

▜

60 <

▞

61 =

▚

62 >

━

63 ?

┃

64 @

┍

65 A

┎

66 B

┏

67 C

┑

68 D

┒

69 E

┓

70 F

┕

71 G

┖

72 H

┗

73 I

┙

74 J

┚

75 K

┛

76 L

┝

77 M

┞

78 N

┟

79 O

┠

80 P

┡

81 Q

┢

82 R

┣

83 S

┥

84 T

┦

85 U

┧

86 V

┨

87 W

┩

88 X

┪

89 Y

┫

90 Z

┭

91 [

┮

92 \

┯

93]

┰

94 ^

┱

95 _

┲

96 `

┳

97 a

┵

98 b

┶

99 c

┷

100 d

┸

101 e

┹

102 f

┺

103 g

┻

104 h

┽

105 i

┾

106 j

┿

107 k

╀

Codepage 3

Codepage switching commands

There are two character set slots, G0 and G1. Those slots are selected as active using ASCII codes Shift In
and Shift Out (those originally served for shifting a red-black typewriter tape). Often only G0 is used for
simplicity.

Each slot (G0 and G1) can have a different codepage assigned. G0 and G1 and the active slot number are
saved and restored with the cursor and cleared with a screen reset (\ec).

The following commands are used:

Code Meaning

\e(x Set G0 = codepage x

\e)x Set G1 = codepage x

SO (14) Activate G0

SI (15) Activate G1

All text attributes are set using SGR commands like \e[1;4m , with up to 10 numbers separated by
semicolons. To restore all attributes to their default states, use SGR 0: \e[0m or \e[m .

Those are the supported text attributes SGR codes:

Style Enable Disable

Bold 1 21, 22

2 22

Italic 3 23

Underlined 4 24

Striked 9 29

108 l

╁

109 m

╂

110 n

╃

111 o

╄

112 p

╅

113 q

╆

114 r

╇

115 s

╈

116 t

╉

117 u

╊

118 v

╋

119 w

╴

120 x

╵

121 y

╶

122 z

╷

123 {

╸

124 |

╹

125 }

╺

126 ~

╻

33 !

╌

34 "

┄

35 #

┈

36 $

╍

37 %

┅

38 &

┉

39 '

╎

40 (

┆

41)

┊

42 *

╏

43 +

┇

44 ,

┋

45 -

╼

46 .

╽

47 /

╾

48 0

╿

Commands: Style Attributes

Faint

Style Enable Disable

Overline 53 55

Blink 5 25

Inverse 7 27

𝔉𝔯𝔞𝔨𝔱𝔲𝔯 20 23

Conceal 8 28

Conceal turns all characters invisible.

Colors are set using SGR commands (like \e[30;47m). The following tables list the SGR codes to use.
Selected colors are used for any new text entered, as well as for empty space when using clearing
commands (except screen reset \ec , which first clears all style attriutes. The configured default colors
can be restored using SGR 39 for foreground and SGR 49 for background.

The actual color representation of the basic 16 colors depends on a color theme which can be selected in
Terminal Settings.

Background image can be set using \e]70;url\a (see section System Functions).

Foreground colors

30 31 32 33 34 35 36 37

90 91 92 93 94 95 96 97

Background colors

40 41 42 43 44 45 46 47

100 101 102 103 104 105 106 107

256-color palette

ESPTerm supports in total 256 standard colors. The dark and bright basic colors are numbered 0-7 and 8-
15. To use colors higher than 15 (or 0-15 using this simpler numbering), send CSI 38 ; 5 ; n m ,
where n is the color to set. Use CSI 48 ; 5 ; n m for background colors.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
37 38 39
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
61 62 63
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
85 86 87
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108

1

1

Commands: Color Attributes

https://espterm.github.io/cfg_term.html

109 110 111
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
133 134 135
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
157 158 159
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
181 182 183
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
205 206 207
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
229 230 231
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
253 254 255

The coordinates are 1-based, origin is top left. The cursor can move within the entire screen, or in the
active Scrolling Region if Origin Mode is enabled.

After writing a character, the cursor advances to the right. If it has reached the end of the row, it stays on
the same line, but writing the next character makes it jump to the start of the next line first, scrolling up if
needed. If Auto-wrap mode is disabled, the cursor never wraps or scrolls the screen.

Legend: Italic letters such as n are ASCII numbers that serve as arguments, separated with a semicolon. If
an argument is left out, it's treated as 0 or 1, depending on what makes sense for the command.

Movement

Code Meaning

\e[nA

\e[nB

\e[nC

\e[nD

Move cursor up (A), down (B), right (C), left (D)

\e[nF

\e[nE
Go n lines up (F) or down (E), start of line

\e[rd

\e[cG

\e[r;cH

Go to absolute position - row (d), column (G), or both (H). Use \e[H to go to 1,1.

\e[6n Query cursor position. Sent back as \e[r;cR .

Save / restore

Code Meaning

Commands: Cursor Functions

Code Meaning

\e[s

\e[u
Save (s) or restore (u) cursor position

\e7

\e8
Save (7) or restore (8) cursor position and attributes

Scrolling Region

Code Meaning

\e[a;br

Set scrolling region to rows a through b and go to 1,1. By default, the scrolling
region spans the entire screen height. The cursor can leave the region using absolute
position commands, unless Origin Mode (see below) is active.

\e[?6h

\e[?6l

Enable (h) or disable (l) Origin Mode and go to 1,1. In Origin Mode, all
coordinates are relative to the Scrolling Region and the cursor can't leave the region.

\e[nS

\e[nT

Move contents of the Scrolling Region up (S) or down (T), pad with empty lines of
the current background color. This is similar to what happens when AutoWrap is
enabled and some text is printed at the very end of the screen.

Tab stops

Code Meaning

\eH Set tab stop at the current column. There are, by default, tabs every 8 columns.

\e[nI

\e[nZ

Advance (I) or go back (Z) n tab stops or end/start of line. ASCII TAB (9) is
equivalent to \e[1I

\e[0g

\e[3g
Clear tab stop at the current column (0), or all columns (3).

Other options

Code Meaning

\e[?7h

\e[?7l
Enable (h) or disable (l) cursor auto-wrap and screen auto-scroll

\e[?12h

\e[?12l
Toggle cursor blinking (h on, l off)

\e[?25h

\e[?25l
Show (h) or hide (l) the cursor

\e[?45h

\e[?45l

Enable (h) or disable (l) reverse wrap-around (when using "move left" or
backspace)

Commands: Screen Functions

Legend: Italic letters such as n are ASCII numbers that serve as arguments, separated with a semicolon. If
an argument is left out, it's treated as 0 or 1, depending on what makes sense for the command.

Code Meaning

\e[mJ Clear part of screen. m: 0 - from cursor, 1 - to cursor, 2 - all

\e[mK Erase part of line. m: 0 - from cursor, 1 - to cursor, 2 - all

\e[nX Erase n characters in line.

\e[nb Repeat last printed characters n times (moving cursor and using the current style).

\e[nL

\e[nM
Insert (L) or delete (M) n lines. Following lines are pulled up or pushed down.

\e[n@

\e[nP

Insert (@) or delete (P) n characters. The rest of the line is pulled left or pushed
right. Characters going past the end of line are lost.

ESPTerm implements commands for device-to-device messaging and for requesting external servers. This
can be used e.g. for remote control, status reporting or data upload / download.

Networking commands use the format \e^...\a , a Privacy Message (PM). PM is similar to OSC,
which uses] in place of ^ . The PM payload (text between \e^ and \a) must be shorter than 256 bytes,
and should not contain any control characters (ASCII < 32).

Device-to-device Messaging

To send a message to another ESPTerm module, use: \e^M;DestIP;message\a .

This command sends a POST request to http://<DestIP>/api/v1/msg . The IP address may be
appended by a port, if needed (eg. :8080). In addition to POST, a GET request can also be used. In that
case, any GET arguments (/api/v1/msg?arguments) will be used instead of the request body. This
is intended for external access when sending POST requests is not convenient.

Each ESPTerm listens for such requests and relays them to UART:
\e^m;SrcIP;L=length;message\a , with length being the byte length of message, as ASCII.

Notice a pattern with the first letter: capital is always a command, lower case a response. This is followed
with the HTTP commands and any networking commands added in the future.

Example: Node 192.168.0.10 sends a message to 192.168.0.19: \e^M;192.168.0.19;Hello\a .
Node 192.168.0.19 receives \e^m;192.168.0.10;L=5;Hello\a on the UART. Note that the IP
address in the reception message is that of the first node, thus it can be used to send a message back.

External HTTP requests

To request an external server, use \e^H;method;options;url\nbody\a .

method - can be any usual HTTP verb, such as GET , POST , PUT , HEAD .

options - is a comma-separated list of flags and parameters:

Commands: Networking

H - get response headers

B - get response body

X - ignore the response, return nothing

N=nonce - a custom string that will be added in the options field of the response message.
Use this to keep track of which request a response belongs to.

T=ms - request timeout (default 5000 ms), in milliseconds

L=bytes - limit response length (default 0 = don't limit). Applies to the head, body, or both
combined, depending on the H and B flags

l=bytes - limit the response buffer size (default 5000 B). This can reduce RAM usage,
however it shouldn't be set too small, as this buffer is used for both headers and the response
body.

url - full request URL, including http:// . Port may be specified if different from :80, and GET
arguments may be appended to the URL if needed.

body - optional, separated from url by a single line feed character (\n). This can be used for
POST and PUT requests. Note: the command may be truncated to the maximum total length of 256
characters if too long.

The response has the following format: \e^h;status;options;response\a

status - a HTTP status code, eg. 200 is OK, 404 Not found.

options - similar to those in the request, here describing the response data. This field can contain
comma-separated B , H and L=bytes and N=nonce .

response - the response, as requested. If both headers and body are received, they will be
separated by an empty line (i.e. \r\n\r\n). Response can be up to several kilobytes long,
depending on the L= and l= options.

Example: \e^H;GET;B;http://wtfismyip.com/text\a - get the body of a web page
(wtfismyip.com is a service that sends back your IP address). A response could be
\e^h;200;B,L=11;80.70.60.50\a .

It's possible to dynamically change the screen title text and action button labels. Setting an empty label to a
button makes it look disabled. The buttons send ASCII 1-5 when clicked. Those changes are not retained
after restart.

Code Meaning

CAN (24)

This ASCII code is sent by ESPTerm when it becomes ready to receive commands.
When this code is received on the UART, it means ESPTerm has restarted and is
ready. Use this to detect spontaneous restarts which require a full screen repaint. As
a control character sent to ESPTerm, CAN aborts any currently received commands
and clears the parser.

Commands: System Functions

Code Meaning

ENQ (5)
ESPTerm responds to this control characters with an "answerback message". This
message contains the curretn version, unique ID, and the IP address if in Client
mode.

\ec
Clear screen, reset attributes and cursor. This command also restores the default
screen size, title, button labels and messages and the background URL.

\e[8;r;ct Set screen size to r rows and c columns (this is a command borrowed from Xterm)

\e[5n
Query device status, ESPTerm replies with \e[0n "device is OK". Can be used to
check if the terminal has booted up and is ready to receive commands.

\e[n q

Set cursor style: eg. \e[3 q (the space is part of the command!). 0 - block (blink),
1 - default, 2 - block (steady), 3 - underline (blink), 4 - underline (steady), 5 - I-
bar (blink), 6 - I-bar (steady). The default style (number 1) can be configured in
Terminal Settings

\e]0;t\a Set screen title to t (this is a standard OSC command)

\e]70;u\a

Set background image to URL u (including protocol) that can be resolved by the
user's browser. The image will be scaled to fit the screen, preserving aspect ratio. A
certain border must be added to account for the screen margins. Use empty string to
disable the image feature. Note that this won't work for users connected to the
built-in AP.

\e]8x;t\a
Set label for button 1-5 (code 81-85) to t - e.g.\e]81;Yes\a sets the first button
text to "Yes".

\e]9x;m\a
Set message for button 1-5 (code 91-95) to m - e.g.\e]94;+\a sets the 3rd button
to send "+" when pressed. The message can be up to 10 bytes long.

\e]9;t\a
Show a notification with text t. This will be either a desktop notification or a pop-up
balloon.

\e[?ns

\e[?nr

Save (s) and restore (r) any option set using CSI ? n h . This is used by some
applications to back up the original state before making changes.

\e[?800h

\e[?800l
Show (h) or hide (l) the action buttons (the blue buttons under the screen).

\e[?801h

\e[?801l
Show (h) or hide (l) menu/help links under the screen.

\e[?2004h

\e[?2004l

Enable (h) or disable (l) Bracketed Paste mode. This mode makes any text sent
using the Upload Tool be preceded by \e[200~ and terminated by \e[201~ .
This is useful for distinguishing keyboard input from uploads.

\e[?1049h

\e[?1049l

Switch to (h) or from (l) an alternate screen. ESPTerm can't implement this fully,
so the original screen content is not saved, but it will remember the cursor, screen
size, terminal title, button labels and messages.

\e[12h

\e[12l

Enable (h) or disable (l) Send-Receive Mode (SRM). SRM is the opposite of
Local Echo, meaning \e[12h disables and \e[12l enables Local Echo.

